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Hadoop!

NoSQL!

Data Lake!Big Data!



Hadoop!

NoSQL!

Data Lake!Big Data!



The Data Lake will cure 
all of your problems!

laymen

quack



The Data Lake will cure 
all of your problems!

laymen

quackAI



The TV shop
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The “Big Data“ shop

 11



laywoman

“TV  expert“
©

 is
to

ck
.c

om
 J

ac
kF

http://istock.com


“TV  expert“

©
 is

to
ck

.c
om

 J
ac

kF

laywoman

http://istock.com


layman

“Big Data  expert“

©
 is

to
ck

.c
om

 J
ac

kF

The leading NoSQL 
Data Lake solution in the 

cloud!

http://istock.com


©
 is

to
ck

.c
om

 J
ac

kF

layman

“Big Data  expert“

Blockchain-
enabled

http://istock.com


©
 is

to
ck

.c
om

 J
ac

kF

layman

“Big Data  expert“

AI-ready

http://istock.com


©
 is

to
ck

.c
om

 J
ac

kF

layman

“Big Data  expert“

built on the 
Lamda-

architecture
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IoT
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Problem 1: 
ambiguous communication

 21
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Big Data!

symbol

large data

4Vs

NSA

Spark

MapReduce

NoSQL

meaning
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Big Data!

symbol

He said: 
“Big Data“

symbol

large data

4Vs

NSA

Spark

MapReduce

NoSQL

meaning
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Big Data!

symbol

He said: 
“Big Data“

symbol

large data

4Vs

NSA

Spark

MapReduce

NoSQL

meaning
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translated to:large data MapReduce



clear communication:
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relational 
algebra

symbol

relational 
algebra, 

i.e. π, σ, ⨝, …

meaning
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symbol

He said: 
“relational algebra“

symbolmeaning

relational 
algebra

relational 
algebra, 

i.e. π, σ, ⨝, …
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translated to:relational 
algebra

relational 
algebra



The symbol to meaning landscape

 30

predicate 
pushdown

relational 
algebra

relational 
model

data layout

cost-based 
optimization

NoSQL

Big Data

AI

large data

MapReduce

Hadoop

Data Science

Deep Learning

# meanings

1 ∞manyfew

cloud

ML



advice: only use non-ambigous 
terms in communication
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Problem 2: 
confusion of dimensions
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NoSQL CloudAIBig Data

dimension 1: 
fancy sounding buzzwords 
(labels & terms)
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relational model

predicate pushdown

relational algebra

data layouts, 
e.g. column vs row

cost-based optimization

compress to save I/O

dimension 2:  
technical principles 
and patterns 
(concepts, best 
practices)
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relational model

predicate pushdown

relational algebra

data layouts, 
e.g. column vs row

cost-based optimization

compress to save I/O

dimension 2:  
technical principles 
and patterns 
(concepts, best 
practices)
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relational model

predicate pushdown

relational algebra

data layouts, 
e.g. column vs row

cost-based optimization

compress to save I/O

dimension 2:  
technical principles 
and patterns 
(concepts, best 
practices)

“filter and project data as early as possible“

symbol meaning

© istock.com Click_and_Photo

Fifty 
Shades of 
Predicate 
Pushdown

Jens Dittrich

Contains fifty 
variations of a 
fundamental 
exerciseσ

http://istock.com
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relational model

predicate pushdown

relational algebra

data layouts, 
e.g. column vs row

cost-based optimization

compress to save I/O

dimension 2:  
technical principles 
and patterns 
(concepts, best 
practices)

“model all data as multi-attribute sets“

symbol meaning

=> dimension 3: 
software platforms 
(concrete implementations 
& frameworks)

“tables“ “data frames“

“column stores“

not to be 
confused with:

“row stores“
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relational model

predicate pushdown

relational algebra

data layouts, 
e.g. column vs row

cost-based optimization

compress to save I/O

dimension 2:  
technical principles 
and patterns 
(concepts, best 
practices) “query those sets through a combination of 

simple set-valued functions“

symbol meaning



Predicate Pushdown in Relational Model and Relational Algebra

R

SσR.name='Jens'

