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! see also [Pavlo etal, SIGMOD 2009] comparison
! benchmark to compare Parallel DBMS with MapReduce
! showed superiority of Parallel DBMS over MapReduce

The Parallel DBMS vs MapReduce Debate

2

Parallel DBMS MapReduce

licensing costs

administration

upfront schema

user

scalability

failover, large clusters

performance

usually high none

difficult easy

must have not required

advanced beginner

10-100es of nodes >10,000 nodes
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very good suboptimal
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MapReduce ≠ MapReduce ≠ MapReduce
! but, MapReduce is three different things:

3

(1) a programming paradigm:
• it allows users to specify analytical tasks
• need to provide two functions only: map() and reduce() 

(2) a description of a processing pipeline and system:
• that system computes the result to a MapReduce-job
• MapReduce-job: map(), reduce(), and some input data
• scales to very large clusters, > 10,000 nodes

(3) several implementations of (2):
• Googleʻs proprietary MapReduce, Hadoop, ...
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(2) MapReduce processing pipeline and system

Hadoop++ System Vision

5

MapReduce program generation
this paper, Hadoop++

mapʻ(), reduceʻ()

Optimization
e.g. cost models [Morton et.al. SIGMOD 2010]

optimized plan

MapReduce program analysis
e.g. [Cafarella and Ré, WebDB2010]
       [Iu and Zwaenepoel, EuroSys 2010]

logical plan

(1) MapReduce programming paradigm
map(), reduce()

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Morton:Kristi.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Morton:Kristi.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iu:Ming=Yee.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zwaenepoel:Willy.html
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Features of Hadoop++

(1) we do not change the existing Hadoop framework at all
" advantage: no need to maintain and test Hadoop code changes
" advantage: future improvements of Hadoop orthogonal to Hadoop++

(2) inject our technology inside Hadoop, hide it
" advantage: clear layering
" advantage: no extra operators, no pipeline changes

(3) do not change the MapReduce programming paradigm
" advantage: nothing changes from the user-side

(4) still trick Hadoop into using more efficient plans
" advantage: improve runtime performance considerably

6

How do we do this?
Well, letʻs first better understand the existing Hadoop 
processing pipeline....



VLDB 2010, Sep 15, Singapore

fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L ( ) and P subplans H1–H4 ( ) which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-

pressed as a physical query execution plan

tem. M determines the number of mapper subplans ( ), whereas R

determines the number of reducer subplans ( ).
Let’s analyze The Hadoop Plan in more detail:

Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 different
data nodes with subplans H1–H4. Replicas are stored on different
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on different nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split

2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

figure shows example with 4 mappers and 2 reducers

! partition data into blocks
! replicate data to nodes
! store data

! scan input data blocks
! form splits
! send data to processing

nodes
! break data into records
! call map() for each record
! pregroup and preaggregate

output
! store output locally

! redistribute data over
processing nodes

! merge subsets belonging to
same reducer into single file

! perform final grouping
! call reduce() for each group
! store output

Analysis: The Hadoop Plan
Data 
Load 
Phase

Map 
Phase

Shuffle 
Phase

Reduce 
Phase

7

partition load map reduce
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Observations on The Hadoop Plan

! again: no real operators, all hard-coded
! large distributed external merge sort
! sort in order to do a sort-based grouping
! full scan access at all times
! not only two functions, i.e. map and reduce,
! but...

8
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fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L ( ) and P subplans H1–H4 ( ) which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-

pressed as a physical query execution plan

tem. M determines the number of mapper subplans ( ), whereas R

determines the number of reducer subplans ( ).
Let’s analyze The Hadoop Plan in more detail:

Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 different
data nodes with subplans H1–H4. Replicas are stored on different
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on different nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split

2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

figure shows example with 4 mappers and 2 reducers

Ten User-Defined Functions
Data 
Load 
Phase

Map 
Phase

Shuffle 
Phase

Reduce 
Phase
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partition load map reduce

! The Hadoop Plan has 
ten user-defined
functions (UDFs):

" block
! split
! itemize
! mem
! map
! sh
! cmp
! grp
! combine
! reduce
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Hadoop++ Approach: Trojan Techniques

! Trojan Index:
! at data load time:" create index
! at query time:" use index access plan

! Trojan Join:
! at data load time:" create co-partitions
! at query time:" compute all join results locally

10
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Trojan Index Creation

! Index Creation Algorithm:
! read input split
! add small clustered Trojan index (we use a CSS-tree)
! add some metadata

! Implementation:
! a MapReduce program

11

SData T... ...

DataSet

Indexed Split i

Trojan Index

Header Footer

Desired layout: e.g. 8MB of index for 1GB of data
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fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L ( ) and P subplans H1–H4 ( ) which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-

pressed as a physical query execution plan

tem. M determines the number of mapper subplans ( ), whereas R

determines the number of reducer subplans ( ).
Let’s analyze The Hadoop Plan in more detail:

Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 different
data nodes with subplans H1–H4. Replicas are stored on different
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on different nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split

2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

figure shows example with 4 mappers and 2 reducers

Trojan Index Creation
Data 
Load 
Phase

Map 
Phase

Shuffle 
Phase

Reduce 
Phase
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partition load map reduce

!: concatenate schemas

SData T H F... ...

