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ABSTRACT
Vertical partitioning is a crucial step in physical database design
in row-oriented databases. A number of vertical partitioning algo-
rithms have been proposed over the last three decades for a variety
of niche scenarios. In principle, the underlying problem remains
the same: decompose a table into one or more vertical partitions.
However, it is not clear how good different vertical partitioning al-
gorithms are in comparison to each other. In fact, it is not even clear
how to experimentally compare different vertical partitioning algo-
rithms. In this paper, we present an exhaustive experimental study
of several vertical partitioning algorithms. We categorize vertical
partitioning algorithms along three dimensions. We survey six ver-
tical partitioning algorithms and discuss their pros and cons. We
identify the major differences in the use-case settings for different
algorithms and describe how to make an apples-to-apples compari-
son of different vertical partitioning algorithms under the same set-
ting. We propose four metrics to compare vertical partitioning al-
gorithms. We show experimental results from the TPC-H and SSB
benchmark and present four key lessons learned: (1) we can do four
orders of magnitude less computation and still find the optimal lay-
outs, (2) the benefits of vertical partitioning depend strongly on the
database buffer size, (3) HillClimb is the best vertical partitioning
algorithm, and (4) vertical partitioning for TPC-H-like benchmarks
can improve over column layout by only up to 5%.

1. INTRODUCTION

1.1 Background
Vertical partitioning is a physical design technique to partition a

given logical relation into a set of physical tables. This is a common
design step with analytical workloads in traditional as well as in
modern data management systems such as HBase [9], Vertica [20],
Hadoop++ [12], and HYRISE [6]. The basic purpose is to improve
the I/O performance of disk-based systems. For instance, consider
the TPC-H PartSupp table and the following query workload:

Q1: SELECT PartKey,SuppKey,AvailQty,SupplyCost
FROM PartSupp;

Q2: SELECT AvailQty,SupplyCost,Comment
FROM PartSupp;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 6
Copyright 2013 VLDB Endowment 2150-8097/13/04... $ 10.00.

For such a workload, we could choose to partition PartSupp
into three vertical partitions: P1(PartKey,SuppKey),
P2(AvailQty,SupplyCost), and P3(Comment). Now
Q1 accesses partitions P1 and P2, while Q2 accesses partitions P2

and P3. Thus, both Q1 and Q2 read only the required attributes
and this improves the I/O performance of these queries. Vertical
partitioning not only improves the query I/O performance, but also
strongly affects other physical design decisions such as compres-
sion and indexing, as well as query processing techniques such as
parallel and distributed query processing. Thus, it is no surprise
that vertical partitioning has been researched extensively in the
past with researchers proposing a plethora of approaches [10, 7,
15, 4, 16, 5, 3, 8, 17, 1, 6, 12, 11]. As special cases, two extremes
of vertical partitioning are traditionally more popular, namely:
(i) full vertical partitioning (i.e. column layouts) and (ii) no vertical
partitioning (i.e. row layouts).

1.2 Effects of Vertical Partitioning
Let us now understand the effects of vertical partitioning on

database design decisions in more detail. The major trade-off in
vertical partitioning is the row size of partitions: large row sized
(wide) partitions resemble row layout, while smaller row sized
(narrow) partitions are more similar to column layout. Below, we
briefly discuss the major pros and cons of vertical partitioning by
contrasting the wide and narrow vertical partitions. Note that in this
paper we are considering the majorly used row-oriented database
systems and how to boost their performance using vertical parti-
tioning. Of course, the other alternative could be using a different
system, e.g. column store, in order to boost performance. However,
replacing the existing, typically row-oriented, database system is
not possible in many situations due to legacy reasons.

Bandwidth. The width of vertical partitions has a consid-
erable effect on I/O bandwidth, and hence on query perfor-
mance. Wide vertical partitions force the queries referenc-
ing fewer attributes to additionally read the accompanying at-
tributes in the partition. For example, for queries Q1 and Q2

above, if we split PartSupp into the following two vertical par-
titions: P4(PartKey,SuppKey,AvailQty,SupplyCost)
and P5(Comment) then query Q2 is forced to read at-
tributes PartKey and Suppkey in addition to AvailQty,
SupplyCost, and Comment. These additional reads affect the
I/O bandwidth of Q2. In the extreme case, if all attributes are put
together into a single vertical partition (which yields a row layout),
then all except the referenced attributes are read unnecessarily.
Robustness. On the other hand, wide vertical partitions pro-
duce predictable query run times, because the majority of queries
would have to touch the same number of partitions. For exam-
ple, for queries Q1 and Q2 above, if we keep all attributes of table



PartSupp in a single vertical partition (i.e. row layout) then both
queries Q1 as well as Q2 have the same I/O performance, since
they both access all five attributes. Scan-only systems such as [18]
are examples of such robust query processing systems.
Joins. Narrow vertical partitions penalize queries referencing lots
of attributes. This is because the queries need to touch multi-
ple vertical partitions. For example, for the workload in Sec-
tion 1.1, if we split table PartSupp into three vertical partitions:
P1(PartKey,SuppKey), P2(AvailQty,SupplyCost), and
P3(Comment) then query Q2 must touch partitions P2 and P3.
With this, the database engine needs to reconstruct the tuples from
the referenced vertical partitions using tuple reconstruction joins.
Since each vertical partition is stored as a separate physical table,
these tuple reconstruction joins could be pretty expensive: they can
negatively affect the query plans and incur CPU overheads.
Random I/O. Tuple reconstruction joins in narrow vertical
partitions incur very high random I/O costs. This is because all
referenced vertical partitions must be read at the same time for
tuple reconstruction. For this to happen, the database buffer must
be split into sub-buffers for each referenced vertical partition. As
a consequence, now we have random I/Os each time any of the
sub-buffers needs to be filled. For instance, Q1 has twice the num-
ber of random I/Os for partitions P1(PartKey,SuppKey)
and P2(AvailQty,SupplyCost) than for partition
P4(PartKey,SuppKey,AvailQty,SupplyCost).

1.3 Choosing a Vertical Partitioning Algo-
rithm

Vertical partitioning strongly affects the query performance in
many ways, as discussed above. A number of vertical partition-
ing algorithms have been proposed by several researchers over
time [10, 7, 15, 4, 16, 5, 3, 8, 17, 1, 6, 12, 11]. As a result, users
now have the problem of choosing a vertical partitioning algorithm.
In contrast to physical design tools, which choose a layout given a
vertical partitioning algorithm, the problem here is to choose the
vertical partitioning algorithm in the first place. Essentially, the
questions that we are looking at are:

- Which are the major algorithms proposed? What is the difference
between those algorithms?
- For which settings were different algorithms proposed? What are
their pros and cons?
- What are the primary differences between different vertical parti-
tioning settings? Can we abstract the settings from the algorithms?
- How do we compare different algorithms in a common setting?
What would be the right measures for comparison?
- How do the different algorithms compare against each other?
When to use which algorithm?

Thus, there is an absence of a systematic and comparative study
of vertical partitioning algorithms. This paper fills this gap.

1.4 Contributions
In this paper, we present an exhaustive experimental study on

vertical partitioning algorithms. Our main contributions are as fol-
lows:

(1.) Given the large number of vertical partitioning algorithms pro-
posed in the literature,we first understand the fundamental differ-
ences between them. To do so, we first classify them along three
dimensions, namely: (i) search strategy, (ii) starting point, and
(iii) candidate pruning (Section 2).

