
computer science

saarland
university

Jens Dittrich

Efficiently
Indexing AND Querying
Big Data
in Hadoop MapReduce

MapReduce
Intro

HAIL

Hadoop++

MapReduce
Intro

Big Data

Copyright of all slides: Jens Dittrich 2012

This talk consists of three parts.

First Part

Big data is the new “very large“.

[Physics]

Big data is everywhere: CERN...

http://cdsweb.cern.ch/record/1295244

...moving objects indexing...

http://www.istockphoto.com/stock-video-4518244-la-
trafic-a-time-lapse.php

...astronomy...

http://www.flickr.com/photos/
14924974@N02/2992963984/

basically whenever you point a satellite dish up in the
air, you collect tons of data

but also in...

\href{http://it.wikipedia.org/wiki/
File:KSC_radio_telescope.jpg}{http://it.wikipedia.org/
wiki/File:KSC_radio_telescope.jpg}

[Dean et al, OSDI’04]

...genomics...

http://www.istockphoto.com/stock-
illustration-16136234-dna-strands.php

...social networks...

...and search engines.

They proposed a system to effectively analyze big
data.

MapReduce

Big Data Tutorial
[VLDB 2012b]

Semantics:

That system was coined “MapReduce“. The system is
Google-proprietary.

Hadoop is the open source variant. It has a large
community of developers and start-up companies.

We presented a tutorial on Big Data Processing in
Hadoop MapReduce at VLDB 2012.
It contains many details on data layouts, indexing,
query processing and so forth.
The tutorial slides are available online:
http://infosys.uni-saarland.de/publications/
BigDataTutorialSlides.pdf

Let‘s briefly revisit the MapReduce interface:

map(key, value) -> set of (ikey, ivalue)

reduce(ikey, set of ivalue) -> (fkey, fvalue)

Google-Use Case:

Web-Index Creation

map(key, value)
->

set of (ikey, ivalue)

just two functions: map() and reduce()

Let‘s look at a concrete use-case:

This is vital for Google‘s search service you use
everyday.

In this use-case the map function...

map(docID, document)
->

set of (term, docID)

map(44,
 ´´This is text on a website!´´
)
->
{

 (``This´´, 44),

 (``is´´, 44),

 (``text´´, 44),

 (``on´´, 44),

 (``a´´, 44),

 (``website´´, 44)
}

map(42,
 ´´This is just another website!´´
)
->
{

 (``This´´, 42),

 (``is´´, 42),

 (``just´´, 42),

 (``another´´, 42),

 (``website´´, 42)
}

map(43,
 ´´One more boring website!´´
)
->
{

 (``One´´, 43),

 (``more´´, 43),

 (``boring´´, 43),

 (``website´´, 43)
}

...takes a docID and a document (the contents of the
document)
and returns a set of (term,docID)-pairs.

For instance...

...map() will be called for document 44 with its contents
“This is text on a website!“.
The map()-function breaks this into pairs, one pair for
each term occurring on website 44.

the same happens for document 42

and so forth

reduce(ikey, set of ivalue)
->

(fkey, fvalue)

reduce(term, set of docID)
->

(term, (posting list of docID, count))

reduce(``This´´,
	 {42,
	 43}
)
->
(``This´´, ([42, 43], 2))

reduce(``is´´,
	 {42,
	 43}
)
->
(``is´´, ([42, 43], 2))

What about reduce()?

For Web-index creation reduce() receives a term and
the set of docIDs containing that term.
reduce() then returns a pair of the input term and an
ordered posting loist of docIDs plus a count, i.e. the
number of web pages having that term.

Note: there are many variants how to do web-indexing
with MapReduce. The actual semantics used by
Google may differ; the core idea however is the same.

For instance: documents 42 and 43 contain “This“.
reduce() simply returns an ordered posting list plus the
count.

Documents 42 and 43 contain “is“.
reduce() simply returns an ordered posting list plus
count for this as well.

reduce(``boring´´,
	 {43}
)
->
(``boring´´, ([43], 1))

etc.

Other Applications:

Search
rec.a==42,
rec.contains(``bla´´),
rec.contains(0011001)

Machine Learning
k-means,
mahout library

Web-Analysis
sum of all accesses to page
Y from user X

etc.

Big Data ?

map() and reduce() with

and so forth

Many things can be mapped to the map()/reduce()-
interface, but not all.
Think about twice before blindly using MapReduce. It is
useful for many things, but not all.
Many important extensions have been done in the past
to support more application classes, i.e. iterative
problems.

HDFS

...

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

Bob

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

horizontal partitions

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

HDFS blocks
64MB (default)horizontal partitions

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

1

4

7

2 3

5 6

8 9

11 22 33

Let‘s assume a user Bob who wants to analyze a large
file.