R S

σR.name='Jens'
⋈

⋈

checkout my youtube channel for videos explaining the 
foundations: https://www.youtube.com/user/jensdit
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dimension 3: 
software platforms 
(concrete implementations 
& frameworks)

Spark

Flink

PostgreSQL

MongoDB
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dimension 1: 
fancy sounding buzzwords 
(labels & terms)

dimension 2:  
technical principles 
and patterns 
(concepts, best 
practices)

dimension 3: 
software platforms 
(concrete implementations 
& frameworks)



A War Story1

 421Let’s say, I heard this story from a friend.
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Situation:

Client has a "big data" problem 
with sensor data. Already got a 
Hadoop cluster, put his data there, 
learned Spark, wrote some Scala/
Spark/Parquet program to analyze 
stuff.

large data

4Vs

MapReduce

NoSQL

meaning?
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Situation:

Client has a "big data" problem 
with sensor data. Already got a 
Hadoop cluster, put his data there, 
learned Spark, wrote some Scala/
Spark/Parquet program to analyze 
stuff.

Cluster with 
HDFS installed

Hadoop 
MapReduce

meaning?
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Situation:

Client has a "big data" problem 
with sensor data. Already got a 
Hadoop cluster, put his data there, 
learned Spark, wrote some Scala/
Spark/Parquet program to analyze 
stuff.

meaning

=> dimension 3: 
software platforms 
(concrete implementations 
& frameworks)
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Commandment: 
 
If there is 
Big Data, 
thou shalt 
use Spark or 
MapReduce.

http://istock.com
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Situation:

Client has a "big data" problem 
with sensor data. Already got a 
Hadoop cluster, put his data there, 
learned Spark, wrote some Scala/
Spark/Parquet program to analyze 
stuff.

spaghetti code

clear layering

meaning

flexible query 
processing

?



 48© istock.com SerrNovik

Customer 
engineers an 
entire car

rather than simply buying a 
state-of-the-art car

© istock.com bensib

http://istock.com
https://www.istockphoto.com/de/portfolio/SerrNovik?mediatype=photography
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Situation:

Client has a "big data" problem 
with sensor data. Already got a 
Hadoop cluster, put his data there, 
learned Spark, wrote some Scala/
Spark/Parquet program to analyze 
stuff.

More Details:

sensor traces stored in HDFS,  
uses Parquet (column/PAX layout),

Software skims through traces, 
highly parallelized through Spark, 
queries are run on the cluster
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Traces:

[timestamp, sensorid, value, fluff, more fluff]


e.g.

(12:00:34, 23, 7, fluff, more fluff)

(12:00:35, 56, 56, fluff, more fluff)

(12:00:37, 123, 9, fluff, more fluff)

(12:00:39, 89, 131, fluff, more fluff)

(12:00:39, 5567, 156, fluff, more fluff)

(12:00:41, 3, A, fluff, more fluff)

(12:00:43, 5785, 4213, fluff, more fluff)

(12:00:43, 4365, 9, fluff, more fluff)

(12:00:44, 37, 121, fluff, more fluff)

(12:00:44, 335, 156, fluff, more fluff)

(12:00:45, 23, zz, fluff, more fluff)

(12:00:47, 373, 354, fluff, more fluff)

Desired:

queries of the following type: 

when is sensor<x> <operator> <value>?


e.g. value of sensor42 > 15.0


e.g. value of  
sensor15 > 15.0 AND sensor77 < 9.0


only few attributes in each query
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Traces:

[timestamp, sensorid, value, fluff, more fluff]


e.g.

(12:00:34, 23, 7, fluff, more fluff)

(12:00:35, 56, 56, fluff, more fluff)

(12:00:37, 123, 9, fluff, more fluff)

(12:00:39, 89, 131, fluff, more fluff)

(12:00:39, 5567, 156, fluff, more fluff)

(12:00:41, 3, A, fluff, more fluff)

(12:00:43, 5785, 4213, fluff, more fluff)

(12:00:43, 4365, 9, fluff, more fluff)

(12:00:44, 37, 121, fluff, more fluff)

(12:00:44, 335, 156, fluff, more fluff)

(12:00:45, 23, zz, fluff, more fluff)

(12:00:47, 373, 354, fluff, more fluff)

1. Remove the fluff

Optimization:

Observation:

fluff not required for query 
processing
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Traces:

[timestamp, sensorid, value]


e.g.