DataSet

Indexed Split i

Trojan Index

Figure 2: Indexed Data Layout

discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) �⇒




map(key k, value v) �→
[(getSplitID() ⊕ prjai (k ⊕ v), k ⊕ v)]
reduce(key ik, vset ivs) �→
[(ivs ⊕ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⊕ denotes
that two attribute sets are concatenated to a new schema. Fig-
ure 3(a) shows the MapReduce plan corresponding to the index-
ing operation defined above. The distributed file system stores the
data for Relation T. The MapReduce client partitions the Relation
T into splits as shown in the figure. The itemize function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �→ k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �→ compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �→ compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1

File [] files = GetFiles(job);2

foreach file in files do3

Path path = file.getPath();4

InputStream in = GetInputStream(path);5

Long offset = file.getLength();6

while offset > 0 do7

in.seek(offset-FOOTER SIZE);8

Footer footer = ReadFooter(in);9

Long splitSize = footer.getSplitSize();10

offset -= (splitSize + FOOTER SIZE);11

BlockLocations blocks = GetBlockLocations(path,offset);12

FileSplit newSplit = CreateSplit(path,offset,splitSize,blocks);13

splits.add(newSplit);14

end15

end16

return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1

Key lowKey = job.getLowKey();2

Global Key highKey = job.getHighKey();3

Int splitStart = split.getStart();4

Global Int splitEnd = split.getEnd();5

Header h = ReadHeader(split);6

Overlap type = h.getOverlapType(lowKey,highKey);7

Global Int offset;8

if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9

POINT CONTAINED then

Index i = ReadIndex(split);10

offset = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12

offset = splitStart;13

else14

// NOT CONTAINED, skip the split;15

offset = splitEnd;16

end17

Seek(offset);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the offset to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary offsets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key offset within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the offset to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the offset within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.

form intermediate key 
with splitID and index 
key a
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fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L ( ) and P subplans H1–H4 ( ) which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-

pressed as a physical query execution plan

tem. M determines the number of mapper subplans ( ), whereas R

determines the number of reducer subplans ( ).
Let’s analyze The Hadoop Plan in more detail:

Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 different
data nodes with subplans H1–H4. Replicas are stored on different
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on different nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split

2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].
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discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) �⇒




map(key k, value v) �→
[(getSplitID() ⊕ prjai (k ⊕ v), k ⊕ v)]
reduce(key ik, vset ivs) �→
[(ivs ⊕ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⊕ denotes
that two attribute sets are concatenated to a new schema. Fig-
ure 3(a) shows the MapReduce plan corresponding to the index-
ing operation defined above. The distributed file system stores the
data for Relation T. The MapReduce client partitions the Relation
T into splits as shown in the figure. The itemize function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �→ k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �→ compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �→ compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1

File [] files = GetFiles(job);2

foreach file in files do3

Path path = file.getPath();4

InputStream in = GetInputStream(path);5

Long offset = file.getLength();6

while offset > 0 do7

in.seek(offset-FOOTER SIZE);8

Footer footer = ReadFooter(in);9

Long splitSize = footer.getSplitSize();10

offset -= (splitSize + FOOTER SIZE);11

BlockLocations blocks = GetBlockLocations(path,offset);12

FileSplit newSplit = CreateSplit(path,offset,splitSize,blocks);13

splits.add(newSplit);14

end15

end16

return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1

Key lowKey = job.getLowKey();2

Global Key highKey = job.getHighKey();3

Int splitStart = split.getStart();4

Global Int splitEnd = split.getEnd();5

Header h = ReadHeader(split);6

Overlap type = h.getOverlapType(lowKey,highKey);7

Global Int offset;8

if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9

POINT CONTAINED then

Index i = ReadIndex(split);10

offset = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12

offset = splitStart;13

else14

// NOT CONTAINED, skip the split;15

offset = splitEnd;16

end17

Seek(offset);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the offset to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary offsets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key offset within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the offset to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the offset within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.
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fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L ( ) and P subplans H1–H4 ( ) which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-

pressed as a physical query execution plan

tem. M determines the number of mapper subplans ( ), whereas R

determines the number of reducer subplans ( ).
Let’s analyze The Hadoop Plan in more detail:

Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 different
data nodes with subplans H1–H4. Replicas are stored on different
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on different nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split

2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].
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discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) �⇒




map(key k, value v) �→
[(getSplitID() ⊕ prjai (k ⊕ v), k ⊕ v)]
reduce(key ik, vset ivs) �→
[(ivs ⊕ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⊕ denotes
that two attribute sets are concatenated to a new schema. Fig-
ure 3(a) shows the MapReduce plan corresponding to the index-
ing operation defined above. The distributed file system stores the
data for Relation T. The MapReduce client partitions the Relation
T into splits as shown in the figure. The itemize function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �→ k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �→ compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �→ compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1

File [] files = GetFiles(job);2

foreach file in files do3

Path path = file.getPath();4

InputStream in = GetInputStream(path);5

Long offset = file.getLength();6

while offset > 0 do7

in.seek(offset-FOOTER SIZE);8

Footer footer = ReadFooter(in);9

Long splitSize = footer.getSplitSize();10

offset -= (splitSize + FOOTER SIZE);11

BlockLocations blocks = GetBlockLocations(path,offset);12

FileSplit newSplit = CreateSplit(path,offset,splitSize,blocks);13

splits.add(newSplit);14

end15

end16

return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1

Key lowKey = job.getLowKey();2

Global Key highKey = job.getHighKey();3

Int splitStart = split.getStart();4

Global Int splitEnd = split.getEnd();5

Header h = ReadHeader(split);6

Overlap type = h.getOverlapType(lowKey,highKey);7

Global Int offset;8

if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9

POINT CONTAINED then

Index i = ReadIndex(split);10

offset = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12

offset = splitStart;13

else14

// NOT CONTAINED, skip the split;15

offset = splitEnd;16

end17

Seek(offset);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the offset to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary offsets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key offset within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the offset to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the offset within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.
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Figure 2: Indexed Data Layout

discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) �⇒




map(key k, value v) �→
[(getSplitID() ⊕ prjai (k ⊕ v), k ⊕ v)]
reduce(key ik, vset ivs) �→
[(ivs ⊕ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⊕ denotes
that two attribute sets are concatenated to a new schema. Fig-
ure 3(a) shows the MapReduce plan corresponding to the index-
ing operation defined above. The distributed file system stores the
data for Relation T. The MapReduce client partitions the Relation
T into splits as shown in the figure. The itemize function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �→ k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �→ compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �→ compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1

File [] files = GetFiles(job);2

foreach file in files do3

Path path = file.getPath();4

InputStream in = GetInputStream(path);5

Long offset = file.getLength();6

while offset > 0 do7

in.seek(offset-FOOTER SIZE);8

Footer footer = ReadFooter(in);9

Long splitSize = footer.getSplitSize();10

offset -= (splitSize + FOOTER SIZE);11

BlockLocations blocks = GetBlockLocations(path,offset);12

FileSplit newSplit = CreateSplit(path,offset,splitSize,blocks);13

splits.add(newSplit);14

end15

end16

return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1

Key lowKey = job.getLowKey();2

Global Key highKey = job.getHighKey();3

Int splitStart = split.getStart();4

Global Int splitEnd = split.getEnd();5

Header h = ReadHeader(split);6

Overlap type = h.getOverlapType(lowKey,highKey);7

Global Int offset;8

if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9

POINT CONTAINED then

Index i = ReadIndex(split);10

offset = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12

offset = splitStart;13

else14

// NOT CONTAINED, skip the split;15

offset = splitEnd;16

end17

Seek(offset);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the offset to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary offsets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key offset within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the offset to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the offset within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.
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fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L ( ) and P subplans H1–H4 ( ) which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-

pressed as a physical query execution plan

tem. M determines the number of mapper subplans ( ), whereas R

determines the number of reducer subplans ( ).
Let’s analyze The Hadoop Plan in more detail:

Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 different
data nodes with subplans H1–H4. Replicas are stored on different
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on different nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split

2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

figure shows example with 4 mappers and 2 reducers
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discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) �⇒




map(key k, value v) �→
[(getSplitID() ⊕ prjai (k ⊕ v), k ⊕ v)]
reduce(key ik, vset ivs) �→
[(ivs ⊕ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⊕ denotes
that two attribute sets are concatenated to a new schema. Fig-
ure 3(a) shows the MapReduce plan corresponding to the index-
ing operation defined above. The distributed file system stores the
data for Relation T. The MapReduce client partitions the Relation
T into splits as shown in the figure. The itemize function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �→ k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �→ compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �→ compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1

File [] files = GetFiles(job);2

foreach file in files do3

Path path = file.getPath();4

InputStream in = GetInputStream(path);5

Long offset = file.getLength();6

while offset > 0 do7

in.seek(offset-FOOTER SIZE);8

Footer footer = ReadFooter(in);9

Long splitSize = footer.getSplitSize();10

offset -= (splitSize + FOOTER SIZE);11

BlockLocations blocks = GetBlockLocations(path,offset);12

FileSplit newSplit = CreateSplit(path,offset,splitSize,blocks);13

splits.add(newSplit);14

end15

end16

return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1

Key lowKey = job.getLowKey();2

Global Key highKey = job.getHighKey();3

Int splitStart = split.getStart();4

Global Int splitEnd = split.getEnd();5

Header h = ReadHeader(split);6

Overlap type = h.getOverlapType(lowKey,highKey);7

Global Int offset;8

if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9

POINT CONTAINED then

Index i = ReadIndex(split);10

offset = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12

offset = splitStart;13

else14

// NOT CONTAINED, skip the split;15

offset = splitEnd;16

end17

Seek(offset);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the offset to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary offsets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key offset within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the offset to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the offset within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.
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fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L ( ) and P subplans H1–H4 ( ) which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-

pressed as a physical query execution plan

tem. M determines the number of mapper subplans ( ), whereas R

determines the number of reducer subplans ( ).
Let’s analyze The Hadoop Plan in more detail:

Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 different
data nodes with subplans H1–H4. Replicas are stored on different
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on different nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split

2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].
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discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) �⇒




map(key k, value v) �→
[(getSplitID() ⊕ prjai (k ⊕ v), k ⊕ v)]
reduce(key ik, vset ivs) �→
[(ivs ⊕ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⊕ denotes
that two attribute sets are concatenated to a new schema. Fig-
ure 3(a) shows the MapReduce plan corresponding to the index-
ing operation defined above. The distributed file system stores the
data for Relation T. The MapReduce client partitions the Relation
T into splits as shown in the figure. The itemize function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �→ k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �→ compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �→ compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1

