
A Dataspace Odyssey:
The iMeMex Personal Dataspace Management System∗

Lukas Blunschi Jens-Peter Dittrich Olivier René Girard
Shant Kirakos Karakashian Marcos Antonio Vaz Salles

ETH Zurich, Switzerland
dbis.ethz.ch | iMeMex.org

ABSTRACT
A Personal Dataspace includes all data pertaining to a user on all
his local disks and on remote servers such as network drives, email
and web servers. This data is represented by a heterogeneous mix
of files, emails, bookmarks, music, pictures, calendar, personal in-
formation streams and so on. We demonstrate a new breed of sys-
tem that is able to handle the entire Personal Dataspace of a user.
Our system, named iMeMex (integrated memex), is a first imple-
mentation of a Personal DataSpace Management System (PDSMS).
Visions for this type of systems have been proposed recently [13,
10, 12, 17]. We showcase how iMeMex allows dataspace navigation
across data source/file boundaries, how iMeMex offers rich con-
textual information on query results and how our system returns
best-effort results.

1. INTRODUCTION
In 1945, Bush [6] presented a vision of a personal information

management (PIM) system named memex. That vision has deeply
influenced several advances in computing. Part of that vision led
to the development of the Personal Computer in the 1980’s. It also
led to the development of hypertext and the World Wide Web in
the 1990’s. Since then, several projects have attempted to imple-
ment other memex-like functionalities [18, 5, 8, 21]. In addition,
PIM regained interest in the Database research community [20, 14].
Moreover, it was identified as an important topic in the Lowell Re-
port [1], discussed in a VLDB panel [22], and became topic of both
SIGMOD 2005 keynotes [5, 24] and of a SIGIR workshop [26].
Personal Information Jungle. We argue that a satisfactory so-
lution has not yet been brought forward to many central issues
related to PIM. In fact, today’s users are faced with a jungle of
data processing solutions and a jungle of data and file formats [13].
This illustrates two key problems in the current state-of-the-art for
PIM: physical and logical data dependence for personal informa-
tion. Physical data dependence relates to the fact that users need
to know about devices and formats that are used to store their data.
Logical data dependence relates to the fact that users cannot de-
∗This work is partially supported by the Swiss National Science
Foundation (SNF) under contract 200021-112115.

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2007.
3rd Biennial Conference on Innovative Data Systems Research (CIDR)
January 7-10, 2007, Asilomar, California, USA.

fine user-centric views over the data model that is used to represent
data. Currently, there is no single system capable of offering an
abstraction layer that overcomes both problems and enables data
processing (e.g., querying, updating, performing backup and re-
covery operations) across files, formats and devices.
From Databases to Dataspaces. DBMS technology successfully
resolved the physical and logical data dependence problem for struc-
tured data, but not for the highly heterogeneous data mix present in
personal information. Franklin et al. [17] recognize this situation
for a variety of domains, including PIM, and present a broad vision
for data management. They argue for a new system abstraction, a
DataSpace Support Platform (DSSP), capable of managing all data
of a particular organization, regardless of its format and location.
Unlike standard data integration systems, a DSSP does not require
expensive semantic data integration before any data services are
provided. For example, keyword searches should be supported at
any time on all data (schema later or schema never). A DSSP is
a data co-existence approach in which tighter integration is per-
formed in a “pay-as-you-go” fashion [17].
From Vision to Reality. In this demo, we focus on personal data-
spaces, that is the total of all personal information pertaining to a
certain person. In contrast to the vision of [17], we propose a con-
crete Personal Dataspace Management System (PDSMS) imple-
mentation, named iMeMex: integrated memex [10, 9]. A PDSMS
can be seen as a specialized DSSP. Note, however, that our system
is not restricted to personal dataspaces and can also be applied to
other scenarios, e.g., scientific dataspaces. A first prototype of our
system was demonstrated in [13]. After that, we developed a uni-
fied data model for personal dataspaces [12]. This demo presents
the second prototype of iMeMex which is based on the findings
of [12]. Furthermore, we make the following contributions:

1. We summarize the vision of iMeMex. In addition, we list cur-
rent and upcoming features of our system.

2. iMeMex frees the data contained in a dataspace from its formats
and devices, by representing it using a logical graph model [12].
We present how to navigate, search and query a dataspace man-
aged by iMeMex using our AJAX interface.