(2.) From the above categories, we survey six representative ver-
tical partitioning algorithms, namely: (i) AutoPart [17], (ii) Hill-
Climb [8], (iii) HYRISE [6], (iv) Navathe’s algorithm [15],
(v) O2P [11], and (vi) Trojan layouts [12]. We present a brief sum-
mary and the context of each of the algorithms (Section 3).
(3.) We describe how the different vertical partitioning algorithms
can be applied in the same setting. Even though each algorithm
was proposed for a different setting, we can still unite them under
a common umbrella (Section 4).
(4.) We present a systematic way of comparing different vertical
partitioning algorithms. For this purpose, we introduce four met-
rics, namely: (i) how fast in terms of computation times, (ii) how
good in terms of workload runtimes, (iii) how fragile in terms of
predictable runtimes, and (iv) where does it make sense to use ver-
tical partitioning (Section 5).
(5.) We show detailed experimental results from six vertical parti-
tioning algorithms over the TPC-H benchmark and with row and
column layouts as baselines. We discuss each of the four metrics
for the six vertical partitioning algorithms (Section 6).
(6.) Finally, we discuss the 4 key lessons learned (Section 7).

2. CLASSIFICATION OF VERTICAL
PARTITIONING ALGORITHMS

There are several vertical partitioning algorithms proposed in the
literature. Instead of simply listing them, it would be more inter-
esting to see the major differences between the core ideas of those
algorithms. To do this, we categorize the vertical partitioning al-
gorithms along three dimensions based on the way they attack the
vertical partitioning problem. Table 1 shows the classification of
the evaluated vertical partitioning algorithms. We describe each of
these dimensions and categories below.

2.1 Search Strategy
First of all, we differentiate different vertical partitioning algo-

rithms based on their search strategy in the solution space.
Brute Force. Algorithms in this category follow the naive ap-
proach of enumerating all possible vertical partitionings and pick-
ing the one giving the best estimated query performance. In this
way, a brute force algorithm computes the best possible vertical
partitioning over a given query workload and cost model. Unfor-
tunately, the number of possible vertical partitionings grow dra-
matically with the number of attributes. For instance, for the 16
attributes of the TPC-H Lineitem table, the number of possible ver-
tical partitionings is 10.5 million. Therefore, brute force is not a
practical approach for large number of attributes.
Top-down. Algorithms in this category start from the set contain-
ing all attributes and try to break it into smaller and smaller subsets.
The idea is to assume no-vertical-partitioning, i.e. row layout, as
the ground truth and to improve upon it as much as possible. The
improvement is usually measured in terms of the expected cost of
a query workload (using a cost model). Early vertical partitioning
algorithms [15, 16] were based on this approach. As the starting
point the attributes are arranged in some order, e.g. an ordered se-
quence in [15] or a connected graph in [16]. Typically, there is a
preparatory step which determines this order, e.g. attribute affinity
matrix clustering in [15]. Thereafter, the attribute set is recursively
(and greedily) divided into smaller subsets till no improvement in
the expected workload costs is seen. Every split step preserves the
initial ordering of the attributes. Inspired from those early works,
a recent algorithm does online vertical partitioning using the top-
down approach [11]. The vertical partitioning algorithms in top-
down category converge faster for highly regular attribute access



Dimension Category AutoPart [17] HillClimb [8] HYRISE [6] Navathe [15] O2P [11] Trojan [12] Brute Force

Search Strategy
Brute Force
Top-down
Bottom-up

Starting Point
Whole workload
Attribute subset

Query subset

Candidate Pruning No pruning
Threshold-based

Table 1: Classification of the evaluated vertical partitioning algorithms.

patterns, i.e. lots of queries accessing almost the same attributes.
This is because only few splitting steps are required. On the other
hand, top-down algorithms consider vertical partitions incremen-
tally. This means that for any vertical partition to appear in the
final solution, its supersets must appear in all previous iterations.
This might not happen in many situations.
Bottom-up. In contrast to top-down, the bottom-up approach starts
with minimally small vertical partitions. All algorithms in this cat-
egory define the latter property of a partition differently. The un-
derlying assumption is that it does not make sense to sub-divide
these initial vertical partitions into smaller vertical partitions. The
idea then is to recursively merge the vertical partitions into big-
ger partitions as long as there is an improvement in expected query
costs. Three main algorithms [3, 8, 17] fall into this category. As
the preliminary step, the algorithms produce the set of minimally
small vertical partitions. These can be partitions containing only
a single attribute (column layout), as in [8], or the set of primary
partitions, which are partitions containing attributes that are always
accessed together in all queries, as in [3, 17]. Thereafter, the algo-
rithms recursively consider merging two or more partitions. Addi-
tionally, [17] also creates overlapping partitions, i.e. partitions hav-
ing one or more attributes in common, thereby allowing for partial
replication of attributes. The bottom-up algorithms converge faster
for highly fragmented attribute access patterns, i.e. queries access-
ing little or no attributes in common. This is because after a few
merge steps the costs will not improve any more. Similar to the
top-down class, the bottom-up algorithms consider vertical parti-
tions incrementally, i.e. greedily. For bottom-up algorithms this
means that for any vertical partition to appear in the final solution,
its subsets must appear in all previous iterations.

2.2 Starting Point
Apart from the search strategy, different vertical partitioning al-

gorithms may have different starting points. For example, an algo-
rithm may start with only a subset of the attributes or with only a
subset of the workload queries. This is an important consideration
because it helps to first sub-divide the vertical partitioning problem
into smaller problems and find the solution to each of them.
Whole workload. Algorithms in this category do neither divide
the queries nor the attributes at the start.
Attribute subset. Algorithms in this category compute vertical
partitioning for a subset of the attributes. For example, [6] first
sub-divides attribute sets into groups using a k-way partitioner and
then computes the vertical partitioning for each group using a top-
down algorithm. Finally, to produce the final solution, [6] combines
the solutions from different sub-problems. Computing vertical par-
titioning for attribute subsets reduces the complexity of the algo-
rithm dramatically. However, such algorithms find the solution for
each subset locally and have to later merge them.
Query subset. Algorithms in this category compute vertical parti-
tioning for only a subset of the queries in the workload. For exam-
ple, [12] first sub-divides the workload into query groups depend-
ing on the similarity between queries and finds the layout for each

query group using a bottom-up algorithm. It is easier to find verti-
cal partitioning for query subsets, since they are likely to have more
similar access patterns, and hence the algorithm converges quickly.
[12] does not combine the solutions from different query subsets,
as it creates multiple vertical partitionings, one for each dataset
replica. Starting from query subsets is a very practical approach
because typical workloads contain several classes of queries, each
having very similar access patterns.

2.3 Candidate Pruning
Finally, vertical partitioning algorithms may also prune the ver-

tical partitioning candidates in order to reduce the search space.
No pruning. Most algorithms considered in this paper do not apply
pruning to the search space, but generate possible solutions in each
iteration excluding locally sub-optimal ones.
Threshold-based. Algorithms with threshold-based pruning prune
the input set based on some heuristics. For example, algorithms [1]
and [12] prune the set of column groups based on their interest-
ingness, which denotes how well a given column group speeds up
the queries. The complexity of these algorithms therefore depends
on the effectiveness of their pruning threshold. Threshold-based
pruning algorithms face one basic problem: the algorithm needs to
generate all candidates before actually pruning them. This could
be pretty expensive and hence slow. On the flip side, however,
threshold-pruning approach sees the global picture (not local or in-
cremental) and hence is expected to produce better results.