File [] files = GetFiles(job);2

foreach file in files do3

Path path = file.getPath();4

InputStream in = GetInputStream(path);5

Long offset = file.getLength();6

while offset > 0 do7

in.seek(offset-FOOTER SIZE);8

Footer footer = ReadFooter(in);9

Long splitSize = footer.getSplitSize();10

offset -= (splitSize + FOOTER SIZE);11

BlockLocations blocks = GetBlockLocations(path,offset);12

FileSplit newSplit = CreateSplit(path,offset,splitSize,blocks);13

splits.add(newSplit);14

end15

end16

return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1

Key lowKey = job.getLowKey();2

Global Key highKey = job.getHighKey();3

Int splitStart = split.getStart();4

Global Int splitEnd = split.getEnd();5

Header h = ReadHeader(split);6

Overlap type = h.getOverlapType(lowKey,highKey);7

Global Int offset;8

if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9

POINT CONTAINED then

Index i = ReadIndex(split);10

offset = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12

offset = splitStart;13

else14

// NOT CONTAINED, skip the split;15

offset = splitEnd;16

end17

Seek(offset);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the offset to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary offsets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key offset within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the offset to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the offset within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.

build CSS-tree for 
each ivs set



VLDB 2010, Sep 15, Singapore Jens Dittrich et al, Hadoop++ / Information Systems Group / Saarland University

Trojan Index Query Processing

13

!Query Algorithm:
! for each split:

- read footer to obtain split size
- read header to obtain [keymin, keymax]-range of index
- if search key overlaps [keymin, keymax]-range:

• read CSS-tree into main memory
• read only records qualifying for search predicate
• only pass those records to map()

- else
• skip this split

! Implementation:
! a MapReduce program
! provide split and itemize UDF
! everything else unchanged
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of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial differences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more difficult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into different
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword ⊕ postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)

HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using

DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-

pressed as a physical query execution plan

3. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

FIX TEXT TO INCLUDE RECORD READER OPERATOR
FIX TEXT TO CONSIDER SIMPLIFIED FIGURE
DID WE INTRODUCE ALL OPERATORS?
In this section we examine how Hadoop computes a MapRe-

duce task. We have analyzed Yahoo!’s Hadoop version 0.19, which
is based on Apache’s Hadoop version 0.19. This source distribu-
tion includes some code patches that were added to improve sta-
bility and performance on Yahoo! clusters. The main functionality
as discussed here remains however unchanged. Note that Hadoop
uses a hard-coded execution pipeline. No operator-model is used.
However Hadoop’s query execution strategy may be expressed as
a physical operator DAG. To our knowledge, this paper is the first
to do so and we term it The Hadoop Plan. Based on this we then
discuss the shortcomings of The Hadoop Plan.

3.1 The Hadoop Plan
As mentioned above Hadoop implements a hard-coded data pro-

cessing pipeline, which can be expressed as a physical query execu-
tion plan. An example for a plan for four mappers (M = 4) and two
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fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L ( ) and P subplans H1–H4 ( ) which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-

pressed as a physical query execution plan

tem. M determines the number of mapper subplans ( ), whereas R

determines the number of reducer subplans ( ).
Let’s analyze The Hadoop Plan in more detail:

Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 different
data nodes with subplans H1–H4. Replicas are stored on different
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on different nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split

2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].
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Figure 3: MapReduce Plans

Algorithm 3: Trojan Index itemize.next UDF

Input : KeyType key, ValueType value

Output: has more records

if offset < splitEnd then1

Record nextRecord = ReadNextRecord(split);2

offset += nextRecord.size();3

if nextRecord.key < highKey then4

SetKeyValue(key, value, nextRecord);5

return true;6

end7

end8

return false;9

We check if the split offset is within the end of split (Line 1) and

index key value of the next record is less than the high key (Line 3).

If yes, we set the key and the value to be fed to the mapper and re-

turn true (Lines 4-5), indicating there could be more records. Else,

we return false (Line 8).

Note that the use of the Trojan Index is optional and depends

upon the query predicate. Thus, both full and index scan are possi-

ble over the same data. In addition, indexes and data may be kept

in separate physical blocks, i.e. UDF splitmay compose physical

blocks into logical splits suited for a particular task.

4. TROJAN JOIN

Efficient join processing is one of the most important features of

DBMSs. In MapReduce, two datasets are usually joined using re-
partitioning: partitioning records by join key in the map phase and

grouping records with the same key in the reduce phase. The re-

ducer joins the records in each key-based group. This re-partitioned

join corresponds to the join detailed in Appendix B.3. Yang et

al. [23] proposed to extend MapReduce by a third Merge phase.

The Merge phase is a join operator which follows the reduce phase

and gets sorted results from it. Afrate and Ullman [4] proposed

techniques to perform multiway joins in a single MapReduce job.

However, all of the above approaches perform the join operation in

the reduce phase and hence transfer a large amount of data trough

the network — which is a potential bottleneck. Moreover, these

approaches do not exploit any schema-knowledge, which is often

available in advance for many relational-style tasks. Furthermore,

join conditions in a schema are very unlikely to change — the set

of tables requested in a join query may however change.

Trojan Join is our solution to support more effective join pro-

cessing in Hadoop. We assume that we know the schema and the

expected workload, similar to DBMS and HadoopDB. The core

idea is to co-partition the data at load time — i.e. given two input

relations, we apply the same partitioning function on the join at-
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Co-Partitioned Split i
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Figure 4: Co-partitioned Data Layout

tributes of both the relations at data loading time — and place the

co-group pairs, having the same join key from the two relations, on

the same split and hence on the same node. As a result, joins are

now processed locally within each node at query time — a feature

that is also explored by SQL-DBMSs. Moreover, we are free to

group the data on any attribute other than the join attribute in the

same MapReduce job. The salient features of Trojan Join are as

follows:

(1.) Non-Invasive. We do not change the existing Hadoop frame-

work. We only change the internal representation of a data split.