3. We showcase how iMeMex allows to progressively return best-
effort results for a dataspace scenario consisting of distributed
iMeMex instances.

This paper is organized as follows. The next section outlines the
vision of our system. After that, we summarize iMeMex’s archi-
tecture in Section 3. In Section 4, we list the current features of
our software which is open source and available under an Apache
2.0 License from [9]. Section 5 presents the demonstration outline.
Sections 6 discusses related work. Section 7 concludes the paper.



2. THE IMEMEX VISION
Some aspects of our vision were already presented in [13] and

[10]. This section summarizes the core ideas. The ultimate goal of
the iMeMex project is to free users from logical and physical data
management concerns. What this means for a user is discussed in
the following paragraphs:
PIM today: Assume that Mr. John Average owns a set of de-
vices including a laptop, a desktop, a cellular, and a digital camera.
His personal files are spread out among those devices and include
music, pictures, pdf files, emails, and office documents. Today,
Mr. Average has to copy files from one device to the other, he has
to download data to his desktop to see the pictures he shot, he has
to upload pictures to sites like flickr.com or picasa.com to share
them with his family. He has to make sure to regularly backup
data from the different devices in order to be able to retrieve them
in case of a device failure. Further, he uses two different modes
of searching: a local desktop search engine enabling search on his
local devices and a web search engine enabling search on public
web-sites. Mr. Average may organize his files by placing them in
folder hierarchies. However, the files and data items stored on his
different devices are not related to each other.
iMeMex vision of 2010: Mr. John Average still owns several nifty
devices with growing processing and storage capabilities. Instead
of handling ‘devices’ he assigns all his data to a logical dataspace
named John’s space. Whenever he listens to a piece of music,
takes a picture, gets an email, etc., those items are assigned to
John’s space. His dataspace management system takes care of
the low-level issues including replicating data among devices, en-
abling search and querying across devices. Whenever John Av-
erage wants to share data, he simply creates a subdataspace like
John’s space:pictures and selects a list of people who may
see that data, e.g., his family or friends. There is no need to ‘up-
load’ or ‘download’ data: John’s family and friends will just see
John’s pictures without requiring to access web-servers or messing
around with files. The boundary between the Web and the different
operating systems running on his local devices is gone. However,
John Average still owns his data: all master copies of his data are
physically stored on devices he owns. Searching a dataspace is not
restricted to certain devices (like the local desktop), but includes
all devices containing data assigned to his dataspace. Other than
simple keyword queries, structural queries similar to NEXI [28] are
enabled. John Average may also search and query the dataspaces of
his friends and his family. The search granularity is fine-granular
‘resource views’ [12] and not files. Other than just searching or
querying, John Average may also use iMeMex to integrate the in-
formation available in his dataspace or his friends’ dataspaces in a
pay-as-you-go fashion. Therefore, his dataspace management sys-
tem analyzes the data and proposes relationships among data items.
It enhances his dataspace over time and helps to turn a set of unre-
lated data items into integrated information. Finally, Mr. Average
may also update data using iMeMex. However, he may still update
his data using any of his applications, bypassing iMeMex.

In this demo we show two aspects of the iMeMex Dataspace
Management System: (1) how to navigate and query a dataspace,
(2) how to handle best-effort results computed by distributed in-
stances of iMeMex.

3. iMeMex CORE ARCHITECTURE
In this section, we discuss the core architecture of the iMeMex

PDSMS. iMeMex is based on a layered architecture which is de-
scribed in Section 3.1. Following that, Sections 3.2 and 3.3 discuss
important services that are provided by the different layers.