Notice that this is a simplified explanation.
For details on how Hadoop works see our paper:
Hadoop++: Making a Yellow Elephant Run Like a
Cheetah (Without It Even Noticing), VLDB 2010
http://infosys.cs.uni-saarland.de/publications/DQJ
+10CRv2.pdf

http://www.istockphoto.com/file_closeup.php?
id=591134

Bob first needs to upload his file to Hadoop‘s
Distributed File System (HDFS).
HDFS partitions his data into large horizontal partitions.

Those horizontal partitions are termed HDFS blocks.
They are relatively large: at least 64MB up to 1GB.
Do not confuse these large HDFS blocks with the
typically small database pages (which are only a few
KB in size).

Each HDFS block receives a unique ID.

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4

7

2

3

5 6

8 9

11 22

3

3

44 55 66

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4

7

2

3 56

8 9

11 22

3

3

4 455 6 6

77 88 99

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

Failover

HDFS

The HDFS blocks get distributed and replicated over
the cluster. Each HDFS block gets replicated to at least
three different data nodes (DN1, ...DNn in this
example).

HDFS does this for every HDFS block of the input file.

Eventually all HDFS blocks have been sent to the
datanodes.

We gain nice failover properties: even if two datanodes
go offline, we still have one copy of the block.

Assume that we want to retrieve HDFS block 3. We lost
the copies on DN2 and DN5. However,we can still
retrieve a copy of block 3 from DN6.
Notice that once datanodes go offline HDFS (should)
copy blocks to other nodes to get back to having three
copies of each block again.

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

Load
Balancing

I would like to
have block 4!

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

HDFS

MapReduce

map(docID, document) -> set of (term, docID)

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

Map Phase

HDFS

MapReduce map(docID, document) -> set of (term, docID)

Another advantage of having three copies for each
block is load balancing. Whenever a user or an
application asks for a particular block, we have three
options for retrieving that block. The decision which
datanode to use may be made based on network
locality, network congestion, and the current load of the
datanodes.

So now we have our data stored in HDFS.
What about MapReduce?
And by “MapReduce“ I mean “Hadoop MapReduce“ in
the following.

MapReduce is another software layer on top of HDFS.
MapReduce consists of three phases.

In the first phase (the Map Phase) only the map-
function is considered.

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

Map Phase

HDFS

MapReduce

M1 M2 M3 M4 M5 M6 M7

map(docID, document) -> set of (term, docID)

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob

...
1

4 7

2

3 5

891 22

34 55 6 6

77

8

89

9

Map Phase

6

HDFS

MapReduce

1 3

4

M1 M2 M3 M4 M5 M6 M7

map(docID, document) -> set of (term, docID)

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob

...
1

4

2

3 5

81

34 55 6 6

77 89

9

Map Phase

6‘ 9‘ 8‘ 1‘ 3‘ 2‘ 7‘

9 1 23

76 8

9 1 23

76 8

2

HDFS

MapReduce

4

M1 M2 M3 M4 M5 M6 M7

map(docID, document) -> set of (term, docID)

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
12

45

81 2

34 455 6 6

77 89

9

Map Phase

5‘ 4‘

453

6‘ 9‘ 8‘ 1‘ 3‘ 2‘ 7‘

9 1 23

76 8

HDFS

MapReduce

M8 M9

map(docID, document) -> set of (term, docID)

MapReduce assigns a thread (AKA Mapper) at every
datanode having data to be processed for this job.

Each mapper reads one of the HDFS blocks...

..and breaks that HDFS blocks into records. This can
be customized with the RecordReader.
For each record map() is called. The output to that file
(also called intermediate results) is collected on the
local disks of the datanodes.
For instance, for block 6 the output is collected in file 6‘.

This is done for every block of the input file. Obviously
we do not have to do this with every copy of am HDFS
block. Processing one copy is enough.
With this the Map Phase is finished.

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

Shuffle Phase

5‘ 4‘6‘ 9‘ 8‘ 1‘ 3‘ 2‘ 7‘

HDFS

MapReduce group by term

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

Shuffle Phase

5‘ 4‘6‘ 9‘ 8‘ 1‘ 3‘ 2‘ 7‘

network

HDFS

MapReduce group by term

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

Shuffle Phase

5‘ 4‘6‘ 9‘ 8‘ 1‘ 3‘ 2‘ 7‘

networknetwork

HDFS

MapReduce group by term

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

Shuffle Phase

A-B C-D E-F G-H I-J K-L W-Z

networknetwork

HDFS

MapReduce group by term

Now, the Shuffle Phase starts.

In the Shuffle Phase all intermediate results are
redistributed over the different datanodes. In this
example we want to redistribute the intermediate
results based on the term, i.e. we want to group all
intermediate results by term.

This means, after shuffling, we obtain a range
partitioning on terms....

For instance, DN1 contains all intermediate results
having terms starting with A or B. In turn, DN2 has only
terms starting with C or D and so forth.
Once all data has been redistributed, the Shuffle Phase
is finished.

