
From Personal Desktops to Personal Dataspaces:

A Report on Building the iMeMex Personal Dataspace

Management System∗

Jens-Peter Dittrich Lukas Blunschi Markus Färber
Olivier René Girard Shant Kirakos Karakashian Marcos Antonio Vaz Salles

ETH Zurich, Switzerland
dbis.ethz.ch | iMeMex.org

Abstract: We propose a new system that is able to handle the entire Personal Datas-
pace of a user. A Personal Dataspace includes all data pertaining to a user on all his
disks and on remote servers such as network drives, email and web servers. This data
is represented by a heterogeneous mix of files, emails, bookmarks, music, pictures,
calendar data, personal information streams and so on. State-of-the-art tools such as
desktop search engines and desktop operating systems (including the upcoming Vista)
are not enough as they neither solve the problem of physical personal information inde-
pendence (where is my data) nor format and data model independence (how is it stored
and which application do I have to use in order to access that data). Our work builds
on the visions presented in [DSKB05], which calls for a single system to manage the
personal information jungle, and [FHM05], which advocates dataspaces as a new ab-
straction for information management. In contrast to [FHM05] this paper presents
a concrete implementation of a Personal DataSpace Management System (PDSMS)
termed iMeMex: integrated memex. We discuss the core architecture of iMeMex and
services offered by our system. As we will show, a PDSMS can be seen as a system
that occupies the middleground between a search engine, a database management sys-
tem, and a traditional information integration system. A PDSMS has to bridge these
separate worlds and requires: (1) no full control on data, i.e., data may be accessed
bypassing the interfaces of a PDSMS, (2) simple keyword search on all data available
in a dataspace without performing any semantic data integration, (3) rich querying
able to mix structural, attribute, and content predicates, (4) pay-as-you-go integration
capabilities, (5) the ability to define arbitrary logical views on all data, (6) durability
and consistency guarantees to avoid loss of data assigned to a dataspace, and (7) up-
date capabilities. iMeMex is the first implementation of a PDSMS we are aware of.
This paper presents the architecture of iMeMex and reports on the current state of the
iMeMex research project at ETH Zurich.

∗This work is partially supported by the Swiss National Science Foundation (SNF) under contract 200021-
112115.

1 Introduction

Dataspaces have recently been identified as a new agenda for information management
[FHM05, HFM06, Mai06, HRO06]. In an nutshell, a dataspace management system is a
new kind of information managing architecture that allows to manage all data pertaining to
a certain organization, task, or person. In sharp contrast to existing information integration
architectures a dataspace management system is a data-coexistence approach: it does not
require semantic integration investments before services on the data are provided. For
example, keyword searches should be supported at any time on all data (schema later
or schema never). The existing dataspace can then be gradually enhanced by defining
semantic connections between different components of a dataspace in a pay-as-you-go
fashion [FHM05]. An important use-case of dataspaces are personal dataspaces, i.e., all
electronic items that belong to a single person.

This paper aims to give an overview on the iMeMex project which was started two years ago
at ETH Zurich and strives to build the first publicly available Personal DataSpace Manage-
ment System (PDSMS). The current version of our software was shown in a demo at CIDR
2007 [BDG+07]. iMeMex is supported by the Swiss National Science Foundation (SNF)
and includes a senior researcher, two Ph.D. students, currently three M.Sc. students as well
as several short-term project work students (fourteen have completed their work so far).
iMeMex is open source since December 15, 2006 (Apache 2.0 License) and a first developer
version of the iMeMex server is available from our web-site http://www.imemex.org.

1.1 Background

Personal Information Jungle. In 1945, Bush [Bus45] presented a vision of a personal
information management (PIM) system named memex. That vision has deeply influ-
enced several progresses in computing. Part of that vision led to the development of the
Personal Computer in the 1980ies. It also led to the development of hypertext and the
World Wide Web in the 1990ies. Since then, several projects have attempted to implement
other memex-like functionalities [FG96, Bel05, CRDS06, KBH+05]. In addition, PIM re-
gained interest in the database research community [HED+03, DH05a]. Moreover, it was
identified as an important topic in the Lowell Report [AAB+03], discussed in a VLDB
panel [KWF+03], and became topic of both SIGMOD 2005 keynotes [Bel05, Mit05].
Furthermore, it was discussed in an NSF-sponsored workshop [JB05] and debated in a
SIGIR 2006 PIM workshop [PIM].

Even though considerable progress has been made in the PIM area over the last decades,
we argue that a satisfactory solution has still not yet been brought forward to many central
issues related to PIM. This is illustrated in the following.

1.2 The iMeMex Vision

PIM today: Assume that Mr. John Average owns a set of devices including a laptop, a
desktop, a cellular, and a digital camera. His personal files are spread out among those de-

vices and include music, pictures, pdf files, emails, and office documents. Today, Mr. Av-
erage has to copy files from one device to the other, he has to download data to his desktop
to see the pictures he shot, he has to upload pictures to sites like flickr.com or picasa.com to
share them with his family. He has to make sure to regularly backup data from the different
devices in order to be able to retrieve them in case of a device failure. Further, he uses two
different modes of searching: a local desktop search engine enabling search on his local
devices and a web search engine enabling search on public web-sites. Mr. Average may
organize his files by placing them in folder hierarchies. However, the files and data items
stored on his different devices are not related to each other.