3.1 Logical Layers
The DSSP vision of Franklin et.al. [17] defines a dataspace as

a set of participants (or data sources) and relationships among the
participants. We term the set of data sources Data Source Layer.
Although Franklin et al. [17] present services that should be pro-
vided by a DSSP, little is said on how a DSSP would provide those
services on top of the Data Source Layer. In fact, in the current
state-of-the-art for personal information management, applications
(e.g., search&browse, email, Office tools, etc) access the Data Source
Layer (e.g., file systems) directly. This comes at the cost of physical
data dependence, as for instance system dependence. This situation
is depicted on the left of Figure 1.

To remedy that situation, we argue that what is missing is a log-
ical layer between the applications and the Data Source Layer that
provides services on the dataspace. We propose to add the iMeMex
PDSMS as that intermediate logical layer. It is depicted on the right
of Figure 1. iMeMex abstracts from the underlying subsystems,
from data formats, and from devices, providing a coherent view
to all applications. iMeMex, however, does not have full control of
the data as it is the case with DBMSs. Thus, applications may also
access the data sources bypassing iMeMex, e.g., email or office ap-
plications do not have to be rewritten to interact with iMeMex: they
work directly with the data sources. Other applications, however,
may be rewritten to directly operate on iMeMex, e.g., explorer and
tcsh1.

Figure 1: iMeMex remedies the current state-of-the-art in PIM
by introducing logical layers that abstract from underlying
subsystems, from data formats, and from devices.

In the following, we discuss the characteristics of each layer of
the iMeMex PDSMS as well as of the layers with which it interacts.
All of these layers are shown on the right of Figure 1.
Data Source Layer. This layer represents all subsystems managed
by the PDSMS. A subsystem that participates on the dataspace may
offer either an API that enables full access to the data on that sub-
system, access through querying only, or a hybrid of these two op-
tions. Thus, the PDSMS must be aware of data vs. query shipping
trade-offs [23] to enable efficient query processing.
Physical Data Independence Layer (PHIL). This layer is respon-
sible for resolving the data model, access protocol, and format de-
pendence existing on the data sources participating in the dataspace.
PHIL offers unified services such as data model integration and in-
dexing and replication. We provide more details on these services
in Section 3.2.
Logical Data Independence Layer (LIL). This layer provides view
definition and query processing capabilities on top of PHIL. LIL
offers services such as result caching, view materialization and
dataspace navigation for views defined on top of the data unified
1Another approach was taken in [13] where we exposed the
dataspace managed by iMeMex through a network interface which
could then be mounted by existing operating systems.



by PHIL. We discuss important aspects of these services in Sec-
tion 3.3.
Application Layer. This layer represents the applications built
on top of the iMeMex PDSMS. As a PDSMS does not obtain full
control of the data, applications may choose to either benefit from
the services offered by the PDSMS or access the underlying data
sources and use specialized APIs. To enable legacy applications to
directly interface with the PDSMS, a PDSMS may offer a mecha-
nism for integrating seamlessly into the host operating system, as
demonstrated in [13].

3.2 PHIL Services
The primary goal of PHIL is to provide physical data indepen-

dence. Thus, PHIL unifies data reachable in distinct physical stor-
age devices, access protocols and data formats. We present the
main services offered by PHIL below.
Data Model Integration. Data model integration refers to the rep-
resentation of all data available in the data source specific data mod-
els using a common model: the iMeMex Data Model (iDM) [12].
In a nutshell, iDM represents each piece of personal information
by fine-grained logical entities. These entities may describe files,
structural elements inside files, tuples, data streams, XML, or any
other piece of information available on the data sources. These log-
ical entities are linked together in a graph that represents the entire
personal dataspace of a given user. The details of our data model
are beyond the scope of this paper (please see [12]). In the remain-
der of this paper we use the terms resource view and resource view
graph to refer to a logical piece of information, and a graph of log-
ical pieces of information, respectively. The iMeMex approach is in
sharp contrast to semantic integration, in which expensive up-front
investments have to be made in schema mapping, in order to make
the system useful. We follow a pay-as-you-go philosophy [17],
offering basic services on the whole dataspace regardless of how
semantically integrated the data is. We are currently developing
a powerful framework for pay-as-you-go integration on top of our
data model. This, however, is not the focus of this demo.
Indexing and Replication. Given a logical data model to repre-
sent all of one’s personal information, the next research challenge
is how to support efficient querying of that representation. One
may consider a pure mediation approach, in which all queries are
decomposed and pushed down to the data sources. Though this
strategy may be acceptable for local data sources, it may incur long
delays when remote data sources are considered. In order to of-
fer maximum flexibility, PHIL offers a hybrid approach. Our ap-
proach is based on a tunable mechanism to bridge warehousing and
mediation. For example, we may choose to replicate relationships
among resource views that come from remote data sources, but nei-
ther index nor replicate their content. In this situation, relationship
navigation among resource views can be accelerated by efficient lo-
cal access to the replica structures, while retrieval of resource view
content will incur costly access to (possibly remote) data sources.

