Efficiently

Indexing AND Querying
Big Data

in Hadoop MapReduce

Jens Dittrich

SAARLAND piq
UNIVERSITY L
I

COMPUTER SCIENCE

MapReduce
Intro

MapReduce
Intro

Copyright of all slides: Jens Dittrich 2012

This talk consists of three parts.

First Part

Big data is the new “very large®.

Big data is everywhere: CERN...

http://cdsweb.cern.ch/record/1295244

...moving objects indexing...

http://www.istockphoto.com/stock-video-4518244-la-
trafic-a-time-lapse.php

...astronomy...

http://www.flickr.com/photos/
14924974@N02/2992963984/

basically whenever you point a satellite dish up in the
air, you collect tons of data

but also in...
\href{http://it.wikipedia.org/wiki/

File:KSC_radio_telescope.jpgKhttp://it.wikipedia.org/
wiki/File:KSC_radio\ telescope.jpg}

facebook

Google

[Dean et al, OSDI’04]

...genomics...

http://www.istockphoto.com/stock-
illustration-16136234-dna-strands.php

...social networks...

...and search engines.

They proposed a system to effectively analyze big
data.

MapReduce

@hadaa

[MTlap Heduce

Big Data Tutorial
[VLDB 2012b)]

Semantics:

That system was coined “MapReduce®. The system is
Google-proprietary.

Hadoop is the open source variant. It has a large
community of developers and start-up companies.

We presented a tutorial on Big Data Processing in
Hadoop MapReduce at VLDB 2012.

It contains many details on data layouts, indexing,
query processing and so forth.

The tutorial slides are available online:
http://infosys.uni-saarland.de/publications/
BigDataTutorialSlides.pdf

Let‘s briefly revisit the MapReduce interface:

just two functions: map() and reduce()

map(key, value) -> set of (ikey, ivalue)

reduce(ikey, set of ivalue) -> (fkey, fvalue)

Let's look at a concrete use-case:

Google-Use Case:

This is vital for Google‘s search service you use
everyday.

Web-Index Creation

In this use-case the map function...

map(key, value)

->
set of (ikey, ivalue)

...takes a docID and a document (the contents of the
document)
and returns a set of (term,doclID)-pairs.

For instance...

map(doclD, document)
->
set of (term, doclID)

map(44, ...map() will be called for document 44 with its contents
“This is text on a website!” “This is text on a website!".

The map()-function breaks this into pairs, one pair for

each term occurring on website 44.

("This™, 44),
(Cis”, 44),
("text”, 44),
("on”, 44),
("a”, 44),
("website”, 44)

map(42, the same happens for document 42
“This is just another website!”

("This™, 42),
(Vis”, 42),
(Cjust”, 42),
("another”, 42),
("website”, 42)

map(43, and so forth
“One more boring website!”

("One”, 43),

("more”, 43),
("boring”, 43),
("website”, 43)

reduce(ikey, set of ivalue)
>
(fkey, fvalue)

reduce(term, set of doclD)
->
(term, (posting list of doclID, count))

reduce(This”,
{42,
43}
)
->
("This”, ([42, 43], 2))

reduce(is”,
{42,
43}

)

->
(Mis”, ([42, 43], 2))

What about reduce()?

For Web-index creation reduce() receives a term and
the set of docIDs containing that term.

reduce() then returns a pair of the input term and an
ordered posting loist of doclIDs plus a count, i.e. the
number of web pages having that term.

Note: there are many variants how to do web-indexing
with MapReduce. The actual semantics used by
Google may differ; the core idea however is the same.

For instance: documents 42 and 43 contain “This".
reduce() simply returns an ordered posting list plus the
count.

Documents 42 and 43 contain “is”.
reduce() simply returns an ordered posting list plus
count for this as well.

and so forth

reduce("boring”,

)

->
("boring”, ([43], 1))

{43}

etc.

Other Applications:

Many things can be mapped to the map()/reduce()-
Search interface, but not all.
[gg-gg:t‘;f;]s(“bla”) Think about twice before blindly using MapReduce. It is
rec.contains(0011001) usefullfor many thlngs,_but not all. .
Many important extensions have been done in the past
Machine Learning to support more application classes, i.e. iterative
k-means, problems.
mahout library

Web-Analysis
sum of all accesses to page
Y from user X

map() and reduce() with

Big...

g <t

HDFS

%

horizontal partitions

HDFS

L R S L L el -

% D)
HDFS blocks

horizontal partitions 64MB (default)

HDFS

HDFS

Let‘s assume a user Bob who wants to analyze a large
file.

Notice that this is a simplified explanation.

For details on how Hadoop works see our paper:
Hadoop++: Making a Yellow Elephant Run Like a
Cheetah (Without It Even Noticing), VLDB 2010
http://infosys.cs.uni-saarland.de/publications/DQJ
+10CRv2.pdf

http://www.istockphoto.com/file_closeup.php?
id=591134

Bob first needs to upload his file to Hadoop‘s
Distributed File System (HDFS).
HDFS partitions his data into large horizontal partitions.