iMeMex vision of 2010: Mr. John Average still owns several nifty devices with growing
processing and storage capabilities. Instead of handling ‘devices’ he assigns all his data to
a logical dataspace named John’s space. Whenever he listens to a piece of music, takes
a picture, gets an email, etc., those items are assigned to John’s space. His dataspace
management system takes care of the low-level issues including replicating data among
devices, enabling search and querying across devices. Whenever John Average wants to
share data, he simply creates a subdataspace like John’s space:pictures and selects
a list of people who may see that data, e.g., his family or friends. There is no need to
‘upload’ or ‘download’ data: John’s family and friends will just see John’s pictures without
requiring to access web-servers or messing around with files. The boundary between the
Web and the different operating systems running on his local devices is gone. However,
John Average still owns his data: all master copies of his data are physically stored on
devices he owns. Searching his dataspace is not restricted to certain devices (like the
local desktop), but includes all devices containing data assigned to his dataspace. Other
than simple keyword queries, structural queries similar to NEXI [TS04] are enabled. John
Average may also search and query the dataspaces of his friends and his family. The search
granularity is fine-granular ‘resource views’ [DS06] and not files. Other than just searching
or querying, John Average may also use iMeMex to integrate the information available
in his dataspace or his friends’ dataspaces in a pay-as-you-go fashion. Therefore, his
dataspace management system analyzes the data and proposes relationships among data
items. It enhances his dataspace over time and helps to turn a set of unrelated data items
into integrated information. Finally, Mr. Average may also update data using iMeMex.
However, he may still update his data using any of his applications, bypassing iMeMex.

2 Related Work

Figure 1 displays the design space of existing solutions for information management. The
horizontal axis displays requirements for semantic integration, while the vertical axis, in
contrast to [FHM05], displays the degree of update guarantees provided by different sys-
tems.

On the lower left corner of the design space we find DBMSs, which require high semantic
integration efforts (upfront investment for schemas), but provide strong update guarantees
(ACID). Examples of systems that attempted to apply DBMS technology to personal infor-
mation include MyLifeBits [Bel05] as well as Rufus [SLS+93]. However, these solutions

incur high costs for semantic integration and require full control of the data. In sharp
contrast to that, a PDSMS does not require schema-first modeling.

In the upper right of Figure 1,

Figure 1: Design space of state-of-the-art information manage-
ment systems: PDSMSs fill the space between existing special-
ized systems.

strictly opposed to DBMSs, we
find Desktop Search Engines
(DSE). They do neither require
semantic integration, nor full
control of the data. The down-
side, however, is that a DSE
does neither provide any up-
date guarantees nor does it al-
low to include complex struc-
tural constraints, e.g., queries
like //mail//*[from="Jens
Dittrich"]. Moreover a DSE
does not provide any seman-
tic information integration ca-
pabilities. Examples of DSEs
are Google Desktop [GDS], Ap-
ple Spotlight [AMS], Beagle
[Bea], and Phlat [CRDS06].

Figure 1 also shows Traditional Information Integration Systems in the middle-left:
these systems require high semantic integration investments and vary in terms of their
update guarantees. Several traditional information integration systems have used the rela-
tional model to provide a global, data source independent view of data [LRO96, ACHK94].
The Information Manifold [LRO96], for example, is based on the idea of a global schema
on top of which the data sources may be expressed as relational views (LAV). Semi-
structured approaches, first introduced by TSIMMIS [PGMW95], have been proposed
as an alternative to self-describe data and thus eliminate the need to provide pre-defined
schemas. The integrated view in TSIMMIS is expressed as a set of views on the data
sources (GAV). A more flexible approach, GLAV, is proposed in [FLM99]. The differ-
ences between LAV, GAV and GLAV are further discussed in [Len02]. One deficiency
of classical data integration solutions is the need for high upfront effort to semantically
integrate all source schemas and provide a global mediated schema. Only after this startup
cost, queries may be answered using reformulation algorithms [Hal01]. Quality-driven
information integration [NLF99] enriches query processing in a mediation system by as-
sociating quality criteria to data sources and ranking query plans based on their quality
factors. However, not only schema integration must still be performed, but also col-
lection of quality information for each of the data sources. Peer-to-peer data manage-
ment [TH04, HHL+03, NOTZ03] tries to alleviate this problem by not requiring semantic
integration to be performed against all peer schemas. Nevertheless, the data on a new
peer is only available after schema integration is performed with respect to at least one of
the other peers in the network. In contrast to all of these approaches, dataspace manage-
ment systems demand basic querying on all data from the start, with the possibility to add

semantic information in a “pay-as-you-go” fashion.

In Figure 1, the corner on the upper left is occupied by Data Warehouses: these systems
are optimized for read-only access (read-mostly systems). Furthermore, data warehouses
require very high semantic integration efforts (integration of multiple schemas). Some
PIM systems, such as SEMEX [DH05a] and Haystack [KBH+05], extend data ware-
house and information integration technology. They extract information from desktop data
sources into a repository and represent that information in a domain model (ontology). The
domain model is a high-level mediated schema over the data sources. These systems focus
on creating a queryable, however non-updatable, view on the user’s personal information.

The corner on the lower right of Figure 1 is occupied by Versioning Systems (e.g., Sub-
version [Sub], Perforce [Per]). These systems provide strong update guarantees (ACID)
but do not perform any semantic integration.