3. EVALUATED ALGORITHMS
In this paper, we cover a wide range of representative vertical

partitioning algorithms from the early state-of-the-art to the most
recent ones. We choose these algorithms to cover all categories
and include the earliest vertical partitioning algorithm as well as
five other recent vertical partitioning algorithms published in the
last decade. Below we describe each of these algorithms.
Brute Force. The total number of vertical partitioning combi-
nations, using brute force, are given by Bell numbers. The nth

Bell number Bn+1 is given as: Bn+1 =
∑n

k=0

(
n
k

)
Bk. For ex-

ample, for the TPC-H customer table, having eight attributes, the
number of possible vertical partitionings is given by B8 = 4140.
Bell numbers can be represented as a sum of Sterling numbers1:
Bn+1 =

∑n
k=0

{
n
k

}
where{n

k

}
=

{n − 1

k − 1

}
+ k ·

{n − 1

k

}
, and

{n

1

}
=

{n

n

}
= 1.

The complexity of the above brute force vertical partitioning algo-
rithm is O(nn) (for n attributes).
Navathe. One of the earliest approximation-based approaches to
vertical partitioning was proposed by Navathe et al [15]. This is a
top-down algorithm and focuses primarily on disk-based systems.

1The Sterling number
{
n
k

}
gives the number of ways to partition n

attributes into k partitions.



The core idea of this algorithm is as follows. Given a set of at-
tributes and a set of queries referencing those attributes, the al-
gorithm constructs an attribute affinity matrix. Cell (i, j) of the
attribute affinity matrix denotes the number of times attribute i co-
occurs with attribute j (also called their affinity). Thereafter, the
algorithm clusters the cells of the matrix such that attributes with
higher affinity are close together. The authors propose to use the
bond energy algorithm [14] for matrix clustering. After that, the al-
gorithm splits the clustered set of attributes into vertical partitions
recursively.
HillClimb. The HillClimb algorithm is a bottom-up algorithm pro-
posed in the early 2000s [8]. This algorithm focuses on data layouts
within a data page. It proceeds as follows. It starts with column
layout, i.e. each attribute resides in a different vertical partition.
Thereafter, in each iteration, the algorithm finds and merges two
partitions which, when merged, provide the best improvement in
expected query costs. This means that in each iteration the number
of vertical partitions is reduced by one. The algorithm stops iter-
ating when there is no improvement in expected query costs. To
facilitate computing the expected query costs, the algorithm pre-
computes and maintains a dictionary of the costs of all possible
vertical partitions (or column groups). However, the size of such
a dictionary grows quickly to several gigabytes for a large number
of attributes. As a result, we have found that the runtime of the
algorithm can be dramatically improved without maintaining such
a dictionary. Thus, we used this improved version of HillClimb.
AutoPart. The AutoPart is a bottom-up algorithm introduced
in 2004 to compute vertical partitionings over large scientific
datasets [17]. First, AutoPart categorically partitions the table hor-
izontally (based on selection predicates), such that each horizontal
partition is accessed by a different subset of queries. Thereafter,
AutoPart finds vertical partitioning for each horizontal partition.
As a starting point, AutoPart generates the set of primary parti-
tions (called atomic fragments). A vertical partition is atomic if
all queries accessing it, reference all attributes in the partition. In
other words, there are no queries which access a subset of an atomic
fragment. Thereafter, in each iteration, the fragments are extended
by either combining them with atomic fragments or with fragments
from the previous iteration. The process is repeated till there is no
improvement in estimated costs of the query workload. Note that
an attribute may occur in multiple fragments (i.e. replicated) when
combined. Thus, it might be possible that multiple partition com-
binations are now suitable to answer a given query. In such a case,
we need to select the partitions to read. It turns out that partition
selection is as difficult a problem as vertical partitioning itself.
HYRISE. The HYRISE is a multi-level algorithm proposed in
2010 to compute vertical partitionings for main-memory resident
data processing systems [6]. In contrast to disk-based systems, the
goal here is to minimize the number of cache misses. In the first
step, the algorithm generates the set of primary partitions, which
are the same as the atomic fragments in AutoPart, i.e. sets of at-
tributes that are always accessed together. Then, the algorithm
builds an affinity graph for the primary partitions, where primary
partitions are represented as nodes and the co-accessed frequency
of two primary partitions as edge weights. HYRISE then partitions
this graphs such that each sub-graph contains at most K primary
partitions. This is done using a K-way graph partitioner. There-
after, HYRISE finds the layout for each sub-graph separately. In
each iteration, the primary partitions (belonging to the same sub-
graph) which give the maximum cost improvement are merged.
The merged partition replaces the primary partitions and the pro-
cess is repeated until there is no more improvement in cost. As the

final step, HYRISE tries to combine the vertical partitions obtained
from different sub-graphs.
O2P. One-dimensional online partitioning (O2P) is a top-down al-
gorithm proposed in 2011 with the focus on real time partition-
ing [11]. The goal is to determine a vertical partitioning in an on-
line setting, i.e. while the query workload is being executed. It starts
from Navathe’s algorithm and transforms it into an online vertical
partitioning algorithm. To do so, it dynamically updates as well as
clusters the affinity matrix for each incoming query. This is done
by adapting the bond energy algorithm [14] , used in Navathe, to an
online setting. To compute the vertical partitioning, O2P employs
a greedy approach to create one (the best) new vertical partition
in each step. It also uses dynamic programming to remember the
costs of non-best vertical partitions from the previous step. These
two techniques make the partitioning analysis in O2P extremely
fast and hence suited for an online setting.
Trojan. The Trojan layouts algorithm was proposed in 2011 to cre-
ate vertical partitioning for big data [12]. It is a threshold-pruning
based algorithm. Unlike previous algorithms, it considers large
data block sizes and existing data block replication, both being a re-
ality for big data. As the first step it enumerates all possible column
groups and keeps only the ones that are interesting. It introduces a
novel interestingness measure for column groups, based on the mu-
tual information between the attributes of a column group. The al-
gorithm prunes all column groups whose interestingness fall below
a certain threshold. The interesting column groups are then merged
into a complete (i.e. containing all attributes) and disjoint (i.e. not
containing any attribute twice) set of vertical partitions. This is
done by mapping vertical partitioning to a 0-1 knapsack problem.
The Trojan algorithm works especially well with data replication,
such as found in HDFS. To take into account the default data repli-
cation in HDFS, it first groups queries and maps each query group
to a different data replica. It uses the same column grouping algo-
rithm for query grouping as well. Then, for each query group, it
computes the column groups independently.

4. METHODOLOGY
The vertical partitioning algorithms described above have all

been proposed for different scenarios and under different settings.
Below, let us try to understand the major differences between them.

