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ABSTRACT

In this s paper, we explore a radically new approach in data-
base called database cracking. The cracking ap-

Database indices provide a
infrastructure to localize tuples of interest. Their mainte-
nance cost is taken during database updates. In this pa-
per, we study the ) approach, addressing in-
dex maintenance as part of query processing using continu-
ous physical reorganization, i.c., cracking the database into
pieces. The is that by

organizing data the way users request it, we can achieve fast
access and the much desired self-organized behavior.

proach is based on the hypothesis that index maintenance
should be a byproduct of query processing, not of updates.
Each query is interpreted not only as a request for a partic-
ular result set, but also as an advice to crack the physical
database store into smaller pieces. Each piece is described
by a query, all of which are assembled in a cracker indez to
speedup future search. The cracker index replaces the non-
discriminative indices (e.g., B-trees and hash tables) with a
index. Only database portions of past inter-

We present the first mature cracking and re-
on our implementation of cracking in the context of a
full fledged relational system. It led to a minor enhancement
to its relational algebra kernel, such that cracking could be
piggy-backed without incurring too much processing over-
head. Furthermore, we illustrate the ripple effect of dynamic
reorganization on the query plans derived by the SQL opti-
m|zer The expenences nnd results obtained are indicative of
n system ity. We show that
the resulting system is nble to self-organize based on incom-
ing requests with clear performance benefits. This behavior
is visible even when the user focus is randomly shifting to
different parts of the data.

1. INTRODUCTION

Nowadays, the challenge for database architecture design
is not in achieving ultra high performance but to design sys-
tems that are simple and flexible. A database system should
be able to handle huge sets of data and self-organize ac-
cording to the environment, e.g., the workload, available re-
sources, etc. A nice discussion on such issues can be found in
[6]. In addition, the trend towards dlitnbnu-d environments
to speed up ion calls for new designs.
The same holds for multi-core CPU architectures that are
starting to dominate the market and open new possibilities
and challenges for data management. Some notable depar-
tures from the usual paths in database architecture design
include (2, 3, 9, 14).

This ancl i publshed under 8 Crestive Commons License Agreement
(http:iceeativecommons.or 2.50).

You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the authoe and CIDR 2007.

est are easily localized. The remainder is unexplored terri-
tory and remains non-indexed until a query becomes inter-
ested. Continuously reacting on query requests brings the
powerful property of self-organization. The cracker index is
built dynamically while queries are processed and adapts to
changing query workloads.

The cracking ique naturally provides a ising ba-
sis to attack the challenges described in the beginning of this
section. With cracking, the way data is physically stored
self-organizes according to query workload. Even with a
huge data set, only tuples of interest are touched, leading
to significant gains in query performance. In case the focus
shifts to a different part of the data, the cracker index auto-
matically adjusts to that. In addition, cracking the database
into pieces gives us disjoint sets of our data targeted by spe-
cific queries. This mformnuon can be nicely used as a basu
for high-speed di and multi query

The idea of physically reorganizing the database based on
incoming queries has first been propased in [10]. The con-
tributions of this paper are the following. We present the
first mature cracking architecture (a complete cracking soft-
ware stack) in the context of column oriented databases. We
report on our implementation of cracking on top of Mon-
etDB/SQL, a column oriented database system, showing
that cracking is easy to implement and may lead to fur-
ther system simplification. We present the cracking algo-
rithms that physically reorganize the datastore and the new
cracking operators to enable cracking in MonetDB. Using
SQL micro-benchmarks, we assess the efficiency and effec-
tiveness of the system at the operator level. Additionally, we
perform expeﬁmenxs that use the complete software stack,

hat kes izers can suc-
cessfully generate query plans thn deplny our new cracking
operators and thus exploit the benefits of database cracking.
Furthermore, we e\:!\mle our curren! nmpln.-memmon and
discuss some results. We cl
the resulting system can self-organize according to query
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ABSTRACT

Modern business applications and scientific databases call for in-
herently dynamic data storage environments. Such environments
are characterized by two challenging features: (a) they have lit-
tle idle system time to devote on physical design; and (b) there
is little, if any, a priori workload knowledge, while the query and
data workload keeps changing dynamically. In such environments,
traditional approaches to index building and maintenance cannot
xpply Database cmckmg has been pmpow.l asa soluuon um al-
the-fly physical of
sing. Cracking ai and i
ndapl indexes to the workload at hand, without human intervention.
Indexes are built incrementally, adaptively, and on demand. Never-
theless, as we show, existing adaptive indexing methods fail to de-
liver workload-robustness; they perform much better with random
workloads than with others. This frailty derives from the inclastic-
ity with which these approaches interpret each query as a hint on
how data should be stored. Current cracking schemes blindly reor-
ganize the data within cach query’s range, even if that results into
successive expensive operations with minimal indexing benefit.