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

Reduce Phase

A-B C-D E-F G-H I-J K-L W-ZA-B C-D E-F G-H I-J K-L W-Z

HDFS

MapReduce

reduce(term, set of docID) -> set of
(term, (posting list of docID, count))

R1 R2 R3 R4 R5 R6 Rn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

Reduce Phase

A-B C-D E-F G-H I-J K-L W-Z

A-B‘ C-D‘ E-F‘ G-H‘ I-J‘ K-L‘ W-Z‘

A-B C-D E-F G-H I-J K-L W-Z

HDFS

MapReduce reduce(term, set of docID) -> set of
(term, (posting list of docID, count))

R1 R2 R3 R4 R5 R6 Rn

Hadoop
MapReduce
Advantages

failover
scalability

schema-later

ease of use

In the final Reduce Phase, MapReduce assigns
threads to the different datanodes having intermediate
results. These threads are termed reducers. The
reducers read the intermediate results and for each
distinct key they call reduce(). Notice that reduce() may
only be called once for each distinct key on the entire
cluster. Otherwise the semantics of the map()/reduce()-
paradigm would be broken.

The output of the reduce()-calls is stored on disk again.
In this example this is visualized to store the output on
local disk. However, Hadoop stores the output on
HDFS by default, i.e. the output of the Reduce Phase
gets replicated by HDFS again.

When to replicate which data for fault tolerance in
MapReduce is an interesting discussion. See our paper
RAFT for more details:
http://infosys.uni-saarland.de/publications/QPSD11.pdf

Hadoop
MapReduce
Disadvantages

Performance

MapReduce
Intro Hadoop++

HAIL

Hadoop++

And this and how to fix it is what the following material
is about.

Second Part

[VLDB 2010a]

VLDB 2010, Sep 15, Singapore

The “Map Reduce Plan“ partition load map reduce

fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L () and P subplans H1–H4 () which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-

T

L PPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

PPartsplit PPartsplit

H2

. . .

H3 Fetch Fetch Fetch

Store Store Store

Scan

PPartsplit

H4

. . .

M1 Union

RecReaditemize

MMapmap

PPartmem

LPartsh LPartsh LPartsh

Sortcmp Sortcmp Sortcmp

SortGrpgrp SortGrpgrp SortGrpgrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Mergecmp

SortGrpgrp

MMapcombine

Store

PPartsh

M2

. . .

M3

RecReaditemize

MMapmap

LPartsh

Sortcmp

SortGrpgrp

MMapcombine

Store

PPartsh

M4

. . .

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Mergecmp

SortGrpgrp

MMapreduce

R1 Store

T �1

. . .

R2

T �2

D
at

a
Lo

ad
Ph

as
e

M
ap

Ph
as

e
Sh

u⇥
e

Ph
as

e
R

ed
uc

e
Ph

as
e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans (), whereas R
determines the number of reducer subplans ().

Let’s analyze The Hadoop Plan in more detail:
Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 di�erent
data nodes with subplans H1–H4. Replicas are stored on di�erent
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on di�erent nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

§ The “MapReduce Plan“
has 10 user-defined
functions (UDFs):

! block
! split
! itemize
! mem
! map
! sh
! cmp
! grp
! combine
! reduce

Data
Load
Phase

Map
Phase

Shuffle
Phase

Reduce
Phase

Good Trojans!

Jens Dittrich, Jorge-Arnulfo Quiane-Ruiz, Alekh Jindal,
Yagiz Kargin, Vinay Setty, Jörg Schad
Hadoop++: Making a Yellow Elephant Run Like a
Cheetah (Without It Even Noticing)
VLDB 2010/PVLDB, Singapore
http://infosys.cs.uni-saarland.de/publications/DQJ
+10CRv2.pdf
slides:
http://infosys.cs.uni-saarland.de/publications/DQJ
+10talk.pdf

figure shows example with 4 mappers and 2 reducers
Hadoop MapReduce uses a hard-coded pipeline. This
pipeline cannot be changed. This is in sharp contrast to
database systems which may use different pipelines for
different queries.

However, Hadoop Map Reduce uses 10 user-defined
functions (UDFs).
Theses UDFs can be used to inject arbitrary code into
Hadoop...

...including code that was not intended to be injected
into Hadoop.

Our idea is somewhat similar to a trojan horse or a
trojan, i.e. a virus that is injected into a computer
system to harm or destory the system. However, we
inject trojans to improve or heal the system.