(1.) Granularity. Different algorithms are targeted for different
data granularity, such as data page, e.g. HillClimb, database block,
e.g. Trojan, and file, e.g. AutoPart.
(2.) Hardware. The algorithms can optimize for different hard-
ware, such as hard disk, e.g. Navathe, and main-memory,
e.g. HYRISE.
(3.) Workload. The algorithms may work with different assump-
tions for the query workload. We can consider a fixed set of queries
(offline workload), e.g. AutoPart, or a dynamically growing set of
queries (online workload), e.g. O2P.
(4.) Replication. An algorithm may or may not consider data repli-
cation. Even if the algorithm considers replication, it may either
consider replicating all attributes (full replication), e.g. Trojan, or
only a subset of the attributes (partial replication), e.g. AutoPart.
(5.) System. Different algorithms are proposed in different imple-
mentations of data managing systems, e.g. Hadoop (Trojan), Berke-
leyDB (O2P), main-memory implementation (HYRISE), etc.

Table 2 classifies the six algorithms (from Section 3) analyzed in
this paper according to their granularity, hardware-, workload-, and
replication characteristics. We can see that no two algorithms have



Parameters Values AutoPart [17] HillClimb [8] HYRISE [6] Navathe [15] O2P [11] Trojan [12] Our Unified Setting

Granularity
DATA PAGE
DATABASE BLOCK
FILE

Hardware HARD DISK
MAIN MEMORY

Workload OFFLINE
ONLINE

Replication
PARTIAL
FULL
NONE

System
OPEN SOURCE
COST MODEL
CUSTOM

Table 2: Settings for different vertical partitioning algorithms.

the same combination of these parameters. It seems that the dif-
ferent vertical partitioning algorithms use quite different configura-
tions even though they have exactly the same underlying function-
ality: decompose a table into vertical partitions. In order to have
an apples-to-apples comparison, we use the same configuration for
all vertical partitioning algorithms. To the best of our knowledge,
this is the first paper to survey vertical partitioning algorithms un-
der a common configuration. Essentially this means that we strip
the granularity, hardware-, workload-, and replication characteris-
tics from the different vertical partitioning algorithms, leaving just
the core vertical partitioning functionality. Below we describe the
common configuration used in our experiments.
Common Granularity. For all algorithms, we consider the storage
layout of the vertically partitioned table to be as follows: the table
is split into one or more vertical partitions (column groups), which
are stored in separate files. Thus, each data page contains data
from only a single vertical partition. At query time, we assume that
the database system does the following: read all vertical partition’s
files which contain any of the attributes referenced by the incoming
query. This means that even if a query references only some of the
attributes in a vertical partition, we still need to read all attributes
in the vertical partition’s file.
Common Hardware. We use the following common testbed for
all algorithms: a single node machine with a quad-core Intel Xeon
5150 processor running at 2.66 GHz with 4 MB L2 cache, having
16 GB RAM and 1.5 TB HDD, running OpenSuse 12.1 64 bit. We
consider the commonly used disk-based storage when evaluating
vertical partitioning algorithms. We measured the disk characteris-
tics of our testbed using Bonnie++ [2]. We obtained the following
results: a disk read bandwidth of 90.07 MB/s, disk write bandwidth
of 64.37 MB/s and average disk seek time of 4.84 ms.
Common Workload. We consider read-only analytical applica-
tions for comparing different vertical partitioning algorithms. To do
so, we take the query workload from the widely used TPC-H bench-
mark, and assume a scale factor of 10. We partition each table in
TPC-H separately, as done by other researchers [3]. We take all 22
queries from the TPC-H benchmark. However, we consider only
scan and projection query operators. This is because in our cost
model, we model only the I/O costs for accessing the data, while
excluding the query execution costs. We do this for two reasons.
First, almost all vertical partitioning algorithms consider only scan
and projection operators. Since we are doing a comparative study
of different algorithms, we consider the same set of operators for
all algorithms. Extending these algorithms to consider other oper-
ators, such as selection, will be an interesting future work. Second,
the overall query execution costs make sense only when all physi-
cal design decisions, including indexes and materialised views, are
considered. Instead, in this paper, we are focussing on vertical par-
titioning and hence we want to isolate the impact of vertical parti-
tioning created by different algorithms. Furthermore, overall query
execution costs depend heavily on the query optimizer and executor

of the database system and hence it is not possible to model them
in a general setting.
Common Replication. AutoPart and Trojan make use of partial
and full data replication respectively. However, in order to make
a fair comparison, we would need to tweak other algorithms to al-
low for data replication as well. Moreover, data replication adds
several new dimensions for consideration. These include storage
space constraints, read versus update performances, and most im-
portantly picking the right replica at query time. Hence, we believe
that vertical partitioning with data replication requires an indepen-
dent exhaustive study, which is beyond the scope of this paper. In-
stead, in this paper, we limit to no data replication.
Common System. We evaluate all algorithms using the estimated
costs from our I/O cost model. We do this for two reasons. First,
as discussed before, we focus on the I/O costs of queries in or-
der to understand the effects of vertical partitioning in row-oriented
database systems. Second, database systems typically create a dif-
ferent table for each vertical partition and later use joins for tuple
reconstruction. This makes running just the leaf plans (in order
to see the I/O costs) very expensive because no operators can be
pushed down and we end up with high join cardinalities. As a re-
sult, the I/O costs are overshadowed by the join processing costs.
In our recent work [13], we exploited UDFs to store and access
data in column layouts without performing a join, i.e. we simply
merge the columns. However, this works only for highly selective
queries2. To the best of our knowledge, there is no freely available
database system which queries vertically partitioned data without
performing table joins.

Our system assumes buffered read- and write mechanisms for
transferring data between disk and memory. This means that, at
query time, we read all vertical partitions which contain any of the
attributes, referenced by the incoming query, into an I/O buffer (say
of size Buff ). In our experiments we assume per-tuple query pro-
cessing, i.e. the database system passes data tuple-by-tuple to the
query executor. For this, the database system needs to reconstruct
the tuples while reading the vertical partitions. To do so, we will
require to buffer-read the vertical partitions at the same time. This
means that we have to share the I/O buffer among the multiple ver-
tical partitions being read. In our cost model, we share the I/O
buffer in proportion to the tuple size of the vertical partitions being
read. If S is the total row size of all referenced partitions and si is
the row size of vertical partition i, then the I/O buffer allocated to
partition i is given as:

buffi =
⌊

Buff ·
si
S

⌋
.

Given block size b, the number of blocks that can be read at a time
into the buffer for partition i are:

blocksbuff
i =

⌊
buffi

b

⌋
.

2For low selectivities the UDF call overhead shadows the perfor-
mance gain due to a different layout.



If the table has N rows, the total number of blocks on disk for par-
tition i are:

blocksi =

 N⌊
b
si

⌋
 .

Assume that we have to perform a seek every time the I/O buffer
for partition i needs to be filled. Then the number of times the
I/O buffer gets full determines the seek cost of reading partition i.
Given an average seek time ts of the disk, the seek cost of reading
partition i is given as:

costseek
i = ts ·

⌈
blocksi

blocksbuff
i

⌉
.

On the other hand, the scan cost of partition i is determined by
the total number of blocks of partition i to be read. Given disk
bandwidth BW, the scan cost of partition i is given as:

costscan
i =

blocksi · b
BW

.

Finally, for a query Q referencing a PQ set of vertical partitions, the
total I/O cost is the sum of the seek- and scan costs of all referenced
partitions:

costQ =
∑
i∈PQ

(
costseek

i + costscan
i

)
.