(2.) Seamless Splitting. When co-grouping the data, we create

three headers per data split: two for indicating the boundaries of

data belonging to different relations; one for indicating the bound-

aries of the logical split. Trojan Join automatically splits data at

logical split boundaries that are opaque to the user.

(3.) Mapper-side Co-partitioned Join. Trojan Join allows users to

join relations in the map phase itself exploiting co-partitioned data.

This avoids the shuffle phase, which is typically quite costly from

the network traffic perspective.

(4.) Trojan Index Compatibility. Trojan indexes may freely be

combined with Trojan Joins. We detail this aspect in Section 4.3.

We illustrate the data layout for Trojan Join in Figure 4. Each

split is separated by split footer (F) and contains data from two re-

lations T S (depicted green and blue in Figure 4). We use two head-

ers Ht and Hs, one for each relation, to indicate the size of each co-

partition
5
. Given an equi-join predicate PJ(T, S ) = (T.ai = S .bj),

the Trojan Join proceeds in two phases: the data co-partitioning
and query processing phases.

4.1 Data Co-Partitioning

Trojan Join co-partitions two relations in order to perform join

queries using map tasks only. Formally, we can express co-

partitioning as:

CoPartitionai ,b j (T, S ) �⇒



map(key k, value v) �→


[(prjai (k ⊕ v), k ⊕ v)] if input(k ⊕ v) = T ,

[(prjb j (k ⊕ v), k ⊕ v)] if input(k ⊕ v) = S .

reduce(key ik, vset ivs) �→ [({ik} × ivs)]

Here, the helper input() function identifies whether an input

record belongs to T or S . Figure 3(b) shows the MapReduce plan

for co-partitioning the data. This works as follows. The MapRe-

duce client partitions the data of both relations into splits as shown

in the figure. For each record in an input split, itemize receives the

offset as key and the record as value and map emits {joinvalue,
record} as key-value pairs. Here joinvalue is the key having

value either ai or bj depending on the lineage; record contains all

attributes of the record. For re-partitioning, sorting and grouping

the key-value pairs we use the entire key i.e. we use the default sh,
cmp, and grp UDFs. As a result, each call to reduce receives the

set of records having the same join attribute value. The final output

of reduce is a virtual split containing several co-groups as shown

in Figure 4.

5
Notice that one can also store each relation in separate physical

blocks just like a DBMS. Extending our approach to this is straight-

forward: we simply need to provide a UDF split. This also holds

for our Trojan Index proposal.

form intermediate key 
with join key a from T 
and b from S

join T.a=S.b
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fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L ( ) and P subplans H1–H4 ( ) which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-

pressed as a physical query execution plan

tem. M determines the number of mapper subplans ( ), whereas R

determines the number of reducer subplans ( ).
Let’s analyze The Hadoop Plan in more detail:

Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 different
data nodes with subplans H1–H4. Replicas are stored on different
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on different nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split

2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].
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discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) �⇒




map(key k, value v) �→
[(getSplitID() ⊕ prjai (k ⊕ v), k ⊕ v)]
reduce(key ik, vset ivs) �→
[(ivs ⊕ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⊕ denotes
that two attribute sets are concatenated to a new schema. Fig-
ure 3(a) shows the MapReduce plan corresponding to the index-
ing operation defined above. The distributed file system stores the
data for Relation T. The MapReduce client partitions the Relation
T into splits as shown in the figure. The itemize function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �→ k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �→ compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �→ compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1

File [] files = GetFiles(job);2

foreach file in files do3

Path path = file.getPath();4

InputStream in = GetInputStream(path);5

Long offset = file.getLength();6

while offset > 0 do7

in.seek(offset-FOOTER SIZE);8

Footer footer = ReadFooter(in);9

Long splitSize = footer.getSplitSize();10

offset -= (splitSize + FOOTER SIZE);11

BlockLocations blocks = GetBlockLocations(path,offset);12

FileSplit newSplit = CreateSplit(path,offset,splitSize,blocks);13

splits.add(newSplit);14

end15

end16

return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1

Key lowKey = job.getLowKey();2

Global Key highKey = job.getHighKey();3

Int splitStart = split.getStart();4

Global Int splitEnd = split.getEnd();5

Header h = ReadHeader(split);6

Overlap type = h.getOverlapType(lowKey,highKey);7

Global Int offset;8

if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9

POINT CONTAINED then

Index i = ReadIndex(split);10

offset = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12

offset = splitStart;13

else14

// NOT CONTAINED, skip the split;15

offset = splitEnd;16

end17

Seek(offset);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the offset to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary offsets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key offset within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the offset to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the offset within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.

sort on join key 
onlyuse default

join T.a=S.b
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fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L ( ) and P subplans H1–H4 ( ) which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-

pressed as a physical query execution plan

tem. M determines the number of mapper subplans ( ), whereas R

determines the number of reducer subplans ( ).
Let’s analyze The Hadoop Plan in more detail:

Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 different
data nodes with subplans H1–H4. Replicas are stored on different
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on different nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split

2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].
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discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) �⇒




map(key k, value v) �→
[(getSplitID() ⊕ prjai (k ⊕ v), k ⊕ v)]
reduce(key ik, vset ivs) �→
[(ivs ⊕ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⊕ denotes
that two attribute sets are concatenated to a new schema. Fig-
ure 3(a) shows the MapReduce plan corresponding to the index-
ing operation defined above. The distributed file system stores the
data for Relation T. The MapReduce client partitions the Relation
T into splits as shown in the figure. The itemize function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �→ k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �→ compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �→ compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1