Therefore we are calling them...

http://www.istockphoto.com/stock-photo-1824642-
trojan-horse.php?st=0bab152

Selection Task

 0

 20

 40

 60

 80

 100

 120

 140

10 nodes 50 nodes 100 nodes

ru
nt

im
e

[s
ec

on
ds

]

Hadoop
HadoopDB

HadoopDB Chunks

Hadoop++(256MB)
Hadoop++(1GB)

Join Task

 0

 500

 1000

 1500

 2000

 2500

10 nodes 50 nodes 100 nodes

ru
nt

im
e

[s
ec

on
ds

]

Hadoop
HadoopDB

Hadoop++(256MB)
Hadoop++(1GB)

1Good Trojans in a DBMS?...
ROW TROJAN SQL VECTORWISE VECTORWISE2 VERTICA (other machine) Factor

Q1

Q6

Q12

Q14

76.730296 19.293983 22.0 31.276143 6.0 41.7 1.1 3.2
77.589034 8.6532381 16.0 25.845965 4.6 11.4 1.8 1.9
92.486038 37.331905 33.0 29.785149 4.3 15.3 0.9 8.7
81.207649 30.788114 28.0 22.291128 5.0 13.9 0.9 6.2

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row Trojan Columns
DBMS-Y DBMS-Z (a)
DBMS-Z (b)

[CIDR 2013a]

Good Trojans Versus Closed Source
Column Store DBMS

results taken from our VLDB 2010-paper

Hadoop++ is in the same ballpark or even faster than
HadoopDB (now spun-off as Hadapt)

Hadoop++ is up to a factor 18 faster than Hadoop

...even though we do not modify the underlying HDFS
and Hadoop MapReduce source code at all!
Our improvements are all done through UDFs only.

But wait: UDFs are also available in traditional
database systems. What happens if we exploit those
UDFs to inject “better technology“ into an existing
database system?

Say we inject column store technology into a
commercial, closed-source row store. How would that
look like?

It looks like this. For details see our paper: Alekh
Jindal, Felix Martin Schuhknecht, Jens Dittrich, Karen
Khachatryan, Alexander Bunte. How Achaeans Would
Construct Columns in Troy. CIDR 2013, Asilomar, USA.
http://infosys.uni-saarland.de/publications/How
%20Achaeans%20Would%20Construct%20Columns
%20in%20Troy.pdf You can get much faster than a row
store. We are not as fast as a from scratch
implementation of a column store. This has to do with
the different QP technology used. However for some
customers the performance of a native column store
might not even be required - especially for medium-
sized datasets. ...

Q Standard
Row

Trojan
Columns

Projected
View

Standard
Row

Projected
View

Trojan
Columns

Table

Q1
Q6
Q12
Q14
Q3
Q5
Q10_o
Q10_l
Q19
Q2
Q4
Q8
Q15

76.730295686 19.293982609 27.42381835 3.9769029152 1.4213663869 230.19088706 82.27146 57.881947828 lineitem
77.589033799 8.6532381493 21.787439044 8.9664738749 2.5178365218 232.7671014 65.36232 25.959714448 lineitem
76.73051647 16.504629093 26.582446376 4.6490300412 1.610605499 230.19154941 79.747339128 49.513887278 lineitem

76.333567335 25.592795096 20.15226419 2.9826194071 0.7874194325 229.00070201 60.456792571 76.778385288 lineitem
0 0 0 5.1437565596 lineitem
0 0 0 order
0 0 0 order
0 0 0 lineitem
0 0 0

2.935810086 1.9092920003 1.816512607 8.807430258 5.449537821 5.727876001 part
15.286783871 15.13420846 5.1889663903 45.860351612 15.566899171 45.402625379 order

0 0 0 part
0 0 0 lineitem

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row Trojan Columns
Materialized View

Good Trojans in a Closed Source Row
Store DBMS

[CIDR 2013a]

1...Good Trojans in a DBMS!

Problems:

Upload-Times

 0

 10000

 20000

 30000

 40000

 50000

10 nodes 50 nodes 100 nodes

ru
nt

im
e

[s
ec

on
ds

]

Hadoop
HadoopDB

Hadoop++(256MB)
Hadoop++(1GB)

(I)ndex Creation
(C)o-Partitioning
Data (L)oading

L

C

I

L

C

I

L

C

I

L

C

I

L

C

I

L

C

I

... Why buy a car with 1000hp if 200hp are just
enough?

An interesting result from our work is also that we can
beat materialized views for some queries.

With this let‘s close this footnote and go back to
Hadoop MapReduce performance.
UDFs in Hadoop allow us to boost query performance
without changing the underlying system.
However, what are the...

from Hadoop++ paper: The problem is that in order to
have fast queries we first have to “massage“ the data
before, i.e. create indexes, co-partition and so forth.
This takes time. Hadoop does not have to spend this
time and therefore uplloading the data to HDFS is fast.
In contrast, for Hadoop++ (but als HadoopDB) we also
have to do a lot of extra work. This extra work is very
costly. So costly that only after running many queries
these investments are amortized. In other words, if we
only want to run a few queries exploiting our indexes
and co-partitioning, we shouldn‘t use Hadoop++ in the
first place but rather run the queries directly on
Hadoop! How could we fix this problem?

=> coarse-granular
indexes

=> index selection
algos?

=> back to scanning?