In this paper, we introduce stochastic cracking, a significantly
‘more resilient approach to adaptive indexing. Stochastic cracking
also uses each query as a hint on how to reorganize data, but not
blindly so; it gains resilience and avoids performance bottlenecks
by deliberately applying certain arbitrary choices in its decision-
makmg Thereby, we bring adsptive indexing forward t0 a ma-

that confers the workl s previous ap-
pmach:s lacked. Our extensive experimental study verifies that
stochastic cracking maintains the desired properties of original da-
tabase cracking while at the same time it performs well with diverse
realistic workloads.

1. INTRODUCTION

Database research has set out to reexamine established assump-
tions in order to meet the new challenges posed by big data, sci-
entific databases, highly dynamic, distributed, and multi-core CPU

environments. One of the major challenges is to create simple-to-
use and flexible database systems that have the ability self-organize
according to the environment [7].

Physical Design. Good performance in database systems largely
relies on proper tuning and physical design. Typically, all tuning
choices happen up front, assuming sufficient workload knowledge
and idle time. Workload knowledge is necessary in order to deter-
mine the appropriate tuning actions, while idle time is required in
order to perform those actions. Modern database systems rely on
auto-tuning tools to carry out these Steps, €.8. 6,8,13,1,28).

Dynamic Environments. However, in dynamic environments,
workload knowledge and idle time are scarce resources. For ex-
ample, in scientific databases new data arrives on a daily or even
hourly basis, while query patterns follow an exploratory path as the
scientists try to interpret the data and understand the patterns ob-
served: there is no time and knowledge to analyze and prepare a
different physical design every hour or even every day.

Traditional indexing presents three fundamental weaknesses in
such cases: (a) the workload may have changed by the time we
finish tuning; (b) there may be no time to finish tuning properly;
and (c) there is no indexing support during tuning.

Database Cracking. Recently, a new approach to the physi-
cal design problem was proposed, namely database cracking (14).
Cracking introduces the notion of continuous, incremental, partial
and on demand adaptive indexing. Thereby, indexes are incremen-
tally built and refined during query processing. Cracking was pro-
posed in the context of modern column-stores and has been hith-
erto applied for boosting the performance of the select operator
[16), maintenance under updates [17), and arbitrary multi-attribute
queries [18]. In addition, more recently these ideas have been ex-
tended to exploit a partition/merge -like logic 19, 11, 12].

Workload Robustness. Nevertheless, existing cracking schemes
have not deeply questioned the particular way in which they in-
terpret queries as a hint on how to organize the data store. They
have adopted a simple interpretation, in which a select operator is
taken to describe a range of the data that a discriminative cracker
index should provide casy access to for future queries; the remain-
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ABSTRACT 1. INTRODUCTION

Column-stores gained popularity us a promising physical de-

A prime femure of column-stores is to provide improved

sign alternative. Each attribute of a relation is phy
stored as a separate column allowing queries to load only
the required attributes. The overhead incurred is on- th&ﬂ’
tuple reconstruction for multi-attribute queries. Each tu-
ple reconstruction is a join of two columns based on tuple
IDs, making it a significant cost component. The ultimate
physical design is to have multiple presorted copies of each
base table such that tuples are already appropriately orga-
nized in multiple different orders across the various columns.
This requires the ability to predict the workload, idle time
to prepare, and infrequent updates.

In this paper, we propose a novel design, partial side-
ways cracking, that minimizes the tuple reconstruction cost
in a self-organizing way. It achieves performance similar
to using presorted data, but without requiring the heavy
initial presorting step itself. Instead, it handles dynamic,
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provide a non-discriminative navigational ~ besed
localize tuples of interest. Their mainte-  Proad
during database updates. In this pa- shoul¢
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as part of query processing using continu- ular 7
anization, i.c., cracking the database into ~ 4atab