(12:00:34, 23, 7)

(12:00:35, 56, 56)

(12:00:37, 123, 9)

(12:00:39, 89, 131)

(12:00:39, 5567, 156)

(12:00:41, 3, A)

(12:00:43, 5785, 4213)

(12:00:43, 4365, 9)

(12:00:44, 37, 121)

(12:00:44, 335, 156)

(12:00:45, 23, zz)

(12:00:47, 373, 354)

2. change format to

[sensorid, timestamp, value]

or:

partition by sensorid

(same effect) 

Optimization:

Observation:

even though data is mapped to 
Parquet (columnar PAX-format), this 
does not help query processing in 
this case: no clustering of attributes!

data layouts, 
e.g. column vs row

dimension 2: 
technical principle:
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Traces:

[timestamp, sensorid, value]


e.g.

(12:00:34, 23, 7)

(12:00:35, 23, 8)

(12:00:36, 23, 9)

(12:00:37, 23, 8)

(12:00:38, 23, 7)

(12:00:39, 23, 6)

…

(12:00:34, 24, 45)

(12:00:35, 24, 44)

(12:00:36, 24, 43)

(12:00:37, 24, 42)

(12:00:38, 24, 43)

3. change format to

[timestamp, value]

and store sensorid once per partition 

Optimization:

Observation:

now, within each partition the 
sensorid is redundant

compress to save I/O

dimension 2: 
technical principle:
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Traces:

[timestamp, value]


e.g.

(12:00:34, 7)

(12:00:35, 8)

(12:00:36, 9)

(12:00:37, 8)

(12:00:38, 7)

(12:00:39, 6)

…

(12:00:34, 45)

(12:00:35, 44)

(12:00:36, 43)

(12:00:37, 42)

(12:00:38, 43)

23

24 ⨉ 500 speedup
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Traces:

[timestamp, value]


e.g.

(12:00:34, 7)

(12:00:35, 8)

(12:00:36, 9)

(12:00:37, 8)

(12:00:38, 7)

(12:00:39, 6)

…

(12:00:34, 45)

(12:00:35, 44)

(12:00:36, 43)

(12:00:37, 42)

(12:00:38, 43)

23

24

4. difference encode data

Optimization:

Observation:

redundancy due to dense 
timestamps and continuous 
measurements

compress to save I/O

dimension 2: 
technical principle:
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Traces:

[timestamp, value]


e.g.

(12:00:34, 7)

(1, 1)

(1, 1)

(1, -1)

(1, -1)

(1, -1)

…

(12:00:34, 7)

(1, -1)

(1, -1)

(1, -1)

(1, 1)

23

24 ⨉ 12 speedup
=> ⨉ 6000 speedup
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Traces:

[timestamp, value]


e.g.

(12:00:34, 7)

(1, 1)

(1, 1)

(1, -1)

(1, -1)

(1, -1)

…

(12:00:34, 7)

(1, -1)

(1, -1)

(1, -1)

(1, 1)

23

24

Observation:

data locality increases due to 
attribute clustering. This was not 
possible with the old layout.


=> much better exploitation of the 
storage hierarchy: likelihood 
increases that some of the columns 
are entirely kept in main memory or 
on some SSD as an additional buffer

cluster data by hotness 
along the storage hierarchy

dimension 2: 
technical principle:
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Traces:

[timestamp, value]


e.g.

(12:00:34, 7)

(1, 1)

(1, 1)

(1, -1)

(1, -1)

(1, -1)

…

(12:00:34, 7)

(1, -1)

(1, -1)

(1, -1)

(1, 1)

23

24
cluster data by hotness 
along the storage hierarchy

dimension 2: 
technical principle:

⨉ ~10 speedup

Hot Data

Cool Data

Observation:

data locality increases due to 
attribute clustering. This was not 
possible with the old layout.


=> much better exploitation of the 
storage hierarchy: likelihood 
increases that some of the columns 
are entirely kept in main memory or 
on some SSD as an additional buffer
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Traces:

[timestamp, value]


e.g.