The total I/O costs of the entire workload will be the sum of the I/O
costs of each query in the workload.

5. COMPARISON METRICS
As discussed in the previous section, we apply the same setting

to all vertical partitioning algorithms. However, since there is no
prior work comparing different vertical partitioning algorithms, it
is not clear how to compare them, i.e. the comparison metrics are
not defined. The authors of HYRISE compared their algorithm
against HillClimb in terms of query costs. However, we believe
that other measures such as time taken to compute the layouts are
equally important. Thus, in this section, we systematically intro-
duce four comparison metrics for vertical partitioning algorithms
and describe them below.
How fast? Vertical partitioning being an NP-hard problem, the first
thing that comes to mind is how fast is a given algorithm, i.e. how
long does it take to come up with a solution. Additionally, the
optimization time should be seen in comparison to the table size (or
indirectly the layout creation time). For example, if it takes fifteen
minutes to create the layouts (i.e., a large table) then it might be
acceptable to spend an hour to find the layouts.
How good? Since the goal of a vertical partitioning algorithm is to
improve the workload runtime, it is important to know the expected
workload runtime. Additionally, it is important to know how much
does vertical partitioning improve the workload runtime over row
and column layouts. Note that this improvement comes at a price:
we need to invest in the optimization and the creation time. Thus,
we need to see the time invested (optimization + creation) com-
pared to the expected workload execution cost benefits.

In fact, the ratio of these two quantities gives the fraction (or the
multiple) of query workload that we need to execute before the time
invested pays off over the workload runtime improvements.
How fragile? Heterogenous hardwares/software settings are com-
mon in data centers these days. However, vertical partitioning al-
gorithms can be computationally expensive, therefore it is not pos-
sible to recompute them for each and every hardware/software set-
ting. Thus, we need to know how fragile the different vertical par-
titioning algorithms are over different parameters in the cost model
(which models the hardware/software settings). We measure algo-
rithm fragility as the change in workload runtime when there is a

change in a cost model parameter. Fragility, thus defined, gives
hints on whether or not we should re-run the vertical partitioning
algorithm if the hardware/software settings change.
Where does it make sense? The fragility metric above measures
how far off is the workload performance, if we optimize vertical
partitioning for one cost model and use it over another. However, at
the same time, it is also important to know how does the workload
performance change if we re-optimize vertical partitioning over dif-
ferent cost models. Thus, we optimize for each new cost model pa-
rameter and show the workload performance. This helps us to find
the sweet spots for vertical partitioning, i.e. the cost model param-
eters for which vertical partitioning makes the most sense.

6. SIMULATIONS AND EXPERIMENTS
We now present the results from the six vertical partitioning al-

gorithms considered in Section 3. We implemented all algorithms
in Java 6 and tried to keep the implementations as close to the orig-
inal descriptions as possible. However, we did adapt the algorithms
to the unified settings shown in Table 2. For example, Trojan was
adapted to work without considering data replication. We ran all
experiments on the common hardware described in Section 4. We
organize the results along the four comparison metrics introduced
in Section 5. We repeated each measurement five times and report
the average. We discarded the results of the first five runs to allow
for just-in-time compilation in the JVM to complete and use the
results of the second five runs. We used cold caches, both for the
operating system as well as the hard disk, for all runs.

6.1 Comparing Optimization Time
In this section we address the following questions:

How do the algorithms compare in terms of optimization time?

Figure 1 shows the optimization times for different vertical parti-
tioning algorithms. We can see that the fastest algorithm (O2P) is
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Figure 1: Optimization time for different algorithms

5 orders of magnitude faster than BruteForce. Even the slowest al-
gorithm (Trojan) is 3 orders of magnitude faster than BruteForce.
Thus, all algorithms find a vertical partitioning solution much faster
than BruteForce. The optimization times of AutoPart, HillClimb,
HYRISE, Navathe, and O2P are quite acceptable (at most 5 sec-
onds), however, Trojan and BruteForce have very high optimization
times (1.5 minutes and 1 hour, respectively). The time to transform
from row layout to vertically partitioned layout for scale factor 10
is around 420 seconds for all algorithms. This means that it takes
much longer to transform the layout than it takes to compute the
layout.

How do the optimization times change with the workload size?

Let us now see how the optimization times change with the work-
load size. Recall that, for every vertical partitioning candidate, an
algorithm computes the expected cost of each query in the query



workload. Thus, we expected higher optimization time for larger
query workloads. Figure 2 shows the optimization times of the dif-
ferent algorithms over varying workload size. We vary the TPC-H
workload size by taking the first k queries, k varying from 1 to
22. We can see that Navathe and AutoPart have a much steeper in-
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Figure 2: Optimization time over varying workload size

crease in optimization time in comparison to HYRISE, HillClimb,
and O2P. In general, these algorithms scale well with the workload
size. We have excluded Trojan and BruteForce in the figure be-
cause of their extremely high optimization time (at least 2 orders of
magnitude higher than the others), which distorts the graph.

The most important lesson learned in this section is that the op-
timization time of a vertical partitioning algorithm can be several
orders of magnitude less than BruteForce. Still, as we will see in
the next section, some algorithms can find the same (optimal) solu-
tion as the BruteForce.

6.2 Comparing Algorithm Quality
We investigate a series of five questions in this section. Let’s

start with the following one:

How do algorithms compare in terms of query performance?

Figure 3 shows the estimated workload costs for all queries of the
TPC-H Benchmark – when using the partitionings produced by the
different vertical partitioning algorithms. By estimated workload
cost we mean the total I/O cost of the entire workload as described
in Section 4. We can see that except for Navathe and O2P, all al-
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Figure 3: Estimated workload runtime for different algorithms

gorithms, including BruteForce, have very similar estimated work-
load costs. In fact, the layouts produced by AutoPart, HillCimb
and Trojan have exactly the same workload cost as that by Brute-
Force. This is despite HillClimb requiring 5 orders of magnitude
less optimization time than BruteForce. As a result, vertical parti-
tioning with HillClimb can payoff for as little as 25% of the TPC-H
workload (See Appendix A.1 for details).

Now let us analyze the improvement of vertical partitioning over
Row or Column. We can see that the improvement over Row is as
high as 80.11%. However, over Column the maximum improve-
ment is only 4.75%. Column even outperforms the vertically parti-
tioned layouts of Navathe and O2P by 21% and 28%, respectively.

This is a surprising result because we expected vertical partitioning
to be very effective for analytical workloads. Let us now dig deeper
to understand the high improvements over Row and low improve-
ments over Column, by asking the following questions.

What fraction of the data read is unnecessary?

Note that a suitable vertical partitioning improves over Row be-
cause it reads less unnecessary data. Figure 4 shows the percentage
of data read which is unnecessary, i.e. not needed by the queries.

Unnecessary data read =
Data read − Data needed

Data read
∗ 100%
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Figure 4: Fraction of unnecessary data read

We can see that Row reads 84% unnecessary data and all verti-
cally partitioned layouts have a significant improvement over that.
The layouts produced by AutoPart, HillClimb, and BruteForce read
only 0.8% unnecessary data, while the layouts from HYRISE do
not read any unnecessary data. This explains the dramatic improve-
ments over row.