. The motivation is that by automatically ~ DY 8¢
the way users request it, we can achieve fast  SPeed
much desired self-organized behavior discri
e first mature cracking architecture and re- ‘:‘:‘:

lementation of cracking in the context of a
ional system. It led to a minor enhancement tory 8
algebra kernel, such that cracking could be
ithout incurring too much processing over-
, we illustrate the ripple effect of dynamic
on the query plans derived by the SQL opti- chang
iences and results obtained are indicative of
uction in system complexity. We show that
m is able to self-organize based on incom-
clear performance benefits. This behavior
when the user focus is randomly shifting to

with no idle time and frequent up-
dates. Auxiliary dynamic data structures, called cracker
maps, provide a direct mapping between pairs of attributes
used together in queries for tuple reconstruction. A map
is continuously physically reorganized as an integral part of
query evaluation, providing faster and reduced data access
for future queries. To enable fexible and self-organizing be-
havior in storage-limited environments, maps are material-
ized only partially as demanded by the workload. Each map
is a collection of separate chunks that are individually reor-
ganized, dropped or recreated as needed. We implemented
partial sideways cracking in an open-source column-store. A
detailed experimental analysis demonstrates that it brings
benefits for multi-attribute queries.
Categories and Subject Descriptors: H.2 [DATABASE
MANAGEMENT]: Physical Design - Systems
General Terms: Algorithms, Performance, Design
Keywords: Database Cracking, Self-organization

Permission to make digital or hard copies of all or pant of this work for

ver st in the case that workloads re-
quire only a few attributes of wide tables at a time. Each
relation R is physically stored as a set of columns; one col-
wumn for each attribute of R. This way, a query needs to load
only the required attributes from each relevant relation.
This happens at the expense of requiring explicit (partial)
tuple reconstruction in case multiple attributes are required.
Each tuple reconstruction is a join between two columns
based on tuple IDs/positions and becomes a significant cost
in col especially for multi-attribs
queries (2, 6, 10). Whenever possible, position-based join-
matching and sequential data access are exploited. For each
relation R, in a query plan g, a column-store needs to per-
form at least N; — 1 tuple reconstruction operations for R;
vm}un g, given that Ni attributes of R: participate in g.
perform tuple
Wi nh early tuple ion, the required attri are
glued together as early as possible, ie., while the columns
are loaded, leveraging N-ary processing to evaluate the query.
On the other hmd late tuple reconstruction exploits the

to its maxi During query
processing, “reconstruction” merely refers to getting the at-
tribute values of tuple: from their b as

late as possible, i.e., only once an attribute is required in the
query plan. This approach allows the query engine to exploit
CPU- and cach tor-like operator i

tions throughout the whole query evaluation. N-ary tuples
are formed only once the final result is delivered.

Like most modern column-stores (12, 4, 15), we focus on
late reconstruction. Comparing early and late reconstruc-
tion, the educative analysis in [2] observes that the latter
incurs the overhead of reconstructing a column more than
once, in case it occurs more than once in a query. Further-
more, exploiting sequential access patterns during recon-
struction is not always possible since many operators (joins,
group by, order by etc.) are not fuple order-preserving.

The ultimate access pattern is to have multiple copies for
each relation R, such that each copy is presorted on an other
attribute in R. All tuple reconstructions of R attributes
initiated by a restriction on an attribute A can be performed
using the copy that is sorted on A. This way, the tuple

in two ways [2].
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ABSTRACT

Adaptive indexing is characterized by the partial creation and re-
finement of the index as side effects of query execution. Dynamic
or shifting workloads may benefit from preliminary index struc-
tures focused on the columns and specific key ranges actually queried
— without incurring the cost of full index construction. The costs
and benefits of adaptive indexing techniques should thercfore be
compared in terms of initialization costs, the overhead imposed
queries, and the rate at which the index converges to a state
that is fully-refined for a particular workload component.
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ing, which arc two techniques for adaptive indexing, we seek a
hybrid technigue that has a low initialization cost and also con-
verges rapidly. We find the strengths and weaknesses of database
cracking and adaptive merging complementary. One has a rela-
tively high initialization cost but converges rapidly. The other has
a low initialization cost but converges relatively slowly. We ana-
lyze the sources of their respective strengths and explore the space
of hybrid techniques. We have designed and implemented a fam-
ily of hybrid algorithms in the context of a column-store database
system. Our experiments compare their behavior against database
cracking and adaptive merging, as well as against both traditional
full index lookup and scan of unordered data. We show that the
new hybrids significantly improve over past methods while at least
two of the hybrids come very close to the “ideal performance” in
terms of both overhead per query and convergence 1o a final state.