(12:00:34, 7)

(1, 1)

(1, 1)

(1, -1)

(1, -1)

(1, -1)

…

(12:00:34, 7)

(1, -1)

(1, -1)

(1, -1)

(1, 1)

23

24

in total ~10,000 speedup

Hot Data

Cool Data

some handwaving here: 
depends to some degree on the 
actual  query patterns, 
but this is the ballpark



(Positive) Side Effects

 60
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1. data could be stored in compressed format already when being created on 
the machine,  
=> factor 12 less storage, hardware/bandwidth savings along the entire 
data generation and processing pipeline


2. there is no need to heavily parallelize queries here  
=> no need to use heavy-lifting with Spark, no fat clusters or similar


3. QP is very lightweight!  
=> QP can be done on very thin-clients even a smartphone


4. only overall datasizes are the limit for the client; however, if users are 
interested in attribute subsets anyways, 
=> with our layout, they can easily pull those attribute subsets to their 
laptop/smartphone


5. PS: and there is even more you can do...  
=> this kind of query performance enables new types of analytics, e.g. 
online anomaly detection, etc...



Process Recap:

 62
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1. client did some "Big Data/Spark-Thingie"  
(dimension 1)


2. we went back to really understanding the client's original problem:  
what does he actually want to do?


3. we combined a couple of fundamental technical principles of data 
management, namely data layouts, compression, hot/cool-clustering 
(dimension 2)


4. the synergies trigger I/O-time savings of a factor ~10,000, and storage 
savings of ~factor 12


5. all of this is totally software platform independent!  
(dimension 3)



Takeaways:

 64
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dimension 1: 
fancy sounding buzzwords 
(labels & terms)

dimension 2:  
technical principles 
and patterns 
(concepts, best 
practices)

dimension 3: 
software platforms 
(concrete implementations 
& frameworks)

do NOT confuse the three dimensions, 
unless you want to explicity fool people 
(which I do not recommend in any situation)

Design solutions on 
dimension 2 only Consider dimension 3 an 

afterthought

Realize that dimension 1 
is solely about marketing 



d:AI:mond
http://daimond.ai
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https://www.youtube.com/user/jensdit/



Teaching 

 69
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Backup
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Data Science  
vs 

Machine Learning

 74



Application Domain

Machine 
Learning

A.I. Big Data 
Management

Data  
Science Data Mining

Statistics



Artificial 
Intelligence

-  
Machine 
Learning

Data 
Management

Data Science

Data Mining

Statistics

Math

Programming

Visualization

Application 
Domain



Artif
icia

l In
tellig

ence
/

Mach
ine Learning D

ata M
anagem

ent

Data Mining Application 

Domain

The Data Science Cake

Ingredients: 
50g statistics

120g linear algebra

200g programming

1kg visualisation

300g software 
engineering

Additional skills: 
creativity

out of the box thinking

grit

team spirit

© istock.com sasilsolutions

twitter.com/jensdittrich

http://istock.com


Datenbanken im Wasserfallmodell?
data collection

data acquisition

data profiling,
exploration

&visualization

data cleaning

feature engineering

modeling

model training

model testing

result interpretation

Achtung: Data Transformation kann zu beliebigen Zeitpunkten

stattfinden und ist deshalb hier nicht als extra Schritt eingezeichnet.

Prof. Dr. Jens Dittrich Datenbanken 2 / 9
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Database Management 
System (DBMS)
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Data Cleaning

Data Exploration
statistics
Data Mining/Clustering
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relational model, 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databases, 
MapReduce, 
Spark, 
Workflows
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Database Management 
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next step (data profiling) outside 
the DBMS again
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Schema Design

Relational Model

Database

Database Management System (DBMS)

or: Data Warehouse (DWH)

relational model, 
relationale algebra, 
databases, 
Data Warehousing
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Deep Learning/RNNs
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Abstract	
	
The	confusion	around	terms	such	as	like	NoSQL,	Big	Data,	Data	Science,	SQL,	and	Data	Lakes	
often	creates	more	fog	than	clarity.	However,	clarity	about	the	underlying	technologies	is	
crucial	to	designing	the	best	technical	solution	in	any	field	relying	on	huge	amounts	of	data	
including	`data	science',	machine	learning,	but	also	more	traditional	analytical	systems	such	
as	data	integration,	data	warehousing,	reporting,	and	OLAP.	
	