File systems occupy the region on the middle-right, providing weaker update guarantees
than versioning systems (e.g., recovery on metadata for journaling file systems but no
recovery on file content). There are two major approaches to implementing file systems:

(1) The first strategy tries to implement file systems using heavyweight DBMS technology.
This idea was already proposed and implemented as early as in Exodus [CDRS86] and the
Shore [CDF+94] object-oriented storage manager. Shore represented a merger of object-
oriented database and file system technologies. It provided a tree-structured, Unix-like
namespace in which all persistent objects were reachable from a distinguished root object.
The latter approaches influenced many other research projects, however, they never found
acceptance in the operating systems community. Recently, Microsoft WinFS [WFS] at-
tempted to continue that tradition by implementing a file system using a relational DBMS.
However, that project was dropped in 20061. Another approach striving to implement a
file system using a DBMS is [HGS07] by representing file and folder objects as a huge
XML document and storing it in a commercial XML database.

(2) The second strategy to implement file systems is to code them from scratch using only
a few lightweight DB techniques such as B+-trees and simplified recovery techniques
(journaling). Today, this strategy is followed by almost all popular file systems including
HPFS, XFS, ZFS, EXT3, ReiserFS, and NTFS.

Other approches that do not try to reimplement current file systems but rather enrich file
system using XML technolgies are Hubble [LHHB05], and the first version of iMeMex
[DSKB05]. In this initial version of iMeMex we used XML and XQuery to join files (e.g.,
an Excel sheet and a text file) into a a new file (e.g., a Word document). The join result
appeared as a virtual file on a network share.

In Figure 1, the upcoming operating system Windows Vista is also displayed as it provides
some basic information managing capabilities (dotted box on the upper right corner), cov-
ering functionalities currently offered by file systems and DSEs. However, as Figure 1
shows, Windows Vista covers only a small fraction of the design space covered by Per-
sonal Dataspace Management Systems such as iMeMex.

1The downloadable beta as well as all other preliminary information about WinFS were recently removed
from its web-site [WFS].

In summary, Figure 1 shows that a huge design space between the different extremes (sit-
ting in the corners and along the margins) is not covered by current information manage-
ment solutions. However, in order to be able to manage the entire dataspace of a user that
space has to be covered. PDSMSs fill that space. These systems cover the entire design
space of information systems requiring medium to low semantic integration efforts. In
particular, PDSMSs occupy the middle-ground between a read-only DSE (drawbacks: no
update guarantees, no information integration, neither physical nor logical data indepen-
dence), a write-optimized DBMS (drawbacks: schema-first, full-control on data required),
and a traditional information integration system (drawback: schema-first).

3 iMeMex Core Architecture

In this section, we discuss the core architecture of the iMeMex PDSMS. iMeMex is based
on a layered architecture which is described in Section 3.1. Following that, Sections 3.2
and 3.3 discuss important services that are provided by the different layers.

3.1 Logical Layers

The DSSP vision of Franklin et.al. [FHM05] defines a dataspace as a set of participants
(or data sources) and relationships among the participants. We term the set of data sources
Data Source Layer. Although Franklin et al. [FHM05] present services that should be pro-
vided by a DSSP, little is said on how a DSSP would provide those services on top of the
Data Source Layer. In fact, in the current state-of-the-art for personal information manage-
ment, applications (e.g., search&browse, email, Office tools, etc.) access the Data Source
Layer (e.g., file systems) directly. This comes at the cost of physical data dependence,
including system dependence. This situation is depicted on the left of Figure 2.

To remedy that situation, we argue that what is missing is a logical layer between the ap-
plications and the Data Source Layer that provides services on the dataspace. We propose
to add the iMeMex PDSMS as that intermediate logical layer. It is depicted on the right
of Figure 2. iMeMex abstracts from the underlying subsystems, from data formats, and
from devices, providing a coherent view to all applications. iMeMex, however, does not
have full control of the data as it is the case with DBMSs. Thus, applications may also
access the data sources bypassing iMeMex, e.g., email or office applications do not have
to be rewritten to interact with iMeMex: they work directly with the data sources. Other
applications, however, may be rewritten to directly operate on iMeMex, e.g., explorer and
tcsh.

Figure 2: iMeMex remedies the current state-of-the-art in PIM
by introducing logical layers that abstract from underlying sub-
systems, from data formats, and from devices.

In the following, we discuss the
characteristics of each layer of
the iMeMex PDSMS as well as
of the layers with which it in-
teracts. All of these layers are
shown on the right of Figure 2.

Data Source Layer. This layer
represents all subsystems man-
aged by the PDSMS. A sub-
system that participates on the
dataspace may offer either an
API that enables full access to
the data on that subsystem, ac-
cess through querying only, or
a hybrid of these two options.
Thus, the PDSMS must be aware of data vs. query shipping trade-offs [Kos00] to enable
efficient query processing.

Physical Data Independence Layer (PHIL). This layer is responsible for resolving the
data model, access protocol, and format dependence existing on the data sources partici-
pating in the dataspace. PHIL offers unified services such as data model integration and
indexing and replication. We provide more details on these services in Section 3.2.

Logical Data Independence Layer (LIL). This layer provides view definition and query
processing capabilities on top of PHIL. LIL offers services such as result caching, view
materialization and dataspace navigation for views defined on top of the data unified by
PHIL. We discuss important aspects of these services in Section 3.3.

Application Layer. This layer represents the applications built on top of the iMeMex
PDSMS. As a PDSMS does not obtain full control of the data, applications may choose
to either benefit from the services offered by the PDSMS or access the underlying data
sources and use specialized APIs. To enable legacy applications to directly interface with
the PDSMS, a PDSMS may offer a mechanism for integrating seamlessly into the host
operating system, as demonstrated in [DSKB05].