1. INTRODUCTION

Contemporary index selection tools rely on monitoring database
requests and their exceution plans, occasionally invoking creation
or removal of indexes on tables and views. In the context of dy-
namic workloads, such tools tend to suffer from the following three
weaknesses. First, the interval between monitoring and index cre-
ation can exceed the duration of a specific request pattern, in which
case there is no benefit to those tools. Second, even if that is not
the case, there is no index support during this interval. Data access
during the monitoring interval neither benefits from nor aids index
creation efforts, and eventual index creation imposes an additional
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How many queries before the index fully suppoﬂs
a random query?
Figure 1: Adaptive Indexing Research Space.
load that interferes with query execution. Last, but not least, tradi-
tional indexes on tables cover all rows equally, even if some rows
are needed often and some never.

Our goal is to enable incremental, efficient adaptive indexing,
i.c.. index creation and optimization as side cffects of query exe-
cution, with the implicit benefit that only tables, columns, and key
ranges truly queried are optimized. As proposed in (S, we use two
measures to characterize how quickly and efficiently a technique
adapts index structures to a dynamic workload. These are: (1) the
initialization cost incurred by the first query and (2) the number of
queries that must be processed before a random query benefits from
the index structure without incurring any overhead. We focus par-
ticularly on the first query because it captures the worst-case costs
and benefits of adaptive indexing; if that portion of data is never
queried again, then any overhead above and beyond the cost of a
scan is wasted effort.

Recent work has proposed two distinct approaches: database
cracking [10, 11, 12] and adaptive merging (6, 7). The more of-
ten a key range is queried, the more its representation is optimized.
Columns that are not gueried are not indexed, and key ranges that
are not gueried are not optimized. Overhead for incremental in-
dex creation is minimal, and disappears when a range has been
fully-optimized. In order to evaluate database cracking and adap-
tive merging, we have implemented both approaches in a modern
column-store database system, and find the strengths and weak-
nesses of the two approaches complementary.

As shown in Figure 1, adaptive merging has a relatively high
initialization cost but converges rapidly, while database cracking
enjoys a low initialization cost but converges relatively slowly. The
green box in Figure 1 thus defines the research space for adaptive
indexing with database cracking and adaptive merging occupying
the borders of this space. We recognize the opportunity for an ideal
hybrid adaptive indexing technique, marked with a star in the fig-
ure, that incurs a low initialization cost yet also converges quickly

Self-selecting, self-tuning, incrementally optimized indexes
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Abstract

In a relational data warehouse with many tables, the

number of possible and promising indexes exceeds human

ion and requires ic index tuning. While

monitoring and reactive index tuning have been proposed,

adaptive indexing focuses on adapting the physical data-
‘base layout for and by actual queries.

“Database cracking” is one such technique. Only if and
when a column is used in query predicates, an index for the
column is created; and only if and when a key range is que-
ried, the index is optimized for this key range. The effect is
akin to a sort that is adaptive and incremental. This sort is,
however, very inefficient, particularly when applied on
block-access devices. In contrast, traditional index creation
sorts data with an efficient merge sort optimized for block-
access devices, but it is neither adaptive nor incremental.

We propose adaptive merging, an adaptive, incre-
mental, and efficient technique for index creation. Index
optimization focuses on key ranges used in actual queries.
The resulting index adapts more quickly to new data and to
new query patterns than database cracking. Sort efficiency
is comparable to that of traditional B-tree creation. None-
theless, the new technique promises better query perform-
ance than database cracking, both in memory and on block-
access storage.

Categories and subject descriptors
E.2 Data storage representations - arrays, sorted trees.

Keywords

Database index, adaptive, autonomic, query execution. '

1 Introduction
In a relational data warehouse with a hundred tables
and a thousand columns, billions of indexes are possible, in

Hewlett-Packard Lab
1501 Page Mill Road
Palo Alto, CA 94304

and materialized views with their indexes are considered.
Thus, index selection is a central, classic, and very
problem in physical database design. Too few or the wrong
indexes force many queries to scan large parts of the data-
base; too many indexes force high update costs. Unpredict-
able ad-hoc queries exacerbate the problem.

One approach is to focus on enabling very fast scans,
e.g., using shared scans and columnar storage formats, an
approach suitable to high-bandwidth high-latency devices
such as traditional disk drives and disk arrays. Low-latency
database storage such as flash memory will likely re-
energize research into index-based query processing.

Another approach is to tune indexes in response to the
actual workload. Contemporary index selection tools rely
on monitoring database requests and their execution plans,
occasionally invoking creation or removal of indexes on
tables and views. Such tools tend to suffer from three
weaknesses. First, the interval between monitoring and
index creation can exceed the duration of a specific request
pattern; in which case there is no benefit to those tools.
Second, even if that is not the case, there is no index sup-
port during this interval, so data access during the interval
is wasted with respect to index creation, and eventual index
creation imposes an additional load that interferes with
query execution. Last, but not least, traditional indexes on
tables cover all rows equally, even if some rows are needed
often and some never. For example, recent business trans-
actions are queried more often than those years ago, ex-
treme price fluctuations are more interesting than stable
pnc&, etc. Even where it is possible to limit an index, e.g.,
using a partial index or a materialized view, it is often dif-
ficult or impossible to predict the key ranges to focus on.