3.3 LIL Services
The primary goal of LIL is to provide logical data independence.

LIL enables posing complex queries on the resource view graph [12]
offered by PHIL. We discuss the services provided by LIL in the
following paragraph.
Personal Dataspace Search&Query Language. LIL processes
expressions written in a new search&query language for schema-
agnostic querying of a resource view graph: the iMeMex Query
Language (iQL). In our current implementation, the syntax of iQL
is a mix between typical search engine keyword expressions and
XPath navigational restrictions. The semantics of our language

are, however, different from those of XPath and XQuery. Our lan-
guage’s goal is to enable querying of a resource view graph that has
not necessarily been submitted to semantic integration. Therefore,
as in content and structure search languages (e.g. NEXI [28]), our
goal is to account for impreciseness in query semantics. For exam-
ple, by default, when an attribute name is specified (e.g. size>10K),
we should not require exact matches on the (implicit or explicit)
schema for that attribute, but rather return fuzzy, ranked results that
best match the specified conditions (e.g. size, fileSize, docSize).
This allows us to define malleable schemas as in [15]. A PDSMS,
however, is not restricted to search. Other important features of
iQL are the definition of extensible algebraic operations such as
joins and grouping (see [12]).
Result Caching. The caching of query results is used to speed up
the computation of views. iMeMex’s approach to query processing
is based on lazy evaluation: whenever matching results are present
in the Data Source Layer, PHIL, and/or LIL, then these results are
retrieved from the highest of those layers. However, in this sce-
nario, the freshness of the data may be lower at higher levels in the
query processing stack. As a consequence, query processing must
take QoS concerns (e.g., freshness) into consideration. Our strat-
egy is to deliver stale results quickly and then update the result list
as fresh data is delivered from the data sources (see Section 5.3).
Dataspace Navigation. Users of information systems typically do
not start with a precise query specification, but rather develop one
in the course of querying and observing results. We call the process
of refining query conditions based on a previous definition of the
query dataspace navigation. It is a common pattern in the explo-
ration of personal information but also data warehousing [11]. In
general, if any given set of views were previously computed and
had their results cached at LIL, the research challenge is to detect
whether a new query may be answered using those views [19]. In
difference to [19], these techniques have to work on arbitray con-
tent represented as a resource view graph [12].

4. SYSTEM FEATURES

4.1 Current Features
In this section we present current features of our system as of

December 2006.

1. The server is implemented in Java 5 and is platform indepen-
dent. It currently consists of 50,000 Lines of Code and 536
classes.

2. iMeMex is based on a service-oriented architecture as defined
by the OSGi framework (similar to Eclipse). This means that
services, e.g., data source plugins or content converters, can be
exchanged at runtime. Our server may be run with two differ-
ent OSGi implementations: Equinox [16] or Oscar [25].

3. All data is represented by the iMeMex Data Model [12].
4. Our query parser supports an initial version of iQL as presented

in [12]. iQL supports a mix of keyword and structural search
expressions.

5. We provide a rule based query processor that is able to oper-
ate in three different querying modes: warehousing (only local
indexes and replicas are queried), mediation (local indexes are
ignored, queries are shipped to the data sources), and hybrid
(combination of the former methods).

6. We provide several different indexing strategies implemented
on top of a relational database and a full-text search engine.
The relational portions of resource views are vertically decom-
posed [7, 2] to provide better response times. Our primary
target is to develop indexes that operate on external memory.