3.2 PHIL Services

The primary goal of PHIL is to provide physical data independence. Thus, PHIL unifies
data reachable in distinct physical storage devices, access protocols and data formats. We
present the main services offered by PHIL below.

Data Model Integration. Data model integration refers to the representation of all data
available in the data source specific data models using a common model: the iMeMex
Data Model (iDM) [DS06]. In a nutshell, iDM models each piece of personal informa-
tion by fine-grained logical entities. These entities may describe files, structural elements
inside files, tuples, data streams, XML, or any other piece of information available on

the data sources. These logical entities are linked together in a graph and logically rep-
resent the entire personal dataspace of a given user. The details of our data model are
beyond the scope of this paper (please see [DS06]). One aspect of this work is that we
favor a clear separation of the logical data model describing the structural properties of
data (flat, relational, tree-structured, graph-structured) and the different possible physical
data representations (binary, Tables, Object graphs, XML). In the remainder of this paper
we use the terms resource view and resource view graph to refer to a logical piece of
information (e.g., an email message, a section in a document, a document, an RSS news
entry, etc.), and a graph of logical pieces of information, respectively. Please note, that the
iMeMex approach is in sharp contrast to semantic integration, in which expensive up-front
investments have to be made in schema mapping, in order to make the system useful. We
follow a pay-as-you-go philosophy [FHM05], offering basic services on the whole datas-
pace regardless of how semantically integrated the data is. We are currently developing a
powerful framework for pay-as-you-go integration on top of our data model.

Indexing and Replication. Given a logical data model to represent all of one’s personal
information, the next research challenge is how to support efficient querying of that rep-
resentation. One may consider a pure mediation approach, in which all queries are de-
composed and pushed down to the data sources. Though this strategy may be acceptable
for local data sources, it may incur long delays when remote data sources are considered.
In order to offer maximum flexibility, PHIL offers a hybrid approach. Our approach is
based on a tunable mechanism to bridge warehousing and mediation. For example, we
may choose to replicate relationships among resource views that come from remote data
sources, but neither index nor replicate their content. In this situation, relationship nav-
igation among resource views can be accelerated by efficient local access to the replica
structures, while retrieval of resource view content will incur costly access to (possibly
remote) data sources.

3.3 LIL Services

The primary goal of LIL is to provide logical data independence. LIL enables posing
complex queries on the resource view graph [DS06] offered by PHIL. We discuss the
services provided by LIL in the following paragraph.

Personal Dataspace Search&Query Language. LIL processes expressions written in a
new search&query language for schema-agnostic querying of a resource view graph: the
iMeMex Query Language (iQL). In our current implementation, the syntax of iQL is a
mix between typical search engine keyword expressions and XPath navigational restric-
tions. The semantics of our language are, however, different from those of XPath and
XQuery. Our language’s goal is to enable querying of a resource view graph that has not
necessarily been submitted to semantic integration. Therefore, as in content and structure
search languages (e.g. NEXI [TS04]), our goal is to account for impreciseness in query
semantics. For example, by default, when an attribute name is specified (e.g. size>10K),
we should not require exact matches on the (implicit or explicit) schema for that attribute,
but rather return fuzzy, ranked results that best match the specified conditions (e.g. size,

fileSize, docSize). This allows us to define malleable schemas as in [DH05b]. A PDSMS,
however, is not restricted to search. Other important features of iQL are the definition of
extensible algebraic operations such as joins and grouping (see [DS06]).

Result Caching. The caching of query results is used to speed up the computation of
views. iMeMex’s approach to query processing is based on lazy evaluation: whenever
matching results are present in the Data Source Layer, PHIL, and/or LIL, then these re-
sults should be retrieved from the highest of those layers. However, in this scenario, the
freshness of the data may be lower at higher levels in the query processing stack. As a
consequence, query processing must take QoS concerns (e.g., freshness) into considera-
tion. Our goal is to deliver stale results quickly and then update the result list as fresh data
is delivered from the data sources.

Dataspace Navigation. Users of information systems typically do not start with a precise
query specification, but rather develop one in the course of querying and observing results.
We call the process of refining query conditions based on a previous definition of the query
dataspace navigation. It is a common pattern in the exploration of personal information
but also data warehousing [DKK05]. In general, if any given set of views were previously
computed and had their results cached at LIL, the research challenge is to detect whether
a new query may be answered using those views [Hal01]. In difference to [Hal01], these
techniques have to work on arbitray content represented as a resource view graph [DS06].

4 iMeMex Features

4.1 Current Features

In this section we present current features of our system as of December 2006 (v 0.42.0).

1. The iMeMex server is implemented in Java 5 and is platform independent. It currently
consists of approximately 50,000 Lines of Code and 530 classes.

2. iMeMex is based on a service-oriented architecture as defined by the OSGi framework
(similar to Eclipse). This means that services, e.g., data source plugins or content
converters, can be exchanged at runtime. Our server may be run with two different
OSGi implementations: Equinox [Equ] or Oscar [Osc].

3. All data is represented using the iMeMex Data Model [DS06].
4. Our query parser supports an initial version of iQL. Our language iQL supports a mix

of keyword and structural search expressions.
5. We provide a rule based query processor that is able to operate in three different query-

ing modes: warehousing (only local indexes and replicas are queried), mediation (local
indexes are ignored, queries are shipped to the data sources), and hybrid (combination
of the former methods).