How many tuple reconstruction joins are performed?

Next, let us understand the low improvements of vertical partition-
ing over Column. Note that a suitable vertical partitioning improves
over Column since it performs less tuple reconstruction joins. For
each query, the number of tuple reconstruction joins per tuple are
given as:

#Tuple-reconstruction joins = #Vertical partitions accessed − 1

Figure 5 shows the tuple reconstruction joins averaged over all tu-
ples and all queries, when using each of the layouts. Column has to
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join all attributes referenced by the query. However, vertically par-
titioned layouts also perform at least 72% of the joins performed
by Column. Thus, none of the algorithms produce layouts which
would dramatically reduce the tuple reconstruction joins, which in-
creases the number of random I/Os in our cost model, hence the
marginal improvement over Column. Note that the above estimated
improvements are only in terms of I/O costs. In practice, tuple-
reconstruction incurs additional CPU-costs as well.

How far is vertical partitioning from perfect materialized views?

We see above that the layouts produced by the vertical partition-
ing algorithms improve marginally over Column. This is in spite



of almost all algorithms having estimated costs very close to the
BruteForce, which produces optimal layout (See Figure 3). Let us
now see how far are the vertical partitioning layouts from perfect
materialized views — a vertical partition, created for each query,
containing exactly the attributes referenced by that query. Figure 6
shows the distance of each of the layout from the perfect material-
ized views (PMV).

Distance from PMV =
Est. costs of layout − Est. costs of PMV

Est. costs of PMV
∗ 100%
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Figure 6: Distance from perfect materialized views

We can see that while Navathe and O2P are 49% and 56% off
from the perfect materialized views, respectively, HillClimb and
AutoPart are as low as just 18% off from it. This is in spite of
perfect materialized views needing much more storage space.

What is the effect of workload size on query performance?

We saw above that vertically partitioned layouts are up to 56% off
from the perfect materialized views. Perfect materialized views and
vertically partitioned layouts are two extremes: creating vertical
partitions for each query versus creating vertical partitions for the
entire query workload. Let us now see how the query performance
changes in the middle.

In this experiment, we start from the perfect materialized views
and gradually increase the workload size k (from 1 to 22). For each
workload size, we compute the layouts and workload costs. Note
that the partitionings produced by AutoPart, HillClimb, HYRISE,
Trojan, and BruteForce have roughly the same estimated costs (See
Figure 3), while the costs for Navathe and O2P are always much
higher, but quite close to each other. Thus, in the following we
only consider HillClimb and Navathe. Figure 7 shows the estimated
workload runtime improvements over Column for the layouts com-
puted by HillClimb and Navathe, calculated in the following way:

Improvement over Column =
Est. costs of Column − Est. costs of layout

Est. costs of Column
∗ 100%
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Figure 7: Estimated workload runtime improvements over Col-
umn when re-optimizing for the first k queries.

The improvement over Row remains roughly the same for both of
them, so we have excluded it from this graph. However, the im-
provement over Column shows an interesting finding: for up to the

first 3 queries, Navathe improves at least 15% over Column, but af-
terwards there is no improvement and it is always worse than Col-
umn. HillClimb on the other hand starts with an improvement of
24% over Column, which decreases to 6.5% for the first 6 queries,
and remains roughly the same afterwards.

Let us now investigate the reason for this behavior, considering
only the first 6 queries, i.e. k ranging from 1 to 6. The Table below
shows the percentage of unnecessary reads for these workloads:

k 1 2 3 4 5 6

HillClimb 0% 0% 0% 0% 0% 0%
Navathe 0% 0% 0% 37% 32% 30%

Table 3: Unnecessary data reads over the Lineitem table for the
first k queries.

From the table, we can see that in case of Navathe, starting from
k = 4 the fraction of unnecessary data read has jumped from 0%
to more than 30%. This explains why Navathe suddenly become
worse than Column. On the other hand, the fraction of unneces-
sary data read for HillClimb and Column stays 0% for all these
values of k. To understand the declining performance of HillClimb
in Figure 7, let us take a look at tuple-reconstruction joins. Ta-
ble 4 shows the average number of tuple-reconstruction joins over
the Lineitem table for up to the first 6 queries. From the table,

k 1 2 3 4 5 6

HillClimb 0.00 0.00 1.00 1.00 1.75 2.00
Column 6.00 6.00 4.50 3.67 3.50 3.40

Table 4: Average number of tuple-reconstruction joins per row
of the Lineitem table for the first k queries.

we see that more tuple-reconstruction joins were performed with
larger workload size. This is because, with increasing workload
size, the size of partitions decreases and thus the number of refer-
enced partitions increases. Thus, with increasing values of k, the
difference between the query performances of HillClimb and Col-
umn decreases. As a result, we can conclude that the random I/O
accounts for most of the difference in estimated costs between Hill-
Climb and Column.

In summary, the most important conclusion in this section is that
while vertically partitioned layouts improve significantly over Row
on the TPC-H benchmark, the improvement over Column is still
less than 5%.

6.3 Comparing Algorithm Fragility
Below we understand the fragility of each of the algorithms with

the following main questions.

What is the effect of disk characteristics on query performance?

We proceed this experiment as follows. First, we run the algorithms
for the same disk characteristics: 8 KB block size, 8 MB buffer
size, 90 MB/s disk read-bandwidth and 4.84 ms seek time. Then,
we take the layouts obtained from these disk characteristics and see
how query performance would be affected, if these disk character-
istics would change at query time. The idea is to see how much
does the query performance deviate from the original setting’s per-
formance, if the layouts computed under one setting were used in
another setting — also defined as fragility in Section 5. Figure 8
shows the fragility of layouts produced by each of the algorithms,
when changing the buffer size.

Fragility =
Est. costs with new settings − Est. costs with old settings

Est. costs with old settings
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Figure 8: Algorithm fragility — estimated change in workload
runtime due to changing the buffer size at query time.

From the figure, we can see that changing the buffer size can sig-
nificantly affect the workload runtime, by up to 24 times. This is
because buffer size strongly determines the number of random I/Os
during query processing. Other disk parameters like block size,
disk bandwidth, and disk seek time do not have such an impact on
query performance. Interested readers can see Appendix A.2 for
details. The take away message is that the performance of verti-
cally partitioned layouts depends highly on the buffer size.

We also ran an experiment to see how the query workload costs
change with changes in the query workload, i.e. to see how fragile
the algorithms are to the workload changes. Our results show that
query workload costs change by only 14% for up to 50% change in
query workload.

6.4 Where does vertical partitioning make
sense?

In this section we concern ourselves with the following issues:

What happens if we adapt to different disk characteristics?

In the previous section, we saw that the performance of vertically
partitioned layouts depend strongly on the buffer size. So let us
now see how much do the query times change, if the partitioning is
adapted to the different buffer sizes. Figure 9 shows the estimated
workload runtimes for two vertical partitioning algorithms (Hill-
Climb and Navathe) normalized by the estimated workload runtime
for Column, when the buffer size is changed.

Normalized Estimated Costs =
Estimated costs of the layout
Estimated costs of Column

∗ 100%
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Figure 9: Estimated workload runtime compared to Column
when re-optimizing for each buffer size.