In	my	presentation,	I	will	show	that	often	at	least	three	dimensions	are	cluttered	and	
confused	in	discussions	when	it	comes	to	data	management:	First,	buzzwords	(labels	&	
terms);	second,	data	design	patterns	(principles	&	best	practices);	and	Third,	software	
platforms	(concrete	implementations	&	frameworks).	
	
Only	by	keeping	these	three	dimensions	apart,	it	is	possible	to	create	technically-sound	
architectures	in	the	field	of	big	data	analytics.	
	
I	will	show	concrete	examples,	which	through	a	simple	redesign	and	wise	choice	of	the	right	
tools	and	technologies,	run	thereby	up	to	10,000	times	faster.	This	in	turn	triggers	
tremendous	savings	in	terms	of	development	time,	hardware	costs,	and	maintenance	effort.	
	
	
___________	
	
Structure	and	Speaker	Notes	
	
	
title	
	
CV-timeline,	my	background,	add	Python	
	
---	
	
confusion	about	terminology	
	



people	talking	
	
tower	of	babel	
	
	
	
----	
Confusion	
	
[mittelaltermarkt	Bild:	Wundermittel]	
https://commons.wikimedia.org/wiki/File:Jan_Miel_Charlatan.jpg	
https://commons.wikimedia.org/wiki/File:Giovanni_Domenico_Tiepolo_-
_The_Charlatan_(The_Tooth-Puller)_-_WGA22380.jpg	
	
charlatan,	quackery,	quack	
	
	
works	as	people	believe	it,	make	a	big	show	and	people	will	buy	it	
	
at	the	heart	of	(almost)	any	selling	process	
	
	
--	
	
Confusion:	good	to	sell	stuff	to	laymen	(aka	"idiots")	
	
Confusion	example:	selling	a	TV	set,	all	kinds	of	labels,	some	of	them	are	just	bullshit	
	
you	probably	don't	understand	most	of	it,	but	you	get	hypnotized,	sounds	so	great	
	
"this	model	even	has	HyperRayPlusRendering!"	
	
"this	model	has	300	Hz	rather	than	250Hz"	OMG!	I	will	pay	the	500	bucks	extra	
	
this	is	the	95%	case	of	customers	
	
ignore	the	5%	informed	customers	
	
however,	this	totally	works	for	the	vendor,	as	most	customers	don't	have	a	clue	
	
---		
	
Confusion	example:	How	would	this	look	like	in	a	data	management	"store"?	
	
[show	vendor	selling	databases	(cylinders)]	
"The	leading	NoSQL	Data	Lake	solution	in	the	cloud"	
	
"Blockchain-enabled"		



	
"powered	by	Cognitive	Computing"	
	
"AI-ready"	
	
"IoT"	->	"IIoT"	->	"IDIoT"	
	
"built	on	Lamda-Architecture"	
	
---	
	
How	to	have	clarity	in	a	discussion	on	data	management:	
	
1.	mapping	terms	to	meaning	
[graphically]	
	
confusing	vs	clear	conversation	
	
confusing:	mapping	to	many	concepts	1:n-relationship	
	
clear:	mapping	to	single	(or	few)	concepts,	1:1-relationship	
	
	
[show	relationships	visually]	
	
semiotic	triangle	analogy	
	
---	
	
2.	Confusion	of	dimensions	
	
often	at	least	three	dimensions	are	cluttered	and	confused	when	it	comes	to	data	
management:		
	
First,	fancy	sounding	buzzwords	(labels	&	terms);		
	
e.g.	"big	data",	"data	lake"	
	
they	either	map	to	many	things	at	once	or	are	some	sort	of	"hot	air"	
	
	
second,	technical	principles	and	patterns	(concepts,	best	practices):	
	
e.g.	predicate	pushdown	
	
the	relational	model	
	
relational	algebra	



	
data	layouts,	e.g.	column	vs	row	
	
cost-based	optimization	
	
compress	to	save	I/O	
	
	
these	are	the	building	blocks	of	any	decent	data	management	solution	
	
	
third,	software	platforms	(concrete	implementations	&	frameworks).	
	