However, some of our index structures are main memory resi-
dent. Which indexes to use is fully configurable.

7. Scalability: our current version is able to handle up to 25 GB
of indexed data (net size, excluding image or music content) on
a single iMeMex instance. The biggest file indexed was 7 GB.

8. We have implemented wrapper plugins for the following data
sources:

1. File systems (platform independent: works for Windows,
Linux and MAC OS X)

2. Network shares (SMB)
3. Email server (IMAP)
4. Databases (JDBC)
5. Web documents (RSS/ATOM, i.e., any XML data that is

accessible by a URI)

9. We provide content converters for LATEX, Bibtex, XML (SAX-
based), and PDF.

10. iMeMex provides two important interfaces:

1. A text console that allows to perform all administration
tasks and also allows to query the server.

2. An HTTP server supporting three different data delivery
modes: HTML, XML, and binary. We are also developing
an iMeMex client that accesses the iMeMex server through
the HTTP interface. The current version of that client is
shown in the demo.

11. The iMeMex server is open source (Apache 2.0 License) since
December 2006 and available at http://www.imemex.org.

4.2 Upcoming Features
We are planning to provide the following features with upcoming

releases of our software:

1. Pay-as-you-go information integration based on a new declar-
ative framework

2. OS integration for file events (Mac and Windows, using native
libraries and C++)

3. Cost-based query optimization
4. Integration of updates from data sources
5. Data replication and sharing framework
6. Support for larger datasets > 25 GB, scaling beyond 1 TB using

distributed instances

5. DEMO OUTLINE
Our demo consists of three parts. First, we introduce our AJAX

GUI built on top of iMeMex (Section 5.1). Second, we present how
to navigate the personal dataspace using that client and our query
language iQL (Section 5.2). Third, we present a use-case that illus-
trates best-effort results (Section 5.3).

5.1 iMeMex Dataspace Navigator
In this Section we introduce the iMeMex Dataspace Navigator

GUI. It is displayed in Figure 2. Our GUI consists of three main
components: (1) the iQL Search&Query Box, (2) the iDM Graph
Display, and (3) the Result Display.

The iQL Search&Query Box can be found in the upper part
of the GUI. This box can be used to enter arbitrary iQL expres-
sions. iQL is the search&query language we use to query the iDM
graph. In contrast to search engine approaches (e.g., Google), op-
erating systems (e.g., Windows Explorer), and DBMSs (e.g., lan-
guages such as SQL and XQuery), our iQL language unifies key-
word search, structural querying, addresses and paths into a single

language. iQL may be used by non-experts and experts. Please
see [12] for details.

The iDM Graph Display occupies the left part of the GUI. It dis-
plays the dataspace managed by iMeMex. Currently, we use a tree-
like representation to represent that graph (i.e., we show all possi-
ble paths on the graph starting from nodes chosen by the user). The
reason is that today’s users are already familiar with tree-like inter-
faces. This way only little learning effort is required to switch from
managing traditional files&folders to managing a logical dataspace.
However, we are also planning to explore other visualizations.

The Result Display occupies the biggest area of the GUI. It is
found in the middle and right of Figure 2. It shows the results re-
turned by the iQL query typed on the Search&Query box or clicked
in the iDM Graph Display. For each result, we show its name, its
properties (e.g., from and to for emails), and a URI that locates the
result in its underlying data source. In contrast to standard desktop
search engines, we also find links to rich contextual information as-
sociated to that result. We describe how the user may benefit from
that contextual information in the following.

5.2 Use Case 1: Navigating the Dataspace
We present a typical iMeMex session performed by a user. The

user may begin her exploration of the dataspace by navigating
through the iDM Graph Display (left of Figure 2). That display
unifies data from several data sources into one single browsing in-
terface. In the example of Figure 2, we show data coming from
the file system and from an email server. Further, the iDM Graph
Display not only allows the user to browse files&folders, but also
the structural information inside the files. In Figure 2, we dis-
play the document structure for the file CIDR 2007.tex present
in the papers folder in the filesystem. Note that the same func-
tionality is available across data sources (e.g., email file attachment
introduction.tex in Figure 2). When a user selects a node in
the iDM Graph Display, details for that node are displayed in the
Result Display.