Additionally, we also show the workload costs of the perfect mate-
rialized views as well as for Column. We do not show Row because
it is out-performed by all other layouts for all buffer size values. In
order to amplify the variation we compare the workload costs to
Column for different buffer sizes. The first thing that we see is
that in the best case, i.e. for the perfect materialized views, verti-
cal partitioning pays off over Column only up to a buffer size of
100 MB. The layouts produced by HillClimb perform either bet-
ter or the same as Column. HillClimb has the best improvement
over Column for a buffer size of 100KB. The layouts produced by
Navathe, on the other hand, perform better than Column only in a

narrow range of approximately 30 KB to 300 KB. For all remaining
buffer size values, Navathe performs worse than Column. For the
sake of completeness, we also ran experiments to see the adaptivity
of vertical partitioning algorithms over block size, disk bandwidth,
and disk seek time. We have additionally examined the effects of
scaling the dataset (see Appendix A.3 and A.4).

The key message from this experiment, and also from this paper,
is that vertical partitioning makes sense only for small buffer sizes,
e.g. less than 100 MB. This is indeed the case for many data man-
agement systems. For example, PostgreSQL has a default buffer
size of 8 MB. In case we can afford to have big buffers (due to large
main-memory or dedicated nodes) it is better to use column layout.
We also repeated this experiment with different dataset sizes. In-
terested readers can see Figures 13(a) and 13(b).

7. LESSONS LEARNED
In this paper, we compared different vertical partitioning algo-

rithms and studied ways to pick one vertical partitioning algorithm
over another for row-oriented database systems. Traditionally, ver-
tical partitioning and index selection have been treated as different
problems3 and hence we do not consider selection predicates and
indexes in our study. However, we did consider putting the selec-
tion attributes in a different partition. But it turns out that this af-
fects the data layouts only when the selectivity is higher than 10−4

for uniformly distributed datasets, such as TPC-H. Below we dis-
cuss the key lessons learned in this paper.

1. We don’t really need brute force. The brute force algorithm
spends an extremely long time to compute the layouts (more than
an hour for TPC-H). On the other hand, the vertical partitioning
algorithms evaluated in this paper terminate in at most a few min-
utes. In fact, AutoPart and HillClimb take less than 1 second to
compute the layouts for all tables in the TPC-H benchmark. Still
both AutoPart and HillClimb find exactly the same solution as the
brute force algorithm. HYRISE takes slightly more than a second
to compute the layouts but it is only 2.21% off from the brute force
algorithm, in terms of query costs. Similarly Trojan takes a couple
of minutes for optimization, however it is just 0.01% off from the
brute force algorithm in terms of estimated runtime. This is an im-
portant result and shows that we do not really need the brute force
algorithm. Several heuristics, as proposed in different algorithms,
are good enough.

2. Watch out for the buffer size. The performance of vertically
partitioned layouts depend heavily on the database buffer size. In
fact, the buffer size can impact the query workload runtimes by as
much as factor 20. Thus buffer size is a crucial consideration when
computing vertical partitioning. Furthermore, our measurements
reveal that vertical partitioning improves over column layout only
for buffer sizes less than 100 MB. This means if we can have a
system with buffered reads of more than 100 MB at a time, then
we better use the column layout. Put another way: if we want to
avoid vertical partitioning then we must increase the buffer size of
our database system. This is one of the core results of this paper.

3. HillClimb is the best algorithm for disk-based systems.
Amongst the six vertical partitioning algorithms compared in this
paper, HillClimb turns out to be the best for the TPC-H queries.
HillClimb offers the best trade-off between optimization time and
workload runtime performance. It spends 4 orders of magnitude
less time in optimization and still finds the same vertical partition-
ing as the brute force algorithm. As a result, the optimization time
3In fact, most of the vertical partitioning algorithms do not consider
selectivities.



of HillClimb pays off the earliest (just after 25% of TPC-H work-
load) over row layout. Furthermore, from our experience HillClimb
is also one of the easiest algorithms to understand and implement.

4. Column layouts are often good enough. On the TPC-H bench-
mark (i.e. all 22 queries) the vertical partitioning algorithms could
improve over column layout by only up to 3.7%. This is because
the attribute access patterns over all 22 queries are quite fragmented
and it is hard to find column groups which satisfy most of the
queries. Indeed, the improvements over column layout go up to
24% when using a small subset of the TPC-H workload (see Fig-
ure 7). But still the improvements over column layout are not dra-
matic. To investigate this further, we tried three changes in our
experimental setup — using a different benchmark, using a dif-
ferent cost model, and using a commercial database system which
supports column grouping.

(a) Using a different benchmark. We used the Star Schema Bench-
mark[19]. The Star Schema Benchmark has less fragmented access
pattern and so we expect wider column groups. Table 5 compares
the results on the TPC-H and the Star Schema Benchmark (SSB).

Layout TPC-H SSB

AutoPart 3.71% 5.29%
HillClimb 3.71% 5.29%
HYRISE 1.58% 5.27%
Navathe -21.47% 1.64%
O2P -27.74% 1.64%
Trojan 3.71% 0.05%
BruteForce 3.71% 5.29%

Table 5: Estimated improvement over column layout with dif-
ferent benchmarks.

We can see that even though column grouping improves over col-
umn layout by up to 5.29% on the Star Schema Benchmark, still
the improvement is not dramatic. Thus, using column layouts in
the first place for TPC-H–like workloads is not a bad idea. This
will avoid the complicated vertical partitioning machinery.

(b) Using a different cost model. We used the main-memory cost
model from HYRISE [6]. It models the number of cache misses
when accessing data from a column grouped layout. For TPC-H
queries, we show the estimated workload runtime improvements
over column layout. Table 6 compares the results when using disk
(HDD) and main-memory (MM) cost models.

Layout HDD Cost Model MM Cost Model

AutoPart 3.71% 0.00%
HillClimb 3.71% 0.00%
HYRISE 1.58% 0.00%
Navathe -21.47% -15.07%
O2P -27.74% -15.53%
Trojan 3.71% 0.00%
BruteForce 3.71% 0.00%

Table 6: Estimated improvement over column layout with dif-
ferent cost models.

From the table we see that except for Navathe and O2P, all other
algorithms have no improvement over column layout in main-
memory. This is due to the fact that the seek-costs compared to
the scan costs are way smaller in main-memory than for disk-
based systems, which means that a column-group cannot signif-
icantly decrease the data access costs in main-memory. Instead,
column groups can potentially increase the amount of data read and
hence be even worse than column layout (see Navathe and O2P for
main-memory). On the other hand, reading data in column layout
causes the least possible number of cache-misses, thus allows for
the fastest data access. Therefore, in terms of data access costs,

it is hard to beat column layout in a main memory-based system.
Indeed, in the HYRISE-paper [6], the hybrid layouts improve over
column layout by just 3.8% in the total workload cost. This is even
when the workload chosen in HYRISE paper uses very wide ta-
bles with up to 150 attributes and several queries accessing a large
fraction of those attributes.