	
Spark,	MapReduce,	MongoDB,	PostgreSQL	
	
	
they	actually	implement	variants	of	these	principles	in	software	
	
	
	
Example	1:	a	technical	principle:	
	
	
"50	shades	of	predicate	pushdown"	
	
simple	join	example:	with	and	without	predicate	pushdown	
	
distributed	system	(called	"query	shipping")	
	
sensor	data	
	
smart	disks/SSDs	(filter	data	on	the	device	already)	
	
satellites	
	
etc.	
	
--	
Example	2:	a	technical	principle:	
	
the	relational	model	is	often	confused	with	concrete	implementations	like	
tables/rows/columns	
	
--	
Example	3:	a	technical	principle:	
relational	algebra:	the	mother	of	all	query	processing	
	



you	use	Spark?	Well,	Spark	is	simply	relational	algebra++.	
	
I	don’t	have	time	here,	if	you	have	ever	seen	this	symbols,	learn	it,	NOW!	OK,	after	my	talk	is	
better.	
	
link	to	my	youtube	playlist	in	German		
https://www.youtube.com/watch?v=8rOtQKwl4Ao&list=PLC4UZxBVGKtfArwVsT17oJdqkVYZ
MAjNP	
	
----	
all	of	these	principles	are	entirely	implementation/system/programming	language	
independent	
	
---	
	
A	War	Story	(let's	say	"I	heard	about	this,	from	a	colleague"):	
	
I	picked	an	extreme	story	here.	It	is	exemplary	for	other	things	I	have	seen.	
	
	
Client	has	a	"big	data"	problem	with	sensor	data.	Already	got	a	Hadoop	cluster,	put	his	data	
there,	learned	Spark,	wrote	some	Scala/Spark/Parquet	program	to	analyze	stuff.	
	
Let's	go	through	this.	
	
[visually	mark	terms	like	"Big	data"	and	analyze	stepwise]	
	
"big	data",	does	this	mean	"large"	to	him?	How	big	is	"large"?	How	large	is	big?	
	
"Hadoop	cluster"	Hmmm,	Hadoop	is	many	things	[show	mapping	1:n],	maybe	he	has	a	
cluster	where	he	installed	HDFS	to	store	the	large	data?	
	
	
The	11th	Commandment:	If	there	is	Big	Data,	there	shall	be	Spark	or	MapReduce.	[show	
Moses	with	this	text	on	plate]	
	
	
"some	program"	->	How	much	is	this	carving	data	management	into	spaghetti-code	rather	
than	a	clearly	layered,	maintainable,	and	extensible	architecture	with	even	40-year	old	query	
processing	wisdom?	
	
how	much	battle-proven	DB-technology	is	used	there?	How	much	is	he	reinventing	the	
wheel?	
	
[cardboard	car	vs	Tesla]	
	
---	
	



	
Let's	look	at	the	client's	solution	in	more	detail:	
	
traces	stored	on	HDFS,	uses	Parquet	file	format	
	
software	skims	through	traces	using	Scala,	highly	parallelized,	queries	are	run	on	the	cluster	
	
---	
	
But	why	not	start	with	the	original	problem	(rather	than	the	existing	solution)?:		
	
we	have	traces	of	textual	sensor	data	of	the	form	
	
(timestamp,	sensorid,	value,	fluff,	more	fluff)	
	
[show	textual	snippet]	
	
value	may	be	of	any	type,	may	carry	additional	info	as	well	
	
we	have	many	of	those	traces	from	different	machines	
	
each	trace	contains	data	from	thousands	of	sensors	
	
timestamps	not	aligned	to	frequency	
	
--	
	
Desired:	queries	of	the	following	type:		
when	is	sensor<x>	<operator>	<value>?	
	
e.g.	sensor42	>	15.0	
	
e.g.	sensor15	>	15.0	AND	sensor77	<	9.0	
	
only	few	attributes	in	each	query	
	
--	
	
currently	stored	as	(timestamp,	sensorid,	value),	i.e.	like	the	data	comes	in	
	
[example]	
	