Database cracking [IKM 07a, KM 05] has pioneered
focused, incremental, automatic optimization of the repre-
sentation of a data collection — the more often a key range
is quened, the more its representation is optimized. This

particular if partial indexes, indexes on columns,

! Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee.

EDBT 2010, March 22-26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00.

occurs entirely ly, as a side effect
of queries over key ranges not yet fully optimized.

Column domain and storage array
c g . m s u

Yy
Figure 1. A column store partitioned by database cracking.
For example, after the column store illustrated in
Figure 1 has been queried with range boundary values c, g,
m, s, and u, all key values below ¢ have been assigned to

por Man’s Sort!
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he-shelf (Parallel) Mergesort implemen-
more expensive than a (quasi I/O bound)
three times as expensive as MonetDB’s
ting [19]. Even though both Scanning and
read and write the same amount of data,
costs. The performance difference must,
putational costs: Cracking is, unlike Scan-

mented with the underlying hardware in
(roughly) VO bound.

esis, we make the following contributions:
an in-depth study of the contributing performance
the “classic” Cracking implementation.

the findings, we develop a number of optimiza-
ed on “standard” techniques like predication, vec-
n and manually implemented data parallelism using
structions.

op two different parallel algorithms that exploit thread
ism to make use of multiple CPU cores.

sly evaluate all developed algorithms on a number
ent systems ranging from low-end desktop machines
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Design rules:

1. Generalize way of refinement
2. Adapt refinement effort

3. Awareness of key distributions
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1. Generalize way of refinement:
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2. Adapt refinement effort
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ABSTRACT

Modern business applications and scientific databases call for in-
herently dynamic data storage environments. Such environments
are characterized by two challenging features: (a) they have lit-
tle idle system time to devote on physical design; and (b) there
is little, if any, a priori workload knowledge, while the query and
data workload keeps changing dynamically. In such eavironments,
traditional approaches to index building and maintenance cannot
xpply Database cmckmg has been ptvpowd asa mluum um uJ-
the-fly physical
Cracking ai and i

ada;n indexes to the workload at hand, without human intervention.
Indexes are built incrementally, adaptively, and on demand. Never-
theless, as we show, existing adaptive indexing methods fail to de-
liver workload-robustness; they perform much better with random
workloads than with others. This frailty derives from the inclastic-
ity with which these approaches interpret each query as a hint on
how data should be stored. Current cracking schemes blindly reor-
ganize the data within cach query’s range, even if that results into
successive expensive operations with minimal indexing benefit.

In this paper, we introduce stochastic cracking, a significantly
‘more resilient approach to adaptive indexing. Stochastic cracking
also uses each query as a hint on how to reorganize data, but not
blindly so; it gains resilience and avoids performance bottlenecks
by deliberately applying certain arbitrary choices in its decision-
mzklng Thereby, we bring adsptive indexing forward t0 a ma-

that confers the workl ss previous ap-
pmach=s lacked. Our extensive experimental study verifies that
stochastic cracking maintains the desired properties of original da-
tabase cracking while at the same time it performs well with diverse
realistic workloads.

1. INTRODUCTION

Database research has set out to reexamine established assump-
tions in order to meet the new challenges posed by big data, sci-
entific databases, highly dynamic, distributed, and multi-core CPU
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environments. One of the major challenges is to create simple-to-
use and flexible database systems that have the ability self-organize
according to the environment [7].

Physical Design. Good performance in database systems largely
relies on proper tuning and physical design. Typically, all tuning
choices happen up front, assuming sufficient workload knowledge
and idle time. Workload knowledge is necessary in order to deter-
mine the appropriate tuning actions, while idle time is required in
order to perform those actions. Modern database systems rely on
auto-tuning tools to carry out these steps, e.g., [6, 8, 13, 1, 28].

Dynamic Environments. However, in dynamic envirorments,
workload knowledge and idle time are scarce resources. For ex-
ample, in scientific databases new data arrives on a daily or even
hourly basis, while query patterns follow an exploratory path as the
scientists try to interpret the data and understand the patterns ob-
served: there is no time and knowledge to analyze and prepare a
different physical design every hour or even every day.