(c) Using a commercial database system. Finally, we used a com-
mercial disk-based column-oriented database system (referred to
as DBMS-X in the following), which supports column grouping.
The idea is to compare vertically partitioned layouts with column
layouts on TPC-H benchmark. To do so, we created and loaded
two TPC-H databases with scale factor 10, one with column lay-
out and the other with a vertically partitioned layout calculated by
HillClimb. Like any other column store, DBMS-X relies heavily on
compression and it cannot be turned off. The default compression
for string and floating point numbers is Lempel-Ziv-Oberhumer-
based (LZO), while for integer and date types the compression
scheme is delta encoding. We executed the unmodified queries of
the TPC-H workload on these two databases. Table 7 shows the
total workload runtime4 for row, column, and the vertically parti-
tioned layout produced by HillClimb.

Compression Row Column HillClimb

Default (LZO or Delta) 1652 s 377 s 450 s
Dictionary 1265 s 511 s 532 s

Table 7: TPC-H workload runtimes with scale factor 10 in
DBMS-X for different layouts and compression schemes

When using the default compression the difference between col-
umn layout and HillClimb is quite high. This is due to the vary-
ing length encoding, used in the vertically partitioned layout as
well, which makes the tuple-reconstructions within a segment of
a column-group costly. We ran another experiment in which we
forced all layouts to use the dictionary compression, which is a
fixed-size encoding. With dictionary compression, the gap between
column and HillClimb layout reduces. Still, column layout outper-
forms HillClimb.

Having said the above, however, there are several practical limi-
tations to using column layouts in legacy row stores. For instance,
the standard practice to create a separate table for each vertical par-
tition causes the column layouts to incur the maximum tuple header
overheads. Thus, vertical partitioning is still a necessity for major-
ity of row stores.

8. CONCLUSION
There are a number of vertical partitioning algorithms proposed

in the literature. In this paper, we presented a systematic and com-
prehensive study of vertical partitioning algorithms. We catego-
rized vertical partitioning algorithms along three dimensions and
surveyed six different algorithms. We experimentally evaluated
these six algorithms under a common configuration setting. We
introduced four metrics to compare different vertical partitioning
algorithms and showed results from the TPC-H benchmark. Our re-
sults identified the trade-offs between optimization time and work-
load runtime improvements, improvements over row and column
layouts, and effects of database buffer size.
Acknowledgments. Research partially supported by BMBF.

4We excluded query 9 since DBMS-X has chosen a sub-optimal
query plan for it, which caused an enormously high runtime.
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Figure 10: Pay-off in workload runtime improvements over optimization- and creation times.
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Figure 11: Algorithm fragility — estimated change in workload runtime due to changing a single parameter at query time.
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APPENDIX
A. ADDITIONAL RESULTS

A.1 How soon does vertical partitioning pay-
off?

Now let us see how soon do the efforts made in vertical partition-
ing pay off, i.e. the fraction (or factor) of workload for which the
accumulated workload cost improvements exceed the optimization
and layout creation costs. Thus, we define pay-off as follows:

Pay-off =
Optimization time + Creation time

Improvement in estimated workload costs
∗ 100%

Figure 10(a) shows when the algorithms pay off over Row. We
can see that all algorithms pay off after approximately 25% of the
workload has been executed. Due to the very high query costs for
Row we do not see a variation of the pay-off for the different lay-
outs. Pay-off after 25% of the workload means that just 25% of the
TPC-H workload is enough motivation for computing the vertically
partitioned layouts.

Figure 10(b) shows how soon vertical partitioning pays-off over
Column . We can see that AutoPart pays off the earliest, after run-
ning the TPC-H workload 44.5 times. HYRISE is the last to pay
off (after running the TPC-H workload 101 times). This long time
to pay off over Column is due to the very small improvement (up
to only 5%) in workload costs over Column. As a final remark, we
see in Figure 10(b) that Navathe and O2P have negative pay-off fac-
tors, This is because these two algorithms do not improve workload
costs over Column.

A.2 How fragile are algorithms to block size,
disk bandwidth, and disk seek time?

Figures 11(a) to 11(c) show the fragility of vertical partitioning al-
gorithms when changing block size, disk bandwidth, and disk seek
time at query time, respectively. From Figure 11(a), we can see
that changing disk block size has negligible impact – less than 1%
– on query workload performance. This is because a database sys-
tem needs to read integral number of blocks and changing the block
size affects only the last block. Changing the disk bandwidth de-
viates the workload runtime by up to 42% (Figure 11(b)), while
changing the seek time deviates the workload runtime by less than
5% (Figure 11(c)). Thus, we see that the performance of vertically
partitioned layouts are stable over block size and disk seek time,
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Figure 12: Estimated workload runtime when re-optimizing for each block size, disk bandwidth and seek time
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Figure 13: Sweet-spots for vertical partitioning — re-optimizing for each buffer size and each dataset size, and showing the estimated
workload runtime compared to Column.
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Figure 14: The computed partitions for the TPC-H workload.

they are affected marginally by disk bandwidth, but they highly de-
pend on buffer size, as seen in Section 6.3.

A.3 What are the sweet spots for block size,
disk bandwidth, and disk seek time?

Figures 12(a) to 12(c) add to the findings of Subsection 6.4, and
shows the estimated workload costs for the vertical partitioned lay-
outs for different block sizes, disk bandwidths and disk seek times.
We can see that the algorithms are almost unaffected by changes
in block size (Figure 12(a)) and disk seek time (Figure 12(c)) – the
standard deviations of the estimated costs compared to the averages
are less than 0.5% and 9% respectively. To a certain degree, the al-
gorithms are affected by changes in disk bandwidth (Figure 12(b))
– the afore mentioned metric is 30% in this case. But there are no
interesting regions.

A.4 Do the sweet spots change with scaling
dataset size?

Let us now examine the effects of changing the buffer size together
with scaling the dataset (i.e. varying the scale factor of TPC-H).
We recompute the layouts for every buffer-size and for every scale-
factor, and compare the workload costs to Column. Figures 13(a)
and 13(b) show the results for HillClimb and Navathe. We can
see that there is a jump in improvements over Column from scale
factor 0.1 to 1.0 and buffer size larger than 1 MB. This is because
for scale factor 0.1 (i.e. 100 MB data size), each query reads the

same amount of data as the buffer size. For all other regions in
Figures 13(a) and 13(b), the impact of dataset size is negligible.

B. LAYOUTS
Figure 14 shows the vertical partitioned layouts for all tables in

TPC-H workload. Two or more attributes having the same color
in a given row means that they belong to the same vertical par-
tition. For the Lineitem table (Figure 14(b)) AutoPart, Trojan,
and Optimal produce the same results. HillClimb’s results differ
only in not grouping the two unreferenced attributes (LineNum-
ber and Comment) together. The same occurred for the Part table
(Figure 14(f)) where HillClimb left the two unreferenced attributes
(RetailPrice and Comment) in separate partitions, contrary to Au-
toPart, HYRISE, Trojan and Optimal. The reason for Trojan pro-
ducing a slightly different layout for the Customer and Supplier
tables – compared to the other algorithms in the “HillClimb-class”
– is that it uses an interestingness-measure as a heuristic making it
sometimes chose sub-optimal column-groups as well. Navathe and
O2P form the second class of the vertical partitioning algorithms
we have considered which is clearly visible on the partitioning re-
sults, since they always produce a partitioning which has significant
differences from the results of the “HillClimb-class”. For the Na-
tion and Region tables (Figures 14(g) and 14(e)), the partitioning
doesn’t influence the I/O cost. This is because these two tables have
only 25 and 5 rows, respectively, and hence they fit into one block.
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