Those horizontal partitions are termed HDFS blocks.
They are relatively large: at least 64MB up to 1GB.
Do not confuse these large HDFS blocks with the
typically small database pages (which are only a few
KB in size).

Each HDFS block receives a unique ID.

HDFS

L A S S S L | G

¥

HDFS

L R S L L el -

¥

HDFS

LS S S S S | S

Failover

HDFS

- -

- Y

The HDFS blocks get distributed and replicated over
the cluster. Each HDFS block gets replicated to at least
three different data nodes (DN1, ...DNn in this
example).

HDFS does this for every HDFS block of the input file.

Eventually all HDFS blocks have been sent to the
datanodes.

We gain nice failover properties: even if two datanodes
go offline, we still have one copy of the block.

Assume that we want to retrieve HDFS block 3. We lost
the copies on DN2 and DN5. However,we can still
retrieve a copy of block 3 from DNG6.

Notice that once datanodes go offline HDFS (should)
copy blocks to other nodes to get back to having three
copies of each block again.

3
Load R I would like to
. have block 4!
Balancing o

HDFS

L A S S S L | G

¥

¥

HDFS

¥
? map(doclD, document) -> set of (term, docID)
[}

MapReduce
HDFS

LS S S S S | S

¥

Map Phase ¥

)
MapReduce map(docID, document) -> set of (term, doclD)
HDFS

L ov L ove L ons L one L ONs 1 ONG -

Another advantage of having three copies for each
block is load balancing. Whenever a user or an
application asks for a particular block, we have three
options for retrieving that block. The decision which
datanode to use may be made based on network
locality, network congestion, and the current load of the
datanodes.

So now we have our data stored in HDFS.

What about MapReduce?

And by “MapReduce® | mean “Hadoop MapReduce* in
the following.

MapReduce is another software layer on top of HDFS.
MapReduce consists of three phases.

In the first phase (the Map Phase) only the map-
function is considered.

¥

Map Phase ¥

ANy
MapReduce map(docID, document) -> set of (term, doclD)
HDFS

® I® '® I® I® 'O

‘ r

z @
P

E

¥

Map Phase

PR
MapReduce map(docID, document) -> set of (term, doclD)
HDFS

® I® '® I® 'O 'O

L R S L L el

[B%

¥

Map Phase ¥

ALY
MapReduce map(docID, document) -> set of (term, docID)
HDFS

® I® '® I® I® '@

(] [s] [e] [¥] [s] [2]

DEEs

¥

Map Phase ¥

ARy
MapReduce map(docID, document) -> set of (term, doclD)
HDFS

'@ ®
) 1l -

o] [e]s][e] [v] [2]«][2]

L ov L ove L ons L one L ONs 1 ONG

(]
i B

MapReduce assigns a thread (AKA Mapper) at every
datanode having data to be processed for this job.

Each mapper reads one of the HDFS blocks...

..and breaks that HDFS blocks into records. This can
be customized with the RecordReader.

For each record map() is called. The output to that file
(also called intermediate results) is collected on the
local disks of the datanodes.

For instance, for block 6 the output is collected in file 6°.

This is done for every block of the input file. Obviously
we do not have to do this with every copy of am HDFS
block. Processing one copy is enough.

With this the Map Phase is finished.

Shuffle Phase %

(1A

MapReduce group by term

HDFS

¥

Shuffle Phase ¥

Ll

MapReduce group by term

HDFS

network

- 1r 1 1 1 1
[¢] [eT=lfe] [¢] [e]«][#]

(]

Shuffle Phase

(TR

MapReduce group by term

HDFS

network
[| | | | |
[+]

!

Shuffle Phase %

(I

MapReduce group by term

HDFS

NEetWOrkK

[! ! ! ! !

1

-

Now, the Shuffle Phase starts.

In the Shuffle Phase all intermediate results are
redistributed over the different datanodes. In this
example we want to redistribute the intermediate
results based on the term, i.e. we want to group all
intermediate results by term.

This means, after shuffling, we obtain a range
partitioning on terms....

For instance, DN1 contains all intermediate results
having terms starting with A or B. In turn, DN2 has only
terms starting with C or D and so forth.

Once all data has been redistributed, the Shuffle Phase
is finished.

% reduce(term, set of docID) -> set of
Red Uce Phase ‘e (term, (posting list of docID, count))

MapReduce
HDFS

9 10 1Q 1Q 1Q1®

HE

Reduce Phase ‘1"

reduce(term, set of docID) -> set of
(term, (posting list of docID, count))

MapReduce
HDFS

D0 PP QIO

[E H6

Hadoop
MapReduce
Advantages

failover

scalability

schema-later

ease of use

In the final Reduce Phase, MapReduce assigns
threads to the different datanodes having intermediate
results. These threads are termed reducers. The
reducers read the intermediate results and for each
distinct key they call reduce(). Notice that reduce() may
only be called once for each distinct key on the entire
cluster. Otherwise the semantics of the map()/reduce()-
paradigm would be broken.