MapReduce
Intro Hadoop++

HAIL

HAIL

Hadoop Aggressive Indexing Library

[VLDB 2012a]
[SOCC 2011]

[int‘ patent]

We could drop the idea of using indexes: just scan
everything.
Well we are not gonna follow this approach.
We could invest into better index selection algorithms.
If we pick the wrong index, index creation is unlikely to
be amortized. Therfore making the right choice is
important. Therefore...
Well we are not gonna follow this approach.
Or: as it is expensive to create all these indexes, we
better investigate coarse-granular indexes, i.e. indexes
that are cheaper to construct and yet give some benefit
at query time.
Well we are not gonna follow this approach.

We do something different. Which brings me to...

... the third part of my talk.
The approach I would like to present is coined HAIL.

HAIL means Hadoop Aggressive Indexing Library.
For details see our paper:
Jens Dittrich, Jorge-Arnulfo Quiane-Ruiz, Stefan
Richter, Stefan Schuh, Alekh Jindal, Jörg Schad. Only
Aggressive Elephants are Fast Elephants. VLDB 2012/
PVLDB, Istanbul, Turkey. http://infosys.uni-saarland.de/
publications/HAIL.pdf
A predecessor of this work focussing on data layouts in
HDFS is our paper:
Alekh Jindal, Jorge-Arnulfo Quiane-Ruiz, Jens Dittrich.
Trojan Data Layouts: Right Shoes for a Running
Elephant. ACM SOCC 2011, Cascais, Portugal. http://
infosys.uni-saarland.de/publications/JQD11.pdf

HAIL

...

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

Bob

HAIL

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

horizontal partitions

HAIL

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

HDFS blocks
64MB (default)horizontal partitions

HAIL

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

1

4

7

2 3

5 6

8 9

11 22 33

So back to Bob again. Recall tath Bob wants to analyze
a large file with Hadoop MapReduce.
So he first has to upload his file to HDFS.
In our approach we replace HDFS with HAIL. HAIL is
an extension of HDFS.

As before Bob‘s file gets partiitoned into HDFS blocks...

those blocks are relatively large, at least 64MB

then those blocks get partitioned to the different
datanodes (just as above)

HAIL

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4

7

2

3

5 6

8 9

11 22

3

3

44 55 66

HAIL

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

4

7

5 6

8 9

12

3

11 22

3

3

44 55 66

1 1 12 2 23

33

HAIL

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

7 8 9

1 1 12 2 23

33 456 4 455 6 6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

7 8 9

HAIL

1 1 12 2 23

33 456 4 455 6 664656 4 45 5

the HDFS blocks also get replicated (just as above)

but then, before writing the data to the local disks on
the different datanodes, we do something in addition:

we sort the data on each HDFS block in main memory.
Each replica is sorted using a different sort cirteria.
This means after sorting each HDFS block is available
in three different sort orders - roughly corresponding to
three different clustered indexes.
Notice that we do not redistribute data across HDFS
blocks! Data that was on one particular block in
standard HDFS will sit on the same HDFS block in
HAIL. In other words: the different copies of the block
contain the same data - yet in different sort orders.

Again, we do this for each and every copy of a block.

Notice that this is done without introducing additional I/
O. We fully piggy-back on the existing HDFS upload
pipeline.

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

HAIL

1 1 12 2 23

33 64656 4 45 5

7 8 977 88 99

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

HAIL

1 1 12 2 23

33 64656 4 45 5

9 9

8

8

9

87 7

7

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

HAIL

1 1 12 2 23

33 64656 4 45 5

9 9

8

8

9

87 7

78

8879 9

9 7

7

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...1 1 12 2 23

33 64656 4 45 5 8

8879 9

9 7

7

Failover

HAIL

Eventually uploading (and indexing) is finished.

What does this mean for HDFS failover?

Well actually, nothing changes. All data sits on the
same HDFS blocks as before. For instance, if we lose
DN2 and DN6, we can still retrieve block 3 from DN6.
That block might not be sorted along the desired sort
criteria, but it contains all the data. And we can use the
remaining block to recreate additional copies in other
sort orders.

little

Details

Network

Network

0110100010111
0101000110110

0101010101010
0011010001100

Block Metadata
0101001010111
0110010111010

C

B

A

PAX Block

0110100010111
0101000110110

0101010101010
0011010001100

Block Metadata
0101001010111
0110010111010

C

B

A

PAX Block

Network

...