File [] files = GetFiles(job);2

foreach file in files do3

Path path = file.getPath();4

InputStream in = GetInputStream(path);5

Long offset = file.getLength();6

while offset > 0 do7

in.seek(offset-FOOTER SIZE);8

Footer footer = ReadFooter(in);9

Long splitSize = footer.getSplitSize();10

offset -= (splitSize + FOOTER SIZE);11

BlockLocations blocks = GetBlockLocations(path,offset);12

FileSplit newSplit = CreateSplit(path,offset,splitSize,blocks);13

splits.add(newSplit);14

end15

end16

return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1

Key lowKey = job.getLowKey();2

Global Key highKey = job.getHighKey();3

Int splitStart = split.getStart();4

Global Int splitEnd = split.getEnd();5

Header h = ReadHeader(split);6

Overlap type = h.getOverlapType(lowKey,highKey);7

Global Int offset;8

if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9

POINT CONTAINED then

Index i = ReadIndex(split);10

offset = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12

offset = splitStart;13

else14

// NOT CONTAINED, skip the split;15

offset = splitEnd;16

end17

Seek(offset);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the offset to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary offsets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key offset within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the offset to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the offset within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.

shuffle on join 
key onlyuse default

join T.a=S.b
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fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L ( ) and P subplans H1–H4 ( ) which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-

pressed as a physical query execution plan

tem. M determines the number of mapper subplans ( ), whereas R

determines the number of reducer subplans ( ).
Let’s analyze The Hadoop Plan in more detail:

Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 different
data nodes with subplans H1–H4. Replicas are stored on different
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on different nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split

2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].
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discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) �⇒




map(key k, value v) �→
[(getSplitID() ⊕ prjai (k ⊕ v), k ⊕ v)]
reduce(key ik, vset ivs) �→
[(ivs ⊕ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⊕ denotes
that two attribute sets are concatenated to a new schema. Fig-
ure 3(a) shows the MapReduce plan corresponding to the index-
ing operation defined above. The distributed file system stores the
data for Relation T. The MapReduce client partitions the Relation
T into splits as shown in the figure. The itemize function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �→ k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �→ compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �→ compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1

File [] files = GetFiles(job);2

foreach file in files do3

Path path = file.getPath();4

InputStream in = GetInputStream(path);5

Long offset = file.getLength();6

while offset > 0 do7

in.seek(offset-FOOTER SIZE);8

Footer footer = ReadFooter(in);9

Long splitSize = footer.getSplitSize();10

offset -= (splitSize + FOOTER SIZE);11

BlockLocations blocks = GetBlockLocations(path,offset);12

FileSplit newSplit = CreateSplit(path,offset,splitSize,blocks);13

splits.add(newSplit);14

end15

end16

return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1

Key lowKey = job.getLowKey();2

Global Key highKey = job.getHighKey();3

Int splitStart = split.getStart();4

Global Int splitEnd = split.getEnd();5

Header h = ReadHeader(split);6

Overlap type = h.getOverlapType(lowKey,highKey);7

Global Int offset;8

if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9

POINT CONTAINED then

Index i = ReadIndex(split);10

offset = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12

offset = splitStart;13

else14

// NOT CONTAINED, skip the split;15

offset = splitEnd;16

end17

Seek(offset);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the offset to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary offsets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key offset within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the offset to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the offset within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.

build groups on 
join key onlyuse default

join T.a=S.b
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fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L ( ) and P subplans H1–H4 ( ) which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-

T

L PPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

PPartsplit PPartsplit

H2

. . .

H3 Fetch Fetch Fetch

Store Store Store

Scan

PPartsplit

H4

. . .

M1 Union

RecReaditemize

MMapmap

PPartmem

LPartsh LPartsh LPartsh

Sortcmp Sortcmp Sortcmp

SortGrpgrp SortGrpgrp SortGrpgrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Mergecmp

SortGrpgrp

MMapcombine

Store

PPartsh

M2

. . .

M3

RecReaditemize

MMapmap

LPartsh

Sortcmp

SortGrpgrp

MMapcombine

Store

PPartsh

M4

. . .

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Mergecmp

SortGrpgrp

MMapreduce

R1 Store

T
�
1

. . .

R2

T
�
2

D
at

a
Lo

ad
Ph

as
e

M
ap

Ph
as

e
Sh

uffl
e

Ph
as

e
R

ed
uc

e
Ph

as
e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-

pressed as a physical query execution plan

tem. M determines the number of mapper subplans ( ), whereas R

determines the number of reducer subplans ( ).
Let’s analyze The Hadoop Plan in more detail:

Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 different
data nodes with subplans H1–H4. Replicas are stored on different
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on different nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split

2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].
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Algorithm 3: Trojan Index itemize.next UDF

Input : KeyType key, ValueType value

Output: has more records

if offset < splitEnd then1

Record nextRecord = ReadNextRecord(split);2

offset += nextRecord.size();3

if nextRecord.key < highKey then4

SetKeyValue(key, value, nextRecord);5

return true;6

end7

end8

return false;9

We check if the split offset is within the end of split (Line 1) and

index key value of the next record is less than the high key (Line 3).

If yes, we set the key and the value to be fed to the mapper and re-

turn true (Lines 4-5), indicating there could be more records. Else,

we return false (Line 8).