Traditional indexing presents three fundamental weaknesses in
such cases: (a) the workload may have changed by the time we
finish tuning; (b) there may be no time to finish tuning properly;
and (c) there is no indexing support during tuning.

Dat racking. Recently, a new approach to the physi-
cal design problem was proposed, namely database cracking [14).
Cracking introduces the notion of continuous, incremental, partial
and on demand adaptive indexing. Thereby, indexes are incremen-
tally built and refined during query processing. Cracking was pro-
posed in the context of modern column-stores and has been hith-
erto applied for boosting the performance of the select operator
[16), maintenance under updates [17), and arbitrary multi-attribute
queries [18]. In addition, more recently these ideas have been ex-
tended to exploit a partition/merge -like logic 19, 11, 12].

Workload Robustness. Nevertheless, existing cracking schemes
have not deeply questioned the particular way in which they in-
terpret queries as a hint on how to onganize the data store. They
have adopted a simple interpretation, in which a select operator is
taken to describe a range of the data that a discriminative cracker
index should provide easy access to for future queries; the remain-
remains non- ndex:d unul a qncry expm mx:r—
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ABSTRACT 1. INTRODUCTION

Col tores gai physical de-
sign alternative. Ench attribute or a relation is physically
stored as a separate column allowing queries to load only
the required attributes. The overhead incurred is on-the-fly
tuple reconstruction for multi-attribute queries. Each tu-
ple reconstruction is a join of two columns based on tuple
IDs, making it a significant cost component. The ultimate
physical design is to have multiple presorted copies of each
base table such that tuples are already appropriately orga-
nized in multiple different orders across the various columns.
This requires the ability to predict the workload, idle time
to prepare, and infrequent updates.

In this paper, we propose a novel design, partial side-

Adaptive Adaptive Indexing

Felix Martin Schuhknecht’, Jens Dittrich?, Laurent Linden®

Saarland Informatics Campus
Saarland University, Germany
! felix.schuhknecht@infosys.uni-saarland.de
2 jens.dittrich@infosys.uni-saarland.de
laurent.linden@gmx.net

Abstract—In nature, many species became extinct as they
could not adapt quickly enough to their environment. They were
simply not fit enough to adapt to more and more challenging
circumstances. Similar things happen wlun a.lgorithms are |no

stored in a separate index structure called cracker index. The
more queries are answered this way, the more fine granular
the partitioning becomes. By this, the query response time

towards the one of a traditional index.

static to cope with
be It the workload, the machine, or l.he user reqnlrcmenls.

this regard, in this paper we explore the well-researched
-nd fascinating family of adaptive indexing algorithms. Classical
adaptive indexes solely adapt the indexedness of the data to the
workload. However, we will learn that so far we have overlooked
a second higher level of adaptivity, namely the one of the indexing
algorithm itself. We will coin this second level of adaptivity
meta-adaptivity.

Based on a careful experimental analysis, we will develop an
adaptive index, which realizes meta-adaptivity by (1) generalizing
the way mrganlnﬁon ls performed, (2) reacting to the evolving
effort, and (3) defusing
skewed dasmlmﬂons in !.hz input data. As we will demonstrate,
this allows us to emulate the characteristics of a large set
of specialized adaptive indexing algorithms. In an extensive
experimental study we will show that our meta-adaptive index
is extremely fit in a variety of environments and outperforms a

Flgun: 1 vlsllahzes the concepl

Index
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Fig. 1: Concept of database cracking reorganizing for multiple
queries and converging towards a sorted state.

A prime fea\ure of column-stores is to provide improved
ver row-stores in the case that workloads re-
quire only a few attributes of wide tables at a time. Each
relation R is physically stored as a set of columns; one col-
wumn for each attribute of R. This way, a query needs to load
only the required attributes from each relevant relation.
This happens at the expense of requiring explicit (partial)
tuple reconstruction in case multiple attributes are required.
Each tuple reconstruction is a join between two columns
based on tuple IDs/positions and becomes a algmﬁmm cost
in col s especially for multi-attrib
queries (2, 6, 10). Whenever possible, position- md join-
mntchmg and sequential data access are exploited. For each
R, in a query plan g, a column-store needs to per-
N; — 1 tuple reconstruction operations for R;
en that N attributes of R; participate in g.

tuple ion, the required are
her as carly as possible, i.c., while the columns
1 ing N-ary t luate the query.
her hand, late tuple reconstruction exploits the
e architecture to its maximum. During query
“reconstruction” merely refers to getting the at-
es of y tuple: from their bas as
ible, i.e., only once an attribute is required in the
This approach allows the query engine to exploit
like opera

tor i
ghout the whole query evaluation. N-ary tuples
only once the final result is delivered.