We proceed by showing how a user may submit an iQL query
to the system. Let’s assume the user wants to start by entering a
simple keyword such as CIDR. That keyword may be entered in the
iQL Search&Query Box. Note that a typical user will only enter
keywords in that box. Advanced users, however, may enter more
complex expressions that restrict querying on certain subgraphs or
attributes. For instance, the following query could also be entered
in that box:

//ETH//*["dwh" and from~"Donald Kossmann"]

This query returns all resources that can be reached by graph tra-
versal via a node named ETH, i.e., we generalize the subfolder rela-
tionship. Further, all results should preferably contain the keyword
dwh and have an attribute from similar to Donald Kossmann. Note
that future versions of iQL will also allow to specify algebraic op-
erations such as joins and aggregations. The development of iQL
is ongoing work [12].

When the user presses the Find button, the Result Display shows
the top-k results that were computed by iMeMex. For each result
shown, the user may benefit from a rich source of contextual infor-
mation which includes:
Graph connections. In the iDM Graph, a given query result has a
set of incoming and a set of outgoing connections (edges) to other
nodes. These nodes form the neighborhood of that query result.
Navigating the neighborhood is useful when the user knows that
the result she is looking for is ‘related’ to another query result, e.g.,
“what is the name of the person that sent me Donald Kossmann’s
Data Warehouses lecture notes?”.



Figure 2: The iMeMex Dataspace Navigator displays a global view of the user’s personal dataspace. It enables users to query that
global view, to navigate on rich contextual information and to visualize progress and freshness indicators for query results.

Time. The time context is useful to find resources “that were touch-
ed about the same time as the query result”. Note that not only
time, but any other ordered attribute recognized by an application
may be used to display nodes that are near a given query result.
Geographic locations could be used to attach information to maps,
e.g., assigning pictures from the user’s last holiday to his travel
itinerary. This concept is similar to a drill-down in OLAP.
Lineage. Lineage refers to the history of data transformations that
originated a given node. Users may be interested in obtaining pre-
vious versions of a given query result, e.g., to see how a project
proposal looked like one month ago. Furthermore, it may also be
interesting to understand how a node was created. If a node a was
copied from a node b, then previous versions of b may be of inter-
est. For example, an error in a project proposal a may have been
caused by an error in the proposal’s template b.

5.3 Use Case 2: Best-Effort Querying of the
Dataspace

To provide interactive response times for queries on the personal
dataspace, iMeMex may replicate and index data from the under-
lying data sources. This implies that the latest updates performed
directly on the data sources bypassing iMeMex might not yet be re-
flected in those replicas and indexes. That is why iMeMex’s query
processor may chose to produce best-effort query plans, i.e., query
plans that first return low cost/stale results and then complement
those results by fresh/high cost ones fetched directly from the data
sources. This implies that the initial results displayed by the client
will be updated as soon as fresher results are delivered by the under-
lying system. This is similar to the result update feature of Apple
Spotlight [3]. However, in contrast to the latter, our system is much
more than a mere search engine.

The iMeMex Dataspace Navigator GUI allows the user to visual-
ize iMeMex’s best-effort query processing functionality. Consider
that the keywords data model are submitted by the user. Figure 2

displays the iMeMex Dataspace Navigator GUI, while processing
this query. On the lower right corner of the figure, we see the re-
sult freshness indicator. It states that all data modified more than
10 minutes ago has already been considered for the current query
and that the corresponding matches are included in the results. The
status bar also indicates that 10 results were found so far. At this
point, the user may decide to wait until fresher results appear, or
may decide to continue navigating through the returned results.

6. RELATED WORK
The abstraction of personal dataspaces calls for a new kind of

system that is able to support the entire personal dataspace of a
user. We term this kind of system a Personal DataSpace Manage-
ment System (PDSMS). So far, no such system exists. Due to space
constraints, we only briefly mention a few related solutions in this
section. We focus on positioning these solutions in an overview of
the design space for PDSMSs. We refer the reader to [12] for a
detailed discussion on related existing approaches.