6. We provide several different indexing strategies implemented on top of a relational
Java database (Apache Derby [Der]) and a full-text search engine (Apache Lucene [Luc]).
The relational portions of resource views are vertically decomposed [CK85, ASX01]

to provide better response times. Our primary target is to develop indexes that op-
erate on external memory. However, some of our index structures are main memory
resident. Which indexes to use is fully configurable.

7. Scalability: our current version is able to handle up to 25 GB of indexed data (net
size, excluding image or music content) on a single iMeMex instance. The biggest file
indexed was 7 GB.

8. We have implemented wrapper plugins for the following data sources:

1. File systems (platform independent: works for Windows, Linux and MAC OS X)
2. Network shares (SMB)
3. Email servers (IMAP)
4. Databases (JDBC, tested with MySQL and Oracle)
5. Web documents (RSS/ATOM, i.e., any XML data that is accessible by a URI)

9. We provide content converters for LATEX, Bibtex, XML (SAX-based), and PDF.
10. iMeMex provides two important interfaces:

1. A text console that allows to perform all administration tasks and also allows to
query the server.

2. An HTTP server supporting three different data delivery modes: HTML, XML,
and binary. We are also developing an iMeMex client that accesses the iMeMex
server through the HTTP interface. The current version of that client was presented
at CIDR 2007 [BDG+07].

11. The iMeMex server is open source (Apache 2.0 License) since December 2006 and
a first version of our server can be downloaded from http://www.imemex.org or
http://imemex.sourceforge.net.

4.2 Upcoming Features

We are planning to provide the following features with upcoming releases of our soft-
ware:

1. Pay-as-you-go information integration based on a new declarative framework
2. OS integration for file events (Mac and Windows, using native libraries and C++)
3. Materialized views
4. Cost-based query optimization
5. Integration of updates from data sources
6. Data replication and sharing framework
7. Support for larger datasets > 25 GB, scaling beyond 1 TB using distributed instances.

Please see our web-site for an updated list of supported and upcoming features.

http://www.imemex.org
http://imemex.sourceforge.net
http://www.imemex.org

5 Use Cases

In the following, we show two use-cases of our system and how they are supported by
the different layers: QoS driven query processing (Section 5.2), and distributed dataspaces
(Section 5.3).

5.1 Query Processing Architecture

The design approach we follow in iMeMex is to implement stacked query processors (see
Figure 3). The organization of data managing functionality in a processing stack is related
to the vision of RISC-style data management components [CW00]. In contrast to [CW00],
which focusses on fine-grained data managers for building DBMSs, we advocate a coarse-
grained approach that only requires three different query processors. Still, we clearly favor
the use of multiple query processors than to use only a single query processors. One reason
is that using three query processors provides a clear separation of concerns which in turn
facilitates query processing.

5.2 Use Case: QoS Driven Query Answering

Figure 3: iMeMex is comprised of
stacked query processors.

Queries posed to iMeMex may be processed by dif-
ferent strategies according to the following QoS pa-
rameters:

Exact vs. Relaxed Matches: queries may request
the system to produce either exact or relaxed matches.
When relaxed matches are requested, then queries
may be decomposed into many relaxed sub-queries
(as, for example, in [AY+04]). The results from these
sub-queries will be merged and ranked by the query
processors according to the relevance to the query.

Freshness vs. Response Time: queries may request
fresh/high cost results, low cost/stale results or best-
effort results (i.e. low cost or stale results first, fol-
lowed by fresh or high cost results). For instance, a
stale version of a resource view may be quickly re-
turned from a local cache, an up-to-date version of
that same resource view may be returned from a re-
mote data source only after some time.

Depending on the QoS parameters for a given query,
each query processor assembles a plan that accesses
data on the same layer and/or splits and ships a query
to the next query processor in the stack. To illustrate
that concept, consider the following query which requests all papers in the dataspace au-

FILTER&RANK
author = “ Mike Franklin” OR
Content = “ Mike Franklin”

FILTER
Mime Type = “ PDF”

SCAN
LIL Cache

UNION&RANK

INTERSECT&RANK

ACCESS Text index
“ Mike Franklin”

ACCESS Tuple index
Author = “ Mike Franklin”

ACCESS Tuple index
Mime Type = “ PS”

SCAN File System
Mime Type = “ PDF” OR “ PS”
& Modified > now – 10 min

FILTER
Mime Type = “ PDF” OR “ PS”

FILTER&RANK
Author = “ Mike Franklin” OR
Content matches “ Mike Franklin”

UNION&RANK

UNION&RANK

LIL (QPiQL) PHIL (QPiDM) PHIL (QPDS)

UNION&RANK

QUERY IMAP
Modified > now – 10 min

FILTER&RANK
Author = “ Mike Franklin” OR
Content matches “ Mike Franklin”

Q1.1 Q1.2.1 Q1.2.2

Figure 4: The query plan for query Q1 requesting “all PDF and PS documents authored by Mike
Franklin”. The figure shows with different colors the plan distribution in different layers (LIL and
PHIL) and different query processors that execute different parts of the plan (QPiQL, QPiDM, QPDS).

thored by Mike Franklin:

Q1: mimetype=(PDF or PS) and author∼"Mike Franklin"

In this example, our personal dataspace includes files in the local file system and emails
on the IMAP server. Assume that query

Q2: mimetype=(PDF or DOC)

was submitted to the system 10 minutes before Q1 and, consequently, its result is cached
at LIL. For simplicity, consider that PHIL was not updated since query Q2. Figure 4 shows
the query plan produced by stacked query processors with relaxed matches and best-effort
QoS specifications. The plan on Figure 4 contains three sub-plans, each of them assembled
by a different query processor in the stack.