forward
PCK

2

0110100010111
0101000110110

0101010101010
0011010001100

Block Metadata
0101001010111
0110010111010

C

B

A

PAX Block

PCK
1

PCK
2

PCK
1

append

HAIL Client Datanode DN1
upload

2

4
5

6

7

check

acknowledge

reassemble

PCK
2

PCK
1

reassemble

8

HAIL Block

1000101010001
0111101100110

1011000110110
1000101110101

Block Metadata
0000100100011
0011110111111

C

B

A

Index Metadata
Index

0010
1110

HAIL Block

0001001100011
0111100111111

1001110111011
1010101101010

Block Metadata
0010011101101
1101001101101

C

B

A

Index Metadata
IndexA C

ACK 1
3 2 1

ACK 2
3 2 1

ACK 1
3

ACK 1
3 2 1

ACK 2
3 2forward

1

Bob

10
15

13

9

buildA CB

1
preprocess

build

12

HDFS Namenode

Block directory HAIL Replica directory

14
registerregister

ACK 2
3

convert

11

notify

get location

3

OK

Datanode DN3

HAIL Upload Pipeline

HAIL Query Pipeline

MapReduce PipelineHadoop MapReduce Pipeline

HDFSHDFS

Task TrackerJob TrackerJob Client

Split Phase Scheduler Map Phase

for each split in splits {
 allocate split to closest
 DataNode storing block
}

Record Reader:
- Perform Index Scan
- Perform Post-Filtering
- for each Record invoke
 map(HailRecord)

send
splits[]

allocate
Map Task

chose
computing

Node

read
block42

DN3 DN4 DN5 DN6 DN7 DNnDN2

...
C BA

block42 block42 block42

1

2

3

4 6

5

7 store
output

...
@HailQuery(
filter="@3 between(1999-01-01, 2000-01-01)",
projection={@1})
void map(Text k, HailRecord v) {
 output(v.getInt(1), null);
}
...

MapReduce Job
Main Class

map(...)

reduce(...)

write
Job

run
Job

Bob's Perspective System's Perspective

i
i

i

HAIL Annotation

Bob

DN1

for each block in input {
 locations =
 block .getHostWithIndex(@3);
 splitBuilder.add(locations,
 block);
}
splits[] = splitBuilder.result;

i

i

i

Experiments

Well it is all somewhat more complex than explained in
the previous example.

We play some other tricks. For instance, while reading
the input file, we immediately parse the data into a
binary PAX (column like) layout. The PAX data is then
sent to the different datanodes. We also had to make
sure to not break the involved data consistency-checks
used by HDFS (packet acknowledge). In addition, we
extended the namenode to record additional
information on the sort orders and layouts used for the
different copies of an HDFS block. The latter is needed
at query time. None of these changes affects principle
properties of HDFS. We just extend and piggyback.

At query time HAIL needs to know how to filter input
records and which attributes to project to in
intermediate result tuples. This can be solved in many
ways. In our current implementation we allow users to
annotate their map-function with the filter and
projection conditions. However this could also be done
fully transparently by using static code analysis as
shown in: Michael J. Cafarella, Christopher Ré:
Manimal: Relational Optimization for Data-Intensive
Programs. WebDB 2010. That code analysis could be
used directly with HAIL. Another option, if the map()/
reduce()-functions are not produced by a user, is to
adjust the application. ...

...Possible “applications“ might be Pig, Hive, Impala or
any other system producing map()/reduce() programs
as its output. In addition, any other application not
relying on MapReduce but just relying on HDFS might
use our system, i.e. applications diurectly working with
HDFS files.

Upload Times

Hadoop Hadoop++ HAIL
0
1
2
3

1132 3472 671
5766 704

712
717

0

1700

3400

5100

6800

0 1 2 3

717712704671

5766

3472

1132

U
pl

oa
d

tim
e

[s
ec

]

Number of created indexes

Hadoop Hadoop++ HAIL

all with 3 replicas

Upload Time

Hadoop Hadoop++ HAIL
0
1
2
3

1132 3472 671
5766 704

712
717

0

1700

3400

5100

6800

0 1 2 3

717712704671

5766

3472

1132

U
pl

oa
d

tim
e

[s
ec

]

Number of created indexes

Hadoop Hadoop++ HAIL

all with 3 replicas

Upload Time

Hadoop Hadoop++ HAIL
0
1
2
3

1132 3472 671
5766 704

712
717

0

1700

3400

5100

6800

0 1 2 3

717712704671

5766

3472

1132

U
pl

oa
d

tim
e

[s
ec

]

Number of created indexes

Hadoop Hadoop++ HAIL

all with 3 replicas

Upload Time

What happens if we upload a file to HDFS?

Let‘s start with the case that no index is created by any
of the systems.
Hadoop takes about 1132 seconds

Hadoop++ is considerably slower. Even though we
switch off index creation here, Hadoop++ runs an extra
job to convert the input data to binary. This takes a
while.
What about HAIL?

HAIL is faster than Hadoop HDFS. How can this be?
We are doing more work than Hadoop HDFS, right?
For instance, we convert the input file to binary PAX
during upload directly. This can only be slower than
Hadoop HDFS but NOT faster. Well, when converting
to binary layout it turns out that the binary
represenation of this dataset is smaller than the textual
representation. Therefore we have to write less data
and SAVE I/O. Therefore HAIL is faster for this dataset.
This does not necessarily hold for all datasets. Notice
that for this and the following experiments we are not
using compression yet. We expect compression to be
even more beneficial for HAIL.