Figure 3 displays the design space of existing solutions for in-
formation management. The horizontal axis displays requirements
for semantic integration, while the vertical axis, in contrast to [17],
displays the degree of update guarantees provided by different sys-
tems. One crucial aspect of dataspace management systems is their
need to provide a pay-as-you-go information integration framework
that allows to integrate data without defining a global schema. For
this reason, a PDSMS occupies the design space in-between the
two extremes ‘high semantic integration’ (schema-first) and ‘low
semantic integration’ (no schema). See also [17].

On the lower left corner of the mentioned design space we find
DBMSs, which require high semantic integration efforts (upfront
investment for schemas), but provide strong update guarantees (ACID).
Examples of systems that attempted to apply DBMS technology to
personal information include WinFS [29], MyLifeBits [5] and Ru-
fus [27]. These solutions, however, incur high costs for semantic



Figure 3: Design space of state-of-the-art information manage-
ment systems: PDSMSs fill the gap between existing specialized
systems.
integration and require full control of the data.

Strictly opposed to that, a desktop search engine (DSE) does nei-
ther require semantic integration, nor full control of the data. On
the other hand, these systems do not provide any update guarantees
and do not allow structural information to be exploited for queries.
Examples of such systems are Google Desktop, Apple Spotlight,
Beagle [4], and Phlat [8]. The upper left corner of Figure 3 is occu-
pied by data warehouses: these systems are optimized for read-only
access. Furthermore, they require very high semantic integration
efforts (integration of multiple schemas). Figure 3 also shows tradi-
tional information integration systems (middle-left): these systems
require high semantic integration investments and vary in terms of
their update guarantees. Some systems, such as SEMEX [14] and
Haystack [21], extend data warehouse and information integration
technology. They extract information from desktop data sources
into a repository and represent that information in a domain model
(ontology). The domain model is a high-level mediated global
schema over the personal information sources. This schema-first
approach makes it hard to integrate information in a pay-as-you-go
fashion as required by a dataspace management system. In fact, all
of the mentioned systems may be considered as applications on top
of a data managing platform such as the iMeMex PDSMS.

The lower right corner of Figure 3 is occupied by versioning
systems (e.g., Subversion, Perforce), which provide strong update
guarantees but do not require semantic integration. File systems
occupy the region on the middle-right, providing weaker update
guarantees than versioning systems (e.g., recovery on metadata for
journaling file systems). The upcoming operating system Windows
Vista is also displayed as it provides some basic information man-
agement capabilities (dotted box on the upper right corner), cover-
ing functionalities offered by file systems and DSEs.

Figure 3 shows that a huge design space between the different ex-
tremes (sitting in the corners and along the margins) is not covered
by current information management solutions. However, in order to
be able to manage the entire dataspace of a user that space has to be
covered. PDSMSs fill that gap. These systems cover the entire de-
sign space of information systems requiring medium to low seman-
tic integration efforts. Furthermore, PDSMSs occupy the middle-
ground between a read-only DSE (without any update guarantees)
and a write-optimized DBMS (with strict ACID guarantees).

7. CONCLUSIONS
This paper has advocated the design of a single system to mas-

ter the personal information jungle [13]. The iMeMex Personal
Dataspace Management System introduces a logical layer on top of

the data sources that provides full physical and logical personal in-
formation independence. Our PDSMS is based on the OSGi frame-
work and thus can be extended at (almost) any granularity. We have
shown how iMeMex can be used by a search&browse GUI client
to provide the user with a global view of her personal dataspace.
For that purpose, we have detailed two use cases: the first illus-
trated how our GUI allows users to navigate and query their entire
dataspace. The second showed how best-effort query results are
provided. As future work, we plan to provide the upcoming fea-
tures as listed in Section 4.2.

8. REFERENCES
[1] S. Abiteboul, R. Agrawal, P. A. Bernstein, and others. The Lowell

Database Research Self Assessment. The Computing Research
Repository (CoRR), cs.DB/0310006, 2003.