QPiQL starts the planning process and detects that a subset of Q1’s results is cached at LIL.
This is a consequence of the previous execution of Q2. Since QPiQL has the result for PDF
mime types cached, QPiQL rewrites Q1 into two sub-queries:

Q1.1: mimetype=PDF and author∼"Mike Franklin"

Q1.2: (mimetype=PS and author∼"Mike Franklin")
or (mimetype=PDF and author∼"Mike Franklin"

and modified > now - 10min)

The sub-query Q1.1 is planned by QPiQL and its plan is depicted in Figure 4 in the left re-
gion. QPiQL plans to scan the cache, filter all resource views that have mime type PDF, and
then to filter&rank all resource views having either associated tuples with name author
and value “Mike Franklin” or content matching “Mike Franklin”. In addition, QPiQL plans
to union&rank the results from Q1.1’s sub-plan with the results of Q1.2. Note that Q1.2,
which requests data modified within the last 10 min, is not planned by QPiQL, but rather
shipped to the next query processor in the stack, namely, QPiDM.

QPiDM verifies that, since the indexes and replicas at PHIL were not updated for the last
10 minutes, the up-to-date data has to be requested from the next query processor in the
stack. We assume that QPiDM was configured to represent, in its indexes and replicas, all

data in the data sources and therefore may partially answer Q1.2. Thus, QPiDM splits query
Q1.2 into two sub-queries:

Q1.2.1: mimetype=PS and author∼"Mike Franklin"

Q1.2.2: mimetype=(PDF or PS) and author∼"Mike Franklin"
and modified > now - 10min

The sub-query Q1.2.1 is planned by QPiDM and accesses the indexes and replicas in PHIL.
The plan for sub-query Q1.2.1 is shown in the middle of Figure 4. It accesses the text in-
dexes for matches of “Mike Franklin” and accesses the tuple index for matches of the tuple
author="Mike Franklin". Then it unions and ranks the results from the two index ac-
cess operators. Afterwards, the plan intersects and ranks the results from the union with the
results obtained by accessing the tuple index for matches of the condition mimetype=PS.
The final operation in the plan is to apply union and ranking to the results obtained from the
intersection with the results of sub-query Q1.2.2. Note that sub-query Q1.2.2 is shipped to
the next query processor, QPDS.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

50403020100

Q
ue

ry
 p

la
n

sc
or

e

Percentage of changed data

HYB
DWH
MED

Figure 5: Query execution in a dataspace trading freshness for
query response time. The figure shows the score of different query
plans as a function of the data updated on the data sources. Three
different planning modes are displayed: DWH: data warehousing
mode; MED: query mediation mode; HYB: combination of DWH
and MED.

QPDS is the bottom query
processor in iMeMex’s query
processor stack. The plan it
assembles for Q1.2.2 is de-
picted on the right of Fig-
ure 4. The leaves of the query
execution plan constructed
by QPDS are queries to the
data sources. These queries
are expressed in the languages
specific to the data sources’
query interfaces. The leaf
on one branch of the plan
scans the file system for all
PDF or PS files modified in
the last 10 minutes. The leaf
of the other branch of that
plan submits a query to the
IMAP server requesting all
mails that were received in
the last 10 minutes. The re-
sults from the IMAP server then pass through a filter that keeps all attachments that are
PDF or PS. As Figure 4 shows, the results on both branches are filtered and ranked accord-
ing to the condition author="Mike Franklin" and content matching "Mike Franklin",
before feeding them to a union operator that unites the two branches2, and also ranks the
results, before passing them to QPiDM. Each ranking operator ranks according to specific
criteria.

2An alternative plan would be to retrieve all data from the IMAP server and the local file system that was
modified within the last 10 minutes and use that data to simultaneously update the indexes and replicas of the
PHIL.

Execution Time vs. Result quality Traditional query processors perform cost-based query
optimization by estimating the cost of a certain plan. Cost typically only includes an esti-
mate on the execution time. In iMeMex we plan to take a different approach: we want to
assess plans using a trade-off function that combines the estimated execution cost with the
estimated query result quality. A trade-off function scores a plan and looks as follows:

Score(Plan) =
1

a+b

[
a×

(
1− estimated execution time

max execution time

)
+b× # results

max number results

]
.

In this function a and b are weights that determine how much an accurate result has to be
favored over a quick result. Figure 5 shows an experiment using a trade-off cost function
for three different query modes (a = 3, b = 4). The horizontal axis depicts the percentage
of updates occuring on the data sources. The vertical axis depicts the score as computed by
the trade-off function. We executed the query in three different planning modes: (1) DWH:
data warehousing mode (only local stale indexes are used by iMeMex, no updates on data
sources are considered); (2) MED (local indexes are ignored by iMeMex, the query is fully
shipped to the data sources); and (3) HYB (local indexes are exploited by iMeMex but
merged with updates from data sources). Figure 5 shows that for very low update rates
a DWH-like plan gives the best results w.r.t. the scoring function, for higher update rates
(up to 50% in the figure) hybrid query plans attain the highest scores. Pure mediation
plans achieve only a constant low score for all update rates as they require costly query
processing on the source systems.