Note that the use of the Trojan Index is optional and depends

upon the query predicate. Thus, both full and index scan are possi-

ble over the same data. In addition, indexes and data may be kept

in separate physical blocks, i.e. UDF splitmay compose physical

blocks into logical splits suited for a particular task.

4. TROJAN JOIN

Efficient join processing is one of the most important features of

DBMSs. In MapReduce, two datasets are usually joined using re-
partitioning: partitioning records by join key in the map phase and

grouping records with the same key in the reduce phase. The re-

ducer joins the records in each key-based group. This re-partitioned

join corresponds to the join detailed in Appendix B.3. Yang et

al. [23] proposed to extend MapReduce by a third Merge phase.

The Merge phase is a join operator which follows the reduce phase

and gets sorted results from it. Afrate and Ullman [4] proposed

techniques to perform multiway joins in a single MapReduce job.

However, all of the above approaches perform the join operation in

the reduce phase and hence transfer a large amount of data trough

the network — which is a potential bottleneck. Moreover, these

approaches do not exploit any schema-knowledge, which is often

available in advance for many relational-style tasks. Furthermore,

join conditions in a schema are very unlikely to change — the set

of tables requested in a join query may however change.

Trojan Join is our solution to support more effective join pro-

cessing in Hadoop. We assume that we know the schema and the

expected workload, similar to DBMS and HadoopDB. The core

idea is to co-partition the data at load time — i.e. given two input

relations, we apply the same partitioning function on the join at-
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DataSet

... ...

Co-Partitioned Split i

co-group j co-group j+1

Ht Hs Ht HsSData Tk+1 SData Sk+1

Figure 4: Co-partitioned Data Layout

tributes of both the relations at data loading time — and place the

co-group pairs, having the same join key from the two relations, on

the same split and hence on the same node. As a result, joins are

now processed locally within each node at query time — a feature

that is also explored by SQL-DBMSs. Moreover, we are free to

group the data on any attribute other than the join attribute in the

same MapReduce job. The salient features of Trojan Join are as

follows:

(1.) Non-Invasive. We do not change the existing Hadoop frame-

work. We only change the internal representation of a data split.

(2.) Seamless Splitting. When co-grouping the data, we create

three headers per data split: two for indicating the boundaries of

data belonging to different relations; one for indicating the bound-

aries of the logical split. Trojan Join automatically splits data at

logical split boundaries that are opaque to the user.

(3.) Mapper-side Co-partitioned Join. Trojan Join allows users to

join relations in the map phase itself exploiting co-partitioned data.

This avoids the shuffle phase, which is typically quite costly from

the network traffic perspective.

(4.) Trojan Index Compatibility. Trojan indexes may freely be

combined with Trojan Joins. We detail this aspect in Section 4.3.

We illustrate the data layout for Trojan Join in Figure 4. Each

split is separated by split footer (F) and contains data from two re-

lations T S (depicted green and blue in Figure 4). We use two head-

ers Ht and Hs, one for each relation, to indicate the size of each co-

partition
5
. Given an equi-join predicate PJ(T, S ) = (T.ai = S .bj),

the Trojan Join proceeds in two phases: the data co-partitioning
and query processing phases.

4.1 Data Co-Partitioning

Trojan Join co-partitions two relations in order to perform join

queries using map tasks only. Formally, we can express co-

partitioning as:

CoPartitionai ,b j (T, S ) �⇒



map(key k, value v) �→


[(prjai (k ⊕ v), k ⊕ v)] if input(k ⊕ v) = T ,

[(prjb j (k ⊕ v), k ⊕ v)] if input(k ⊕ v) = S .

reduce(key ik, vset ivs) �→ [({ik} × ivs)]

Here, the helper input() function identifies whether an input

record belongs to T or S . Figure 3(b) shows the MapReduce plan

for co-partitioning the data. This works as follows. The MapRe-

duce client partitions the data of both relations into splits as shown

in the figure. For each record in an input split, itemize receives the

offset as key and the record as value and map emits {joinvalue,
record} as key-value pairs. Here joinvalue is the key having

value either ai or bj depending on the lineage; record contains all

attributes of the record. For re-partitioning, sorting and grouping

the key-value pairs we use the entire key i.e. we use the default sh,
cmp, and grp UDFs. As a result, each call to reduce receives the

set of records having the same join attribute value. The final output

of reduce is a virtual split containing several co-groups as shown

in Figure 4.

5
Notice that one can also store each relation in separate physical

blocks just like a DBMS. Extending our approach to this is straight-

forward: we simply need to provide a UDF split. This also holds

for our Trojan Index proposal.

join T.a=S.b
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fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L ( ) and P subplans H1–H4 ( ) which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-

pressed as a physical query execution plan

tem. M determines the number of mapper subplans ( ), whereas R

determines the number of reducer subplans ( ).
Let’s analyze The Hadoop Plan in more detail:

Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 different
data nodes with subplans H1–H4. Replicas are stored on different
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on different nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split

2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

figure shows example with 4 mappers and 2 reducers

Trojan Join Co-Partitioning Details

Map 
Phase

Shuffle 
Phase

Reduce 
Phase

15

partition load map reduce

!: concatenate schemasjoin T.a=S.b

Notice. Write-up of these UDFs in the 
CR has a small bug. See note on our 
website:

http://infosys.cs.uni-saarland.de/
publications/DQJ+10CRv1correction.pdf

http://infosys.cs.uni-saarland.de/publications/DQJ+10CRv1correction.pdf
http://infosys.cs.uni-saarland.de/publications/DQJ+10CRv1correction.pdf
http://infosys.cs.uni-saarland.de/publications/DQJ+10CRv1correction.pdf
http://infosys.cs.uni-saarland.de/publications/DQJ+10CRv1correction.pdf


