
RAFT at Work: Speeding-Up MapReduce Applications
under Task and Node Failures

Jorge-Arnulfo Quiané-Ruiz, Christoph Pinkel, Jörg Schad, Jens Dittrich
Information Systems Group, Saarland University

Saarbrücken, Germany
http://infosys.cs.uni-saarland.de

ABSTRACT
The MapReduce framework is typically deployed on very large
computing clusters where task and node failures are no longer an
exception but the rule. Thus, fault-tolerance is an important aspect
for the efficient operation of MapReduce jobs. However, currently
MapReduce implementations fully recompute failed tasks (sub-
parts of a job) from the beginning. This can significantly decrease
the runtime performance of MapReduce applications. We present
an alternative system that implements RAFT ideas [10]. RAFT
is a family of powerful and inexpensive Recovery Algorithms for
Fast-Tracking MapReduce jobs under task and node failures. To
recover from task failures, RAFT exploits the intermediate results
persisted by MapReduce at several points in time. RAFT piggy-
backs checkpoints on the task progress computation. To recover
from node failures, RAFT maintains a per-map task list of all input
key-value pairs producing intermediate results and pushes interme-
diate results to reducers. In this demo, we demonstrate that RAFT
recovers efficiently from both task and node failures. Further, the
audience can compare RAFT with Hadoop via an easy-to-use web
interface.

Categories and Subject Descriptors
H.0 [Information Systems]: General

General Terms
Algorithms, Performance, Reliability

Keywords
MapReduce, Hadoop, Node Failures, Fault-Tolerance, Recovery

1. INTRODUCTION
MapReduce is a computing paradigm that has gained a lot of

popularity as it allows non-expert users to easily run complex tasks
at very large-scale. At such a scale, task and node failures are no
longer an exception but rather a characteristic of these systems.
This is confirmed by a 9-year study of node failures in large com-
puting clusters [13]. Moreover, large datasets are often messy, con-
taining data inconsistencies and missing values (bad records) [15].
Bad records can in turn cause a task, or even an entire application,
to crash if not handled correctly.

MapReduce implementations, such as Hadoop1[1], make task
1Hereafter, we focus on Hadoop, but our ideas apply to other im-
plementations of MapReduce as well.

Copyright is held by the author/owner(s).
SIGMOD’11, June 12–16, 2011, Athens, Greece.
ACM 978-1-4503-0661-4/11/06.

and node failures invisible to users; Hadoop automatically resched-
ules failed tasks to available nodes, which in turn recompute such
tasks from scratch. However, recomputing failed tasks from scratch
can significantly decrease the performance of long-running applica-
tions by propagating and adding up delays [10, 16]. Thus, task and
node failures can considerably decrease the runtime performance
of MapReduce jobs [14, 16, 4].

A natural solution to solve this problem is to checkpoint task
progress computation on stable storage and resume computation
from the last checkpoint. Nevertheless, checkpointing ongoing
computation is challenging as it would require Hadoop to replicate
intermediate results to an additional node. Doing so would sig-
nificantly decrease performance, because MapReduce jobs often
produce large amounts of intermediate results. Furthermore, per-
sisting checkpoints usually requires intensive use of network band-
width, which is a scarce resource in MapReduce [4]. Therefore,
we decided against a straight-forward implementation of traditional
checkpointing techniques [3, 7, 9, 6, 11].

In this demo, we present an alternative system using the ideas of
RAFT [10]. RAFT is part of the Hadoop++ project [2, 5], which
aims at improving performance of Hadoop for analytical queries. In
particular, in this demo, we show RAFT in action and demonstrate
that it allows applications to significantly reduce delays caused
by task and node failures. The RAFT demo comes with a light-
weight and friendly web interface, whereby the audience can eas-
ily: (i) configure and compare RAFT with Hadoop, and (ii) observe
the potential of each of the RAFT algorithms. This demo is inter-
esting to everyone who uses MapReduce applications.

2. RAFT
To improve the performance of MapReduce applications under

task and node failures, RAFT introduces two new checkpointing
techniques: local checkpointing and query metadata checkpoint-
ing. To efficiently bring these ideas into the Hadoop framework,
we introduce a new task scheduling strategy that takes advantage
of these checkpoints. The beauty of RAFT is that it only produces
a negligible overhead during normal operation, while it improves
the performance of MapReduce applications under failures.