modern column-stores (12, 4, 15), we focus on
truction. Comparing early and late reconstruc-
ducative analysis in (2] observes that the latter
rhead of reconstructing a column more than
it occurs more than once in a query. Further-
piting sequential access patterns during recon-
not always possible since many operators (joins,
der by etc.) are not fuple order-preserving.
nate access pattern is to have multiple copies for
n R, such that each copy is presorted on an other
n R. All tuple reconstructions of R attributes
a restriction on an attribute A can be performed
that is sorted on A. This way, the tuple

ptimized indexes

ores perform tuple reconstruction in wm ways [2].
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ABSTRACT

Adaptive indexing is characterized by the partial creation and re-
finement of the index as side effects of query execution. Dynamic
or shifting workloads may benefit from preliminary index struc-
tures focused on the columns and specific key ranges actually queried
— without incurring the cost of full index construction. The costs
and benefits of adaptive indexing techniques should therefore be
compared in terms of initialization costs, the overhead imposed
upon queries, and the rate at which the index converges to a state
that is fully-refined fnr a particular vmrkluad cnmpon:nl.

Stefan Manegold*

Harumi Kuno pers including 18 different techniques on this type of indexing. ~ sequential query workloads. Thus, to equip a system with
*HP | The reason for the necessity of such a large number of adaptive indexing, it actually has to be extended with numer-
{harumi.kuno, mel.hods is l.hat adapuvny, while offering many nice p ous different i ions that must be switched depending

ing amount of [1], on the needs of the user and the current workload.

I. INTRODUCTION

An overwhelming amount of adaptive indexing
exists today. In our recent studies [1], [2], we analyzed 8 pa-

large amount of specialized adaptive indexes under various query
access patterns and key distributions.

prove the

[2] as wel.L For instance, as the investigation of these works
showed, adaptive indexing must deal with high variance, slow

Full Index 8 speed, weak

oAda

T el

Costof first query relative to in-
memory scan efiort

Based on of

ing, which arc two techniques for lldapu\'c indexing, we seck a
hybrid techrigue that has a low initialization cost and also con-
verges rapidly. We find the strengths and weaknesses of database
cracking and adaptive merging complementary. One has a rela-
tively high initialization cost but converges rapidly. The other has
a low initialization cost but converges relatively slowly. We ana-
Iyze the sources of their respective strengths and explore the space
of hybrid techniques. We have designed and implemented a fam-
ily of hybrid algorithms in the context of a column-store database
system. Our experiments compare their behavior against database
cracking and adaptive menging, as well as against both traditional
full index lookup and scan of unordered data. We show that the
new hybrids significantly improve over past methods while at lcast
two of the hybrids come very close to the “ideal performance” in
terms of both overhead per query and convergence to a final state.

1. INTRODUCTION

Contemporary index selection tools rely on monitoring database
requests and their exceution plans, occasionally invoking creation
or removal of indexes on tables and views. In the context of dy-
namic workloads, such tools tend to suffer from the following three
weaknesses. First, the interval between monitoring and index cre-
ation can exceed the duration of a specific request pattern, in which
case there is no benefit to those tools. Second, even if that is not
the case, there is no index support during this interval. Data access
during the monitoring interval neither benefits from nor aids index
creation efforts, and eventual index creation imposes an additional
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ranges truly queried are
measures to characteri;
adapts index structures
initialization cost incurred by t b
queries that must be processed P query e
the index structure without incurring any overhead. We focus par-
ticularly on the first query because it captures the worst-case costs
and benefits of adaptive indexing; if that portion of data is never
queried again, then any overhead above and beyond the cost of a
scan is wasted effort.

Recent work has proposed two distinct approaches: database
cracking (10, 11, 12] and adaptive merging (6, 7). The more of-
ten a key range is queried, the more its representation is optimized.
Columns that are not gueried are not indexed, and key ranges that
are not gueried are not optimized. Overhead for incremental in-
dex creation is minimal, and disappears when a range has been
fully-optimized. In order to evaluate database cracking and adap-
tive merging, we have implemented both approaches in a modern
column-store database system, and find the strengths and weak-
nesses of the two approaches complementary.