VLDB 2010, Sep 15, Singapore Jens Dittrich et al, Hadoop++ / Information Systems Group / Saarland University

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial differences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more difficult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into different
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword ⊕ postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)

HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using

DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-

pressed as a physical query execution plan

3. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

FIX TEXT TO INCLUDE RECORD READER OPERATOR
FIX TEXT TO CONSIDER SIMPLIFIED FIGURE
DID WE INTRODUCE ALL OPERATORS?
In this section we examine how Hadoop computes a MapRe-

duce task. We have analyzed Yahoo!’s Hadoop version 0.19, which
is based on Apache’s Hadoop version 0.19. This source distribu-
tion includes some code patches that were added to improve sta-
bility and performance on Yahoo! clusters. The main functionality
as discussed here remains however unchanged. Note that Hadoop
uses a hard-coded execution pipeline. No operator-model is used.
However Hadoop’s query execution strategy may be expressed as
a physical operator DAG. To our knowledge, this paper is the first
to do so and we term it The Hadoop Plan. Based on this we then
discuss the shortcomings of The Hadoop Plan.

3.1 The Hadoop Plan
As mentioned above Hadoop implements a hard-coded data pro-

cessing pipeline, which can be expressed as a physical query execu-
tion plan. An example for a plan for four mappers (M = 4) and two
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!Query Algorithm:
! read footer of each input split to determine split size
! read records from each co-group in ascending order
! build cross product for each co-group

! Implementation:
! a MapReduce program
! provide split UDF

! Option 1: map-side join
! trick: map function keeps some state
! perform local join in map()
! advantage: no Reduce Phase (see paper)
! drawback: need to keep some state in map() for sort-based grouping
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Option 2: state-less map-side join

17

!Algorithm:
! change itemize to return

[joinkey, entire co-group]
! then map is being called with the data belonging to an entire co-

group
! inside map: break co-group into tuples and compute cross 

product
!Advantages:

! no Reduce Phase as in Option 1
! but also: no need to keep state in map

! in fact: we exploited an interesting order plus itemize to 
semantically reduce data in map!

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial differences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more difficult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into different
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword ⊕ postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)

HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using

DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-

pressed as a physical query execution plan
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tion includes some code patches that were added to improve sta-
bility and performance on Yahoo! clusters. The main functionality
as discussed here remains however unchanged. Note that Hadoop
uses a hard-coded execution pipeline. No operator-model is used.
However Hadoop’s query execution strategy may be expressed as
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Trojan Index plus Trojan Join

18

!may combine both techniques
!may use index on join key
!may use index on different key
!may create multiple indexes inside the split
! in any case:

! both scan access and index access paths possible
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Experiments
! used benchmark as proposed in [Pavlo etal, SIGMOD 2009]
! benchmark defines several tasks
! two of them related to indexing and join processing

! Selection Task
! Join Task

! used up to 100 EC2 nodes as in HadoopDB-paper
[Abouzeid etal, VLDB 2009]

! report average of three executions
!Some twist, see our paper:

Runtime Measurements in the Cloud: Observing, Analyzing, and Reducing Variance
Jörg Schad, Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz
VLDB 2010
Research Session-14 : Experimental Analysis and Performance (i.e., yesterday)

! therefore: also executed scaled-down experiments on small 
local cluster to verify

19
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Selection Task
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Join Task
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Failover

!we inherit fault tolerance from Hadoop!
! the Trojan effect!

22

 0

 5

 10

 15

 20

 25

 30

 35

 40

node failures straggler nodes

sl
ow

do
w

n 
[p

er
ce

nt
]

Hadoop
HadoopDB

Hadoop++(256MB)
Hadoop++(1GB)



VLDB 2010, Sep 15, Singapore Jens Dittrich et al, Hadoop++ / Information Systems Group / Saarland University

Lessons Learned for our Community
! indexing, co-partitioning, preprocessing, etc....
! ...are not exclusive to database management systems
! all these techniques may be successfully used in any data 

processing system, not only DBMS
! just one thing matters:
! “Do we know anything about the schema and the anticipated 

workload in advance?“
! if yes, we may:

! create appropriate indexes
! create co-partitions
! etc.

! this holds for both
! DBMS
! and MapReduce/Hadoop

23
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Conclusions
! we proposed Hadoop++
! a new approach to large scale data analysis

! keep the MapReduce interface
and the MapReduce execution engine

! still: rewrite incoming MapReduce programs 
to more efficient ones

! inject code through Trojan techniques
! execute plans using existing MapReduce 

pipeline unchanged

! experimens with SIGMOD 2009 benchmark
! strong improvements in selection and join 

tasks
! up to a factor of 18 better than Hadoop

24
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Future Work

! other Trojan techniques
" ongoing

! research challenges when executing MapReduce on the 
Cloud
" Flying Yellow Elephant: Predictable and Efficient MapReduce in the Cloud
! Jörg Schad
" VLDB PhD Workshop 2010 (see VLDB USB stick or online)

!marry Hadoop++ with OctopusDB* one-size-fits-all DBMS 
" The Mimicking Octopus: Towards a one-size-fits-all Database Architecture
! Alekh Jindal
" VLDB PhD Workshop 2010 (see VLDB USB stick or online)

25
*patent pending