We implemented RAFT on top of Hadoop 0.20.1. We modified
the mappers and reducers to enable them to create local and query
metadata checkpoints. In the following, we briefly explain how
RAFT creates and utilizes local and query metadata checkpoints.
For further details please refer to [10].

2.1 Local Checkpointing
The main idea of local checkpointing is to utilize intermediate re-

sults (which are by default persisted by Hadoop) as checkpoints of
ongoing task progress computation. As a result, the RAFT sched-

uler (see Section 2.3) can resume task computation from the last
checkpoint in case of task failure.
Creation phase. By default, map tasks spill buffered intermediate
results to local disk whenever the output buffer is on the verge to
overflow. RAFT exploits this spilling phase to piggy-back check-
pointing metadata on the latest spill of each map task. A simple
triplet (taskID, spillID, offset) of 12 bytes length is sufficient to
store such checkpointing metadata: taskID is a unique task identi-
fier that remains invariant over several attempts of the same task;
spillID is the local path to the spilled data; offset specifies the last
byte of input data that was processed in that spill. As a result, local
checkpointing comes almost for free.
Recovery phase. To recover from a task failure, the RAFT sched-
uler reallocates the failed task to the same node that was running
the task. Then, the node resumes the task from the last checkpoint
and reuses the spills previously produced for the same task. This
simulates a situation where previous spills appear as if they were
just produced by the task. In case that there is no local checkpoint
available, the node recomputes the task from the beginning. This
mainly happens when the node executes the task for the first time.

2.2 Query Metadata Checkpointing
The idea behind query metadata checkpointing is twofold. First,

to push intermediate results to reducers as soon as map tasks are
completed. Second, to keep track of those incoming key-value pairs
that produce local partitions (i.e. intermediate results for local re-
ducers) and hence that are not shipped to another node for process-
ing. As a result, in case of a node failure, the RAFT scheduler can
efficiently recompute local partitions.
Creation phase. By default, Hadoop reschedules the map tasks
that were completed by mappers on a failed node to available
nodes. These nodes then recompute such map tasks by process-
ing the entire input again. This can significantly decrease the per-
formance of MapReduce jobs, because Hadoop is recomputing all
work already completed by failed nodes. To reduce such a nega-
tive impact in performance, RAFT inverts the way in which reduce
tasks obtain their input from completed map tasks. Rather than re-
duce tasks pulling their required intermediate results, mappers push
their produced intermediate results into all reduce tasks (scheduled
or not) as soon as they finish performing a map task. Additionally,
when computing map tasks, RAFT maintains a list of the positions
(offset in the input files) of those incoming key-value pairs that
produce local partitions. In other words, RAFT creates a so-called
query metadata checkpoint file per map task [10]. Then, RAFT
replicates these checkpoint files to preassigned backup nodes. Typ-
ically, only a tuple (offset, reducerID) of 8 bytes is necessary per
record: the offset of the input key-value pairs producing intermedi-
ate results for local partitions and the identifier (reducerID) of the
reduce task that will consume such partitions.
Recovery phase. To recover from a node failure, the RAFT sched-
uler reallocates the failed tasks to available nodes. If the failed
tasks contain a reduce task, the task scheduler also reallocates all
map tasks completed by failed nodes. This is done for comput-
ing the local partitions again. To speed-up the computation of local
partitions, mappers compute map tasks by processing the key-value
pairs that produce relevant results for the lost local partitions only.

2.3 The Task Scheduler
Like the Hadoop scheduler, the RAFT scheduler assigns tasks to

available nodes by maximizing data locality. However, the RAFT
scheduler differs significantly from Hadoop and other MapReduce
schedulers proposed in the literature [17, 8, 4] when reallocating

tasks after task or node failures. We describe this reallocation be-
havior in the following.
Scheduling map tasks. In the presence of failures, the RAFT
scheduler reallocates failed map tasks as follows:

(1.) Task failures. The RAFT scheduler strives to allocate a failed
map task to the same computing node right after its failure. This
is with the goal of reusing the existing local checkpoints produced
so far. This allows us to significantly reduce the waiting time for
rescheduling failed map tasks. After the reallocation, a map task
then has to restart from the last local checkpoint.
(2.) Node failures. The RAFT scheduler puts failed map tasks into
its queue and thus they become again eligible for scheduling to
available nodes. Notice that, in case that a reduce task was running
on a failed node, the RAFT scheduler reallocates the completed
map tasks to compute local partitions again. To do so, map tasks
process input splits by considering only relevant key-value pairs,
i.e. based on the query metadata checkpoint files.
Scheduling reduce tasks. So far, we saw that RAFT pushes inter-
mediate results to all reduce tasks, even if they are not scheduled
yet. To recover from node failures efficiently, the RAFT sched-
uler preassigns all reduce tasks to nodes when launching a MapRe-
duce job; then, it informs map tasks of the pre-scheduling deci-
sion. Some nodes, however, complete tasks faster (fast nodes) than
others (slow nodes). Thus, as soon as a fast node finishes its pre-
assigned reduce task set, the RAFT scheduler starts picking tasks
from other reduce task sets (belonging to slow nodes). In these
cases, RAFT falls back to the standard pull model used by MapRe-
duce; fast nodes have to pull the required intermediate results from
slow nodes. In case of failures, the RAFT scheduler allocates failed
reduce tasks as follows:

(1.) Task failures. As for map tasks, the RAFT scheduler allocates
a failed reduce task to the same computing node right after its fail-
ure in order to take full advantage of the local checkpoints produce
so far. Reduce tasks can then start from the last checkpoint.
(2.) Node failures. In these cases, the RAFT scheduler falls back
to the original MapReduce: it first puts failed reduce tasks back
into its queue and reallocates them when one node is available to
perform one reduce task. When a reduce task is rescheduled to a
new node, it pulls all the intermediate results it requires from all
map tasks containing part of such results. Notice that, in contrast
to map tasks, the RAFT scheduler reallocates running reduce tasks
only. This is because completed reduce tasks store their output into
stable storage (HDFS) and thus do not need to be rescheduled.

3. DEMONSTRATION
Our main goal in this demo is to demonstrate the effectiveness

of RAFT algprithms [10]. We evaluate the performance of RAFT
under both task and nodes failures.

3.1 Demo Setup
In the demo, we compare the performance of RAFT with that of

Hadoop in order to better understand the benefits of using RAFT.
We use our local 10-node cluster at Saarland University. Each phys-
ical node runs five virtual nodes using Xen virtualization, resulting
in a total of 50 virtual nodes. We execute RAFT and Hadoop simul-
taneously by splitting our cluster into two 25-node clusters (noted
as RAFT and Hadoop clusters). Additionally, we consider to run
the demo on a large Amazon EC2 cluster. However, Amazon EC2
suffers from high variance in performance [12].

Administrative Interface

Task Failures:

Bad Record Rate

1 5

Worker Failures:

Kill Worker:

Node 1 Kill now

RAFT Algorithms:

Local checkpointing: : Disabled

Metadata checkpointing: : Disabled

Job Settings:

Data Size: Full

Benchmark: : Selection Task

Run

Hadoop RAFT

Current Run #13: Query Aggregation Task, Dataset Size Full (1.04 TB), Algorithms LC+FRC, 3 Bad Record(s) per Map Task, 1 Worker Failure(s).

Hadoop job_201007292711_0002 on hadoop03
Job Name: Large Aggregation
Job Setup: Successful
Status: Running
Started at: Thu Jul 30 07:48:25 CEST 2010
Job Cleanup: Pending

Hadoop job_201007292113_0002 on hadoop02
Job Name: Large Aggregation
Job Setup: Successful
Status: Running
Started at: Thu Jul 30 07:48:25 CEST 2010
Job Cleanup: Pending

Map Completion Reduce Completion Map Completion Reduce Completion

Completion Percentage: 57% Completion Percentage: 95%
Running for: 00:18:23

Previous Run #12: Query Selective Aggregation Task, Dataset Size Full (1.04 TB), Algorithms LC+FRC, 5 Bad Record(s) per Map Task, 0 Worker Failure(s).

Completed in: 00:20:48 Completed in: 00:15:12

P
ro

g
re

s
s
 [

p
e

rc
e

n
t]

Tasks
0 20 40 60 80 100 120 140 160 180

100

80

60

40

20

P
ro

g
re

s
s
 [

p
e
rc

e
n

t]

Tasks
0 20 40 60 80 100 120 140 160 180

100

80

60

40

20

P
ro

g
re

s
s
 [

p
e
rc

e
n

t]

Tasks
0 9 18 27 36 45 54 63 72 81 90

100

80

60

40

20

copy

sort

reduce

P
ro

g
re

s
s
 [

p
e
rc

e
n

t]

Tasks
0 9 18 27 36 45 54 63 72 81 90

100

80

60

40

20

copy

sort

reduce

Figure 1: RAFT demo interface.