[2] R. Agrawal, A. Somani, and Y. Xu. Storage and Querying of
E-Commerce Data. In VLDB, 2001.

[3] http://www.apple.com/macosx/features/spotlight/ Apple
Mac OS X Spotlight.

[4] http://beaglewiki.org/ Beagle.
[5] G. Bell. Keynote: MyLifeBits: a Memex-Inspired Personal Store;

Another TP Database. In ACM SIGMOD, 2005.
[6] V. Bush. As we may think. Atlantic Monthly, 1945.
[7] G. P. Copeland and S. Khoshafian. A Decomposition Storage Model.

In ACM SIGMOD, pages 268–279, 1985.
[8] E. Cutrell et al. Fast, flexible filtering with Phlat — Personal search

and organization made easy. In CHI, 2006.
[9] http://www.imemex.org. iMeMex project web-site.

[10] J.-P. Dittrich. iMeMex: A Platform for Personal Dataspace
Management. In SIGIR PIM Workshop, 2006.

[11] J.-P. Dittrich, D. Kossmann, and A. Kreutz. Bridging the Gap
between OLAP and SQL. In VLDB, 2005.

[12] J.-P. Dittrich and M. A. V. Salles. iDM: A Unified and Versatile Data
Model for Personal Dataspace Management. In VLDB, 2006.

[13] J.-P. Dittrich, M. A. V. Salles, D. Kossmann, and L. Blunschi.
iMeMex: Escapes from the Personal Information Jungle (Demo
Paper). In VLDB, 2005.

[14] X. Dong and A. Halevy. A Platform for Personal Information
Management and Integration. In CIDR, 2005.

[15] X. Dong and A. Y. Halevy. Malleable Schemas: A Preliminary
Report. In WebDB, 2005.

[16] http://www.eclipse.org/equinox/ Equinox: Eclipse OSGI
implementation.

[17] M. Franklin, A. Halevy, and D. Maier. From Databases to
Dataspaces: A New Abstraction for Information Management.
SIGMOD Record, 34(4):27–33, 2005.

[18] E. Freeman and D. Gelernter. Lifestreams: A Storage Model for
Personal Data. SIGMOD Record, 25(1):80–86, 1996.

[19] A. Halevy. Answering queries using views: A survey. The VLDB
Journal, 10(4):270–294, 2001.

[20] A. Halevy et al. Crossing the Structure Chasm. In CIDR, 2003.
[21] D. R. Karger et al. Haystack: A Customizable General-Purpose

Information Management Tool for End Users of Semistructured
Data. In CIDR, 2005.

[22] M. Kersten, G. Weikum, M. Franklin, D. Keim, A. Buch-
mann, and S. Chaudhuri. Panel: A Database Striptease or How to
Manage Your Personal Databases. In VLDB, 2003.

[23] D. Kossmann. The State of the Art in Distributed Query Processing.
ACM Computing Surveys, 32(4):422–469, 2000.

[24] T. Mitchell. Keynote: Computer Workstations as Intelligent Agents.
In ACM SIGMOD, 2005.

[25] http://oscar.objectweb.org/ Oscar: OSGi implementation.
[26] SIGIR PIM 2006.

http://pim.ischool.washington.edu/pim06home.htm.
[27] K. A. Shoens et al. The Rufus System: Information Organization for

Semi-Structured Data. In VLDB, 1993.
[28] A. Trotman and B. Sigurbjörnsson. Narrowed Extended XPath I

(NEXI). In INEX Workshop, 2004.
[29] http://msdn.microsoft.com/data/WinFS. WinFS.


	Introduction
	The iMeMex Vision
	iMeMex Core Architecture
	Logical Layers
	PHIL Services
	LIL Services

	System Features
	Current Features
	Upcoming Features

	Demo Outline
	iMeMex Dataspace Navigator
	Use Case 1: Navigating the Dataspace
	Use Case 2: Best-Effort Querying of the Dataspace

	Related Work
	Conclusions
	References