Hadoop Hadoop++ HAIL
0
1
2
3

1132 3472 671
5766 704

712
717

0

1700

3400

5100

6800

0 1 2 3

717712704671

5766

3472

1132

U
pl

oa
d

tim
e

[s
ec

]

Number of created indexes

Hadoop Hadoop++ HAIL

all with 3 replicas

Upload Time

Hadoop Hadoop++ HAIL
0
1
2
3

1132 3472 671
5766 704

712
717

0

1700

3400

5100

6800

0 1 2 3

717712704671

5766

3472

1132

U
pl

oa
d

tim
e

[s
ec

]

Number of created indexes

Hadoop Hadoop++ HAIL

all with 3 replicas

Upload Time

Hadoop Hadoop++ HAIL
0
1
2
3

1132 3472 671
5766 704

712
717

0

1700

3400

5100

6800

0 1 2 3

717712704671

5766

3472

1132

U
pl

oa
d

tim
e

[s
ec

]

Number of created indexes

Hadoop Hadoop++ HAIL

all with 3 replicas

Upload Time

0

1075

2150

3225

4300

3 5 6 7 10

1700
12541089956717

3710

2712
2256

1773

1132

U
pl

oa
d

tim
e

[s
ec

]

Number of created replicas

Hadoop HAIL

(default)

Hadoop upload time with 3 replicas

Replica Scalability

So what happens if we start creating indexes? We
should then feel the additional index creation effort in
HAIL.

For Hadoop++ we observe long runtimes.
For HAIL, in contrast to what we expected, we observe
only a small increase in the upload time.

The same observation holds when creating two
clustered indexes with HAIL...

...or three.
This is because, standard file upload in HDFS is I/O-
bound. The CPUs are mostly idle. HAIL simply exploits
the unused CPU ticks that would be idling otherwise.
Therefore the additional effort for indexing is hardly
noticeable.

Disk space is cheap. For some situations It could be
affordable to store more than three copies of an HDFS
block. What would be the impact on the upload times?
The next experiment shows the results...

Here we create up to 10 replicas - corresponding to 10
different clustered indexes.

We observe that in the same time HDFS uploads the
data without creating any index, HAIL uploads the data,
converts to binary PAX, and creates six different
clustered indexes.

10 NODES
Synthetic
1st Run(sec)
2nd Run (sec)
3rd (run)
Average
Pavlo
1st Run (sec)
2nd Run (sec)
3rd Run (sec)
Average

50 NODES
Synthetic
1st Run(sec)
2nd Run (sec)
3rd (run)
Average
Pavlo
1st Run (sec)
2nd Run (sec)
3rd Run (sec)
Average

100 NODES
Synthetic
1st Run(sec)
2nd Run (sec)
3rd (run)
Average
Pavlo
1st Run (sec)
2nd Run (sec)
3rd Run (sec)
Average

Hadoop Hail
809 608
827 599
845 593

827 600
Hadoop Hail

1300 1678
1296 1866
1257 1682
1284.3333333 1742

Hadoop Hail
983 720
892 686
878 647
917.66666667 684.33333333

Hadoop Hail
1874 1494
1612 1558
2022 1538

1836 1530

Hadoop Hail
1227 615
1014 645
836 639
1025.6666667 633

Hadoop Hail
1582 1519
1527 1420
1319 1518

1476 1485.6666667

0

550

1100

1650

2200

Syn UV Syn UV Syn UV

1486

633

1530

684

1742

600

1476

1026

1836

918

1284

827

U
pl

oa
d

Ti
m

e
[s

ec
]

Number of Nodes

Hadoop HAIL

10 nodes 50 nodes 100 nodes

min hadoop min hail
18 7 18 8

27.333333333 64 15.666666667 124
39.666666667 37.333333333 65.333333333 35.666666667

224 36 186 28
189.66666667 18 201.33333333 12

157 65.666666667 106 33.333333333

Scale-Out

modulo variance, see [VLDB 2010b]

Query Times

Individual Jobs: Weblog, RecordReader

0

1000

2000

3000

4000

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5

683
333

527573

28642917

5383

2776
24422470

21122156

3358

R
R

 R
un

tim
e

[m
s]

MapReduce Jobs

Hadoop Hadoop ++ HAIL

Individual Jobs: Weblog, Job

0

375

750

1125

1500

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5

602598598598601

11451143

651705

1160 10991099
9421006

1094

Jo
b

R
un

tim
e

[s
ec

]

MapReduce Jobs

Hadoop Hadoop++ HAIL

We also evaluated upload times on the cloud using
EC2 nodes. Notice that experiments on the cloud are
somewhat problematic due to the high runtime variance
in those environments.
For details see our paper:
Jörg Schad, Jens Dittrich, Jorge-Arnulfo Quiane-Ruiz
Runtime Measurements in the Cloud: Observing,
Analyzing, and Reducing Variance
VLDB 2010/PVLDB, Singapore.
http://infosys.cs.uni-saarland.de/publications/
SDQ10.pdf
slides: http://infosys.cs.uni-saarland.de/publications/
SDQ10talk.pdf

What about query times?