3.2 Demo Details
The RAFT demo offers a friendly web-interface (see Figure 1),

whereby the audience can evaluate the different aspects of RAFT.
For each of the following scenarios the user can vary (i) the data-
size and (ii) the MapReduce job to be run. The audience can freely
run one of the following MapReduce jobs: Selection, Simple Ag-
gregation or Selective Aggregation jobs. For details on these jobs,
refer to [10]. Similarly, the audience can run the local and query
metadata checkpointing algorithms of RAFT individually.
(1.) Fast recovery from task failures. We consider a bad
record scenario to demonstrate that RAFT significantly outper-
forms Hadoop under task failures using local checkpoints. For this,
we insert incorrectly formatted fields into the input datasets, which
causes a map task to fail. The audience is able to control the num-
ber of bad records per input split via the administrative interface
(top area in Figure 1). The interface then allows the audience to
compare the RAFT and Hadoop job progress.
(2.) Fast recovery from node failures. We also demonstrate the
efficiency of RAFT when recovering from node failures. To do so,
we provide a script to interactively stop any node in the RAFT and
Hadoop clusters. Thus, the audience is invited to stop some nodes
while a MapReduce job is running. Again, the audience can easily
configure the job and control the node failure via the web interface.
(3.) Inexpensive checkpointing (low overhead). We show that
RAFT incurs only little overhead compared to Hadoop. To do so,
the audience is invited to run any benchmark query on both clusters
with neither task nor node failures. Furthermore, we allow the au-
dience to see the break down of the overhead generated by RAFT
so as to better study the cost of each of the recovery algorithms that
RAFT provides. For this, the audience can choose the individual
RAFT algorithm they want to evaluate.

Notice that in all above scenarios, the audience is able to inter-
actively compare the performance of both Hadoop and RAFT (blue
and green areas in Figure 1).

4. REFERENCES
[1] Hadoop, http://hadoop.apache.org/.
[2] Hadoop++, http://infosys.cs.uni-saarland.de/hadoop++.php.

[3] M. Balazinska et al. Fault-Tolerance in the Borealis
Distributed Stream Processing System. TODS, 33(1), 2008.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified Data
Processing on Large Clusters. In OSDI, 2004.

[5] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty,
and J. Schad. Hadoop++: Making a Yellow Elephant Run
Like a Cheetah (Without It Even Noticing). PVLDB, 3(1),
2010.

[6] M. Elnozahy et al. A Survey of Rollback-Recovery Protocols
in Message-Passing Systems. CSUR, 34(3), 2002.

[7] J.-H. Hwang et al. A Cooperative, Self-Configurable
High-Available Solution for Stream Processing. In ICDE,
2007.

[8] M. Isard et al. Quincy: Fair Scheduling for Distributed
Computing Clusters. In SOSP, 2009.

[9] A.-P. Liedes and A. Wolski. SIREN: A Memory-Conserving,
Snapshot-Consistent Checkpoint Algorithm. for in-Memory
Databases. In ICDE, 2006.

[10] J.-A. Quiane-Ruiz, C. Pinkel, J. Schad, and J. Dittrich.
RAFTing MapReduce: Fast Recovery on the Raft. In ICDE,
2011.

[11] K. Salem and H. Garcia-Molina. Checkpointing
Memory-Resident Databases. In ICDE, 1989.

[12] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime
Measurements in the Cloud: Observing, Analyzing, and
Reducing Variance. PVLDB, 3(1), 2010.

[13] B. Schroeder and G. Gibson. A Large-Scale Study of Failures
in High-Performance Computing Systems. In DSN, 2006.

[14] S. Subramanian et al. Impact of Disk Corruption on
Open-Source DBMS. In ICDE, 2010.

[15] T. White. Hadoop: The Definitive Guide. O’Reilly, 2009.
[16] C. Yang et al. Osprey: Implementing MapReduce-Style Fault

Tolerance in a Shared-Nothing Distributed Database. In
ICDE, 2010.

[17] M. Zaharia et al. Delay Scheduling: A Simple Technique for
Achieving Locality and Fairness in Cluster Scheduling. In
EuroSys, 2010.