--	
	
1.	
our	solution:	why	not	store	the	triplets	in	this	lexicographical	order:	
	
(sensorid,	timestamp,	value)	



	
	
In	its	simplest	form:	
	
one	file	(dimension	3!)	per	sensorid,	i.e.	"sensor42.bin",	"sensor15.bin"	
	
inside	each	file:	(timestamp,	value)		
	
this	is	an	application	of	a	fundamental	data	management	principle	(recall	the	principle	
dimension	2):	
	
_use	column	layouts	for	queries	querying	only	few	attributes_	
	
[example]	
	
I/O-costs	for	this	can	be	modelled	analytically	(in	Python	;-)	)	
	
I/O-costs	translate	to	query	response	time	in	this	case	(we	are	I/O-bound!)	
	
this	alone:	~factor	500	improvement	in	I/O-time	
	
PLUS:	compressability	is	much	better	now!	
	
another	fundamental	data	management	principle:	
	
_use	compression	to	reduce	bandwidth	(rather	than	storage	costs)_	
	
this	can	be	modelled	analytically	(in	Python	;-)	)	
	
	=>	another	factor	12!	
	
in	total	factor	6000	better	I/O-time!	
	
ad	this	is	not	the	end	to	it:	
	
PLUS:	data	works	better	along	the	storage	hierarchy	(if	queries	are	clustered	on	certain	
attributes	=>	data	locality	increases)	This	was	not	possible	with	the	old	layout.	
	
=>	likelihood	increases	that	some	of	the	columns	are	entirely	kept	in	main	memory	or	on	
some	SSD	as	an	additional	buffer	
	
this	effect	is	hard	to	estimate,	depends	heavily	on	query	patterns	
	
but,	I	estimate	in	total	factor	of	at	least	10,000	or	more	improvement	
	
will	see	when	the	system	is	in	production	eventually	
	
	



possible	"business	effects":	
	
-	data	could	be	stored	in	compressed	format	already	when	being	created	on	the	machine,	
again:	factor	12	less	storage,	hardware/bandwidth	savings	along	the	entire	data	generation	
and	processing	pipeline	
	
-	there	is	no	need	to	parallelize	queries	here	=>	no	need	to	use	heavy-lifting	with	Spark,	no	
fat	clusters	or	similar;	
	
QP	is	very	lightweight!	
	
-	=>	QP	can	be	done	on	very	thin-clients	even	a	smartphone	
	
-	only	overall	data	sizes	are	the	limit	for	the	client;	however,	if	users	are	interested	in	
attribute	subsets	anyways,	with	our	layout,	they	can	easily	pull	those	attribute	subsets	to	
their	laptop/smartphone	
	
	
---	
	
Recap:	
1.	client	did	some	"Big	Data/Spark-Thingie"	(dimension	1)	
	
2.	we	went	back	to	really	understanding	the	client's	original	problem:	what	does	he	actually	
want	to	do?	
	
3.	we	combined	a	couple	of	fundamental	technical	principles	of	data	management,	namely	
data	layouts	AND	compression	(dimension	2)	
	
4.	the	synergies	trigger	I/O-time	savings	of	a	factor	~10,000,	and	storage	savings	of	~factor	
12	
	
5.	all	of	this	is	totally	software	platform	independent!	(dimension	3)	
	
PS:	and	there	is	even	more	you	can	do...	
	
6.	this	kind	of	query	performance	enables	new	types	of	analytics,	e.g.	online	anomaly	
detection,	etc...	
	
---	
	
d:ai:mond		
	
---	
	
some	recap	here	
	
Takeaways:	three	dimensions	



	
do	not	confuse	the	three	dimensions,	unless	you	want	to	explicitly	fool	people	(which	I	do	
not	recommend	in	any	situation)	
	
Design	solutions	on	dimension	2	only	
	
Consider	dimension	3	an	afterthought	
	
Realize	that	dimension	1	is	solely	about	marketing		
	
	
	
youtube-channel:	https://youtube.com/user/jensdit	
	
twitter:	https://twitter.com/jensdittrich	
	
end	
	
---	
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