Here we display the RecordReader times. They
correspond roughly to the data access time, i.e. the
time for further processing, which is equal in all
systems - is factored out.

We observe that HAIL improves query runtimes
dramatically.
Hadoop resorts to full scan in all cases.
Hadoop++ can benefit from its index if the query
happens to hit the right filter condition.
In contrast, HAIL supports many more filter conditions.

What does this mean for the overall job runtimes?

Well, those results are not so great.
The benefits of HAIL over the other approaches are
marginal?
How come?
It has to do with...

Scheduling Overhead

0

375

750

1125

1500

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5

Jo
b

R
un

tim
e

[s
ec

]

MapReduce Jobs

Hadoop Hadoop++ HAIL Overhead

HAIL Scheduling

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

1

6

4

7

Hadoop Scheduling

HAIL

MapReduce

5

12

11 22

23

12

2

2119

15 14

⇒ 7 map tasks (aka waves)

sort order

⇒ 7 times scheduling overhead

map(row) -> set of (ikey, value)

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob

HAIL Split
DN1

6

4

7

HAIL Scheduling

HAIL

MapReduce

5

12

11 22

12

2

2119

15 14

⇒ 1 map task (aka wave)

sort order

⇒ 1 times scheduling overhead

1

23

map(row) -> set of (ikey, value)

...the Hadoop scheduling overhead. Hadoop was
designed having long running tasks in mind. Accessing
indexes in HAIL, however, is in the order of
milliseconds. These milliseconds of index access are
overshadowed by scheduling latencies.
You can try this out with a simple experiment. Write a
MapReduce job that does not read any input, does not
do anything, and does not produce any output. This
takes about 7 seconds - for doing nothing.
How could we fix this problem?
By...

...introducing “HAIL scheduling“.

But let‘s first look back at standard Hadoop scheduling:

In Hadoop, each HDFS block will be processed by a
different map task. This leads to waves of map tasks
each having a certain overhead.
However the assignment of HDFS blocks to map tasks
is not fixed.
Therefore, ...

...in HAIL Scheduling we assign all HDFS blocks that
need to be processed on a datanode to a single map
task. This is achieved by defining appropriate “splits“.
see our paper for details.

The overall effect is that we only have to pay the
scheduling overhead once rather than 7 times (in this
example).
Notice that in case of failover we can simply reschedule
index access tasks - they are fast anyways.
Additionally, we could combine this with the recovery
techniques from RAFT, ICDE 2011.

Query Times
with HAIL Scheduling

0

375

750

1125

1500

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5

6522151516

11451143

651705

1160 10991099
9421006

1094

Jo
b

R
un

tim
e

[s
ec

]

MapReduce Jobs

Hadoop Hadoop++ HAIL

Individual Jobs: Weblog

Failover

Failover

Failover
HAIL-1Idx
Hadoop

113 63 33 1212 661 631
598 598

1099

0

375

750

1125

1500

Hadoop HAIL HAIL-1Idx

598598

1099

Jo
b

R
un

tim
e

[s
ec

]

Systems

Hadoop HAIL Slowdown

10.5 % slowdown 5.5 % slowdown

10.3 % slowdown

10 nodes, one killed

What are the end-to-end query runtimes with HAIL
Scheduling?

Now the good RecordReader times seen above
translate to (very) good query times.

What about failover?

We use two configurations for HAIL. First, we configure
HAIL to create indexes on three different attributes, one
for each replica. Second, we use a variant of HAIL,
coined HAIL-1Idx, where we create an index on the
same attribute for all three replicas. We do so to
measure the performance impact of HAIL falling back
to full scan for some blocks after the node failure. This
happens for any map task reading its input from the
killed node. Notice that, in the case of HAIL-1Idx, all
map tasks will still perform an index scan as all blocks
have the same index.
Overall result: HAIL inherits Hadoop MapReduce‘s
failover properties.

Summary(Summary(...))

BigData
=>MapReduce

Intro Hadoop++

HAIL

BigData
=>

HAIL

Hadoop++

fast querying
AND

fast indexing

BigData
=> Hadoop++

HAIL

of this talk

What I tried to explain to you in my talk is:

Hadoop MapReduce is THE engine for big data
analytics.

By using good trojans you can improve system
performance dramatically AND after the fact --- even for
closed-source systems.

BigData
=> Hadoop++

fast querying
AND

fast indexing

infosys.uni-saarland.de

HAIL allows you to have fast index creation AND fast
query processing at the same time.

project page:
http://infosys.uni-saarland.de/hadoop++.php

Copyright of alls Slides Jens Dittrich 2012

annotated slides are available on that page