5.3 Use Case: Distributed Dataspaces

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 1 2 3 4 5 6 7 8 9 10

T
im

e
in

 s
ec

on
ds

Number of iMeMex instances

Query 1: "brilliant"
Query 2: //folder3/wiki5/c3.html

Figure 6: Scaleup experiment for a distributed dataspace scenario:
query execution time as a function of the number of iMeMex instances.

This section briefly il-
lustrates the distributed
query processing capa-
bilities of iMeMex. All
data sources that are part
of a dataspace managed
by iMeMex may be dis-
tributed among several
machines. For instance,
one iMeMex instance may
manage N data sources.
However, an iMeMex in-
stance, say B, may also
play the role of a data
source. For instance, an
iMeMex instance A may
observe iMeMex instance
B as a data source. Then,
when a query is received by A, that query has to be shipped to B which in turn ships it to

its data sources. In distributed networks of iMeMex instances, query planning has to be
aware of possible overlap of query results, e.g., two iMeMex data sources may deliver the
same results. Further, infinite query shipping loops have to be avoided, i.e., two iMeMex
instances may register each other as a data source.

We document the current capabilities of our system by showing a scalability experiment.
Figure 6 shows an experiment evaluating the scaleup of a distributed dataspace scenario.
In this experiment we installed ten iMeMex instances I1, . . . , I10 on ten different machines.
Those ten iMeMex instances were registered as data sources to another iMeMex instance I11.
Instances I1, . . . , I10 contained identical data sets. The figure displays the query execution
time as a function of the number of iMeMex instances appearing in the dataspace. The
execution time was measured at I11. Due to space constraints we display two representative
queries: query Q1 is a keyword query while Q2 is a path query. The results show that
iMeMex scales linearly with the number of iMeMex instances.

6 Conclusions

This paper has advocated the design of a single system to master the personal information
jungle [DSKB05]. We have proposed Personal Dataspace Management Systems (PDSMS)
as a unified solution to manage the entire personal dataspace. This paper reported the cur-
rent state of the iMeMex project. Our system iMeMex introduces a logical layer on top of
the data sources that provides full physical and logical personal information independence.
Moreover, iMeMex provides seamless transition between warehousing and information in-
tegration. Our PDSMS is based on stacked query processors. We have discussed some
of the advantages and challenges of implementing this type of architecture using two use
cases. iMeMex is open source (Apache 2.0 License) since December 2006 and an ini-
tial version (v0.42.0) of our server can be downloaded from http://www.imemex.org or
http://imemex.sourceforge.net. As part of future work we will improve the existing
features and provide new features as presented in Section 4.

Acknowledgements First of all, we would like to thank the anonymous referees for their
helpful comments. Furthermore, we would like to thank all M.Sc. students who did their
semester project in the iMeMex project (currently about fourteen). All of them contributed
to the project and shaped it to its current state.

References

[AAB+03] S. Abiteboul, R. Agrawal, P.A. Bernstein, M.J. Carey, and others. The Lowell
Database Research Self Assessment. The Computing Research Repository (CoRR),
cs.DB/0310006, 2003.

[ACHK94] Y. Arens, C.Y. Chee, C.-N. Hsu, and C. A. Knoblock. Retrieving and Integrating Data
from Multiple Information Sources. International Journal of Cooperative Information
Systems, 2(2):127–158, 1994.

[AMS] http://www.apple.com/macosx/features/spotlight. Apple Spotlight.
[ASX01] R. Agrawal, A. Somani, and Y. Xu. Storage and Querying of E-Commerce Data. In

VLDB, 2001.
[AY+04] S. Amer-Yahia et al. FleXPath: Flexible Structure and Full-Text Querying for XML.

In ACM SIGMOD, 2004.

http://www.imemex.org
http://imemex.sourceforge.net

[BDG+07] L. Blunschi, J.-P. Dittrich, O. Girard, S. Karakashian, and M. Salles. A Dataspae
Odyssey: The iMeMex Personal Dataspace Management System (Demo Paper). In
CIDR, 2007.

[Bea] http://beaglewiki.org. Beagle.

[Bel05] G. Bell. Keynote: MyLifeBits: a Memex-Inspired Personal Store; Another TP
Database. In ACM SIGMOD, 2005.

[Bus45] V. Bush. As We May Think. Atlantic Monthly, 1945.

[CDF+94] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L. McAuliffe, J. F. Naughton,
D. T. Schuh, M. H. Solomon, C. K. Tan, O. G. Tsatalos, S. J. White, and M. J. Zwilling.
Shoring Up Persistent Applications. In ACM SIGMOD, 1994.

[CDRS86] M. J. Carey, D. J. DeWitt, J. E. Richardson, and E. J. Shekita. Object and File Man-
agement in the EXODUS Extensible Database System. In VLDB, 1986.

[CK85] G.P. Copeland and Setrag Khoshafian. A Decomposition Storage Model. In ACM
SIGMOD, 1985.

[CRDS06] E. Cutrell, D.C. Robbins, S.T. Dumais, and R. Sarin. Fast, flexible filtering with Phlat
— Personal search and organization made easy. In CHI, 2006.

[CW00] S. Chaudhuri and G. Weikum. Rethinking Database System Architecture: Towards a
Self-Tuning RISC-Style Database System. In VLDB, 2000.

[Der] http://db.apache.org/derby. Apache Derby.

[DH05a] X. Dong and A. Halevy. A Platform for Personal Information Management and Inte-
gration. In CIDR, 2005.

[DH05b] X. Dong and A. Halevy. Malleable Schemas: A Preliminary Report. In WebDB, 2005.