As shown in Figure 1, adaptive merging has a relatively high
initialization cost but converges rapidly. while database cracking
enjoys a low initialization cost but converges relatively slowly. The
green box in Figure 1 thus defines the research space for adaptive
indexing with database cracking and adaptive merging occupying
the borders of this space. We recognize the opportunity for an ideal
hybrid adaptive indexing technique, marked with a star in the fig-
ure, that incurs a low initialization cost yet also converges quickly

against different query
10 workloads and data distributions, and the trade-off between
individual and accumulated query response time.

In the simplest form of adaptive indexing, called database
cracking or standard cracking [3], the index column is repar-
titioned adaptively with respect to the incoming query pred-
icates. If a range query selecting [low, high) comes in, the
partition into which low falls is split into two partitions
where one partitions contains all keys less than low and the
other partition all keys that are greater than or equal to low. while outperforming them at the same time.
The same reorganization is repeated for the partition into
which high falls. After these two steps, the range query can
be answered by a simple scan of the qualifying partitions.
The information which key ranges each partition holds is

Keywords
Database index, adaptive, autonomic, query execution. '
1 Introduction

In a relational data warehouse with 2 hundred tables
and a thousand columns, billions of indexes are possible, in

If we inspect the literature (4], (5], (6], [7). (8], (9], [10]

of the principle, we see that
l.hese algonthms mostly focus on reducing a single issue
at a time. For instance, hybrid cracking [5] tries to im-
speed towards a full index. Stochastic
cracking [4] instead focuses on improving the robustness on

This raises the question of how different these algorithms
really are. During the study of the literature we made two
observations: First, at the heart of every cracking algorithm is
simple data partitioning, splitting a given key range into a cer-
tain number of partitions. Second, the main difference between
the algorithms lies in how they distribute their indexing effort
along the query sequence. Some methods tend to reorganize
mostly early on, while others balance the effort as much as
possible across the queries. Based on these observations, we
will present a generalized adaptive indexing algorithm that
adapts itself to the characteristics of specialized methods,

(1) Generalize the way of index refinement. We identify
data partitioning as the common form of reorganization in
adaptive indexing. Various types of database cracking as well
as sorting can be expressed via a function partition-in-k that

ws with their indexes are considered.
n is a central, classic, and very hard
database design. Too few or the wrong
queries to scan large parts of the data-
exes force high update costs. Unpredict-
exacerbate the problem.
s to focus on enabling very fast scans,
cans and columnar storage formats, an
o high-bandwidth high-latency devices
drives and disk arrays. Low-latency
as flash memory will likely re-
to index-based query processing.
h is to tune indexes in response to the
ontemporary index selection tools rely
requests and their execution plans,
creation or removal of indexes on
uch tools tend to suffer from three
the interval between monitoring and
2xceed the duration of a specific request
se there is no benefit to those tools.
is not the case, there is no index sup-
al, so data access during the interval
to index creation, and eventual index
additional load that interferes with
1st, but not least, traditional indexes on
equally, even if some rows are needed
. For example, recent business trans-
more often than those years ago, ex-
fluctuations are more interesting than stable
prices, etc. Even where it is possible to limit an index, e.g.,
using a partial index or a materialized view, it is often dif-
ficult or impossible to predict the key ranges to focus on.
Database cracking [IKM 07a, KM 05] has pioneered
focused, incremental, automatic optimization of the repre-
sentation of a data collection — the more often a key range
is quened, the more its representation is optimized. This

particular if partial indexes, indexes on columns,

! Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee.

EDBT 2010, March 22-26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00.

occurs entirely ly, as a side effect
of queries over key ranges not yet fully optimized.

Column domain and storage array
c g . m s u

y
Figure 1. A column store partitioned by database cracking.
For example, after the column store illustrated in
Figure 1 has been queried with range boundary values c, g,
m, s, and u, all key values below ¢ have been assigned to

por Man’s Sort!
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i gly unattractive. To illustrate this, Fig-
ison of the respective operations on
values on a 4-Core Sandy Bridge CPU.
he-shelf (Parallel) Mergesort implemen-
more expensive than a (quasi I/O bound)
three times as expensive as MonetDB’s
king [19]. Even though both Scanning and
read and write the same amount of data,
costs. The performance difference must,
putational costs: Cracking is, unlike Scan-

mented with the underlying hardware in
(roughly) VO bound.

esis, we make the following contributions:
an in-depth study of the contributing performance
the “classic” Cracking implementation.

the findings, we develop a number of optimiza-
ed on “standard” techniques like predication, vec-
n and manually implemented data parallelism using
structions.

op two different parallel algorithms that exploit thread
lism to make use of multiple CPU cores.

ously evaluate all developed algorithms on a number
ent systems ranging from low-end desktop machines
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