[DKK05] J.-P. Dittrich, D. Kossmann, and A. Kreutz. Bridging the Gap between OLAP and
SQL. In VLDB, 2005.

[DS06] J.-P. Dittrich and M. Salles. iDM: A Unified and Versatile Data Model for Personal
Dataspace Management. In VLDB, 2006.

[DSKB05] J.-P. Dittrich, M. Salles, D. Kossmann, and L. Blunschi. iMeMex: Escapes from the
Personal Information Jungle (Demo Paper). In VLDB, 2005.

[Equ] http://www.eclipse.org/equinox/ Equinox: Eclipse OSGI implementation.

[FG96] E. Freeman and D. Gelernter. Lifestreams: A Storage Model for Personal Data. SIG-
MOD Record, 25(1):80–86, 1996.

[FHM05] M. Franklin, A. Halevy, and D. Maier. From Databases to Dataspaces: A New Ab-
straction for Information Management. SIGMOD Record, 34(4):27–33, 2005.

[FLM99] M. Friedman, A. Levy, and T. Millstein. Navigational Plans For Data Integration. In
AAAI - Proceedings of the National Conference on Artificial intelligence, 1999.

[GDS] http://desktop.google.com. Google Desktop.

[Hal01] A. Halevy. Answering queries using views: A survey. The VLDB Journal, 10(4):270–
294, 2001.

[HED+03] A. Halevy, O. Etzioni, A. Doan, Z. Ives, J. Madhavan, L. McDowell, and I. Tatarinov.
Crossing the Structure Chasm. In CIDR, 2003.

[HFM06] A. Halevy, M. Franklin, and D. Maier. Principles of Dataspace Systems. In ACM
PODS, 2006.

[HGS07] A. Holupirek, C. Gruen, and M. H. Scholl. Melting Pot XML, Bringing File Systems
and Databases One Step Closer. In BTW, 2007.

[HHL+03] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica. Query-
ing the Internet with PIER. In VLDB, 2003.

[HRO06] A. Halevy, A. Rajaraman, and J. Ordille. Data Integration: The Teenage Years. In
VLDB, 2006. Ten-year best paper award.

[JB05] W. Jones and H. Bruce. A Report on the NSF-Sponsored Work-
shop on Personal Information Management, Seattle, WA, 2005.
http://pim.ischool.washington.edu/final%20PIM%20 report.pdf.

[KBH+05] D. R. Karger, K. Bakshi, D. Huynh, D. Quan, and V. Sinha. Haystack: A Customizable
General-Purpose Information Management Tool for End Users of Semistructured Data.
In CIDR, 2005.

[Kos00] D. Kossmann. The State of the Art in Distributed Query Processing. ACM Computing
Surveys, 32(4):422–469, 2000.

[KWF+03] M. Kersten, G. Weikum, M. Franklin, D. Keim, A. Buchmann, and S. Chaudhuri.
Panel: A Database Striptease or How to Manage Your Personal Databases. In VLDB,
2003.

[Len02] M. Lenzerini. Data Integration: A Theoretical Perspective. In ACM PODS, 2002.

[LHHB05] N. Li, J. Hui, H.-I Hsiao, and K. S. Beyer. Hubble: An Advanced Dynamic Folder
Technology for XML. In VLDB, 2005.

[LRO96] A. Levy, A. Rajaraman, and J. Ordille. Querying Heterogeneous Information Sources
Using Source Descriptions. In VLDB, 1996.

[Luc] http://lucene.apache.org/java/docs. Apache Lucene.

[Mai06] D. Maier. Charting a Dataspace: Lessons from Lewis and Clark. In EDBT, 2006.
Keynote.

[Mit05] T. Mitchell. Keynote: Computer Workstations as Intelligent Agents. In ACM SIGMOD,
2005.

[NLF99] F. Naumann, U. Leser, and J.C. Freytag. Quality-driven Integration of Heterogenous
Information Systems. In VLDB, 1999.

[NOTZ03] W.S. Ng, B.C. Ooi, K.-L. Tan, and A.Y. Zhou. PeerDB: A P2P-based System for
Distributed Data Sharing. In IEEE ICDE, 2003.

[Osc] http://oscar.objectweb.org/ Oscar: OSGi implementation.

[Per] http://www.perforce.com/. Perforce.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange Across Het-
erogeneous Information Sources. In IEEE ICDE, 1995.

[PIM] SIGIR PIM 2006. http://pim.ischool.washington.edu/pim06home.htm.

[SLS+93] K.A. Shoens, A. Luniewski, P.M. Schwarz, J.W. Stamos, and J. Thomas II. The Rufus
System: Information Organization for Semi-Structured Data. In VLDB, 1993.

[Sub] http://subversion.tigris.org/. Subversion.

[TH04] I. Tatarinov and A. Halevy. Efficient Query Reformulation in Peer Data Management
Systems. In ACM SIGMOD, 2004.

[TS04] A. Trotman and B. Sigurbjörnsson. Narrowed Extended XPath I (NEXI). In INEX
Workshop, 2004.

[WFS] http://msdn.microsoft.com/data/WinFS. WinFS.

	Introduction
	Background
	The iMeMex Vision

	Related Work
	iMeMex Core Architecture
	Logical Layers
	PHIL Services
	LIL Services

	iMeMex Features
	Current Features
	Upcoming Features

	Use Cases
	Query Processing Architecture
	Use Case: QoS Driven Query Answering
	Use Case: Distributed Dataspaces

	Conclusions