The output of the reduce()-calls is stored on disk again.
In this example this is visualized to store the output on
local disk. However, Hadoop stores the output on
HDFS by default, i.e. the output of the Reduce Phase
gets replicated by HDFS again.

When to replicate which data for fault tolerance in
MapReduce is an interesting discussion. See our paper
RAFT for more details:
http://infosys.uni-saarland.de/publications/QPSD11.pdf

Hadoop
MapReduce

And this and how to fix it is what the following material
is about.

MapReduce
Intro

Second Part

[VLDB 2010a]

The “Map Reduce Plan“ partition load map reduce
\

Data
Load
Phase

Map
Phase

Shuffle
Phase

Reduce
Phase

nnnnnnnnn

i The “MapReduce Plan“
TS b 0

uuuuu

has 10 user-defined

et - .
i m«- functions (UDFs}):
|
pe- e Clage g
wiEn wipm e i block
= = split
T . :
iy itemize
S
] mem
¢
map
W T sh
sk~ cmp
\\‘au*/ grp .
e combine
o)
l L 1 reduce

Good Trojans!

Jens Dittrich, Jorge-Arnulfo Quiane-Ruiz, Alekh Jindal,
Yagiz Kargin, Vinay Setty, Jorg Schad

Hadoop++: Making a Yellow Elephant Run Like a
Cheetah (Without It Even Noticing)

VLDB 2010/PVLDB, Singapore
http://infosys.cs.uni-saarland.de/publications/DQJ
+10CRv2.pdf

slides:
http://infosys.cs.uni-saarland.de/publications/DQJ
+10talk.pdf

figure shows example with 4 mappers and 2 reducers
Hadoop MapReduce uses a hard-coded pipeline. This
pipeline cannot be changed. This is in sharp contrast to
database systems which may use different pipelines for
different queries.

However, Hadoop Map Reduce uses 10 user-defined
functions (UDFs).

Theses UDFs can be used to inject arbitrary code into
Hadoop...

...iIncluding code that was not intended to be injected
into Hadoop.

Our idea is somewhat similar to a trojan horse or a
trojan, i.e. a virus that is injected into a computer
system to harm or destory the system. However, we
inject trojans to improve or heal the system.

Therefore we are calling them...

http://www.istockphoto.com/stock-photo-1824642-
trojan-horse.php?st=0bab152

results taken from our VLDB 2010-paper
Selection Task

: : : Hadoop++ is in the same ballpark or even faster than
140 - Hadoop zzzz Hadoop++(256MB) —— |
o e Hadaop++{1G5) HadoopDB (now spun-off as Hadapt)

HadoopDB Chunks ———
120

\
N

8077

60

runtime [seconds]

40 f

" 1N 1R

10 nodes 50 nodes 100 nodes

Hadoop++ is up to a factor 18 faster than Hadoop

Join Task
2500 : ‘ ...even though we do not modify the underlying HDFS
Hadoop @zzzz Hadoop++(256MB) ———
HadoopDB E==0 Hadoop++(1GE) mmmmm and Hadoop MapReduce source code at all!
2000 Our improvements are all done through UDFs only.
7 7
1500 7

1000 -

runtime [seconds]

500

T Tm R

10 nodes 50 nodes 100 nodes

But wait: UDFs are also available in traditional
database systems. What happens if we exploit those
UDFs to inject “better technology* into an existing
database system?

Say we inject column store technology into a
commercial, closed-source row store. How would that
look like?

'Good Trojans in a DBMS?...

It looks like this. For details see our paper: Alekh
Jindal, Felix Martin Schuhknecht, Jens Dittrich, Karen
Khachatryan, Alexander Bunte. How Achaeans Would
100 B -Starard-Row S — Construct Columns in Troy. CIDR 2013, Asilomar, USA.
= Bgmg;;(b) M DBMS-Z () http://infosys.uni-saarland.de/publications/How

%20Achaeans%20Would%20Construct%20Columns
%20in%20Troy.pdf You can get much faster than a row
store. We are not as fast as a from scratch
implementation of a column store. This has to do with
the different QP technology used. However for some
customers the performance of a native column store
might not even be required - especially for medium-
[CIDR 2013a] sized datasets. ...

Good Trojans Versus Closed Source
Column Store DBMS

75

50

Query Time (sec)

25

Q1 Q6 Q12 Q14

Good Trojans in a Closed Source Row

Store DBMS
100 :
B Standard Row Trojan Columns
Materialized View
—~ 75
Q
8
g
£ 80
>
)
O 25
0
Q1 Q6 Q12 Q14

[CIDR 2013a]

1...Good Trojans in a DBMS!

Upload-Times

50000 -

40000

30000

runtime [seconds]

10000 [

0

Hadoop] Hadoop++(256MB) e—|
HadoopDB =—=3 Hadoop++(1GB) s |
(I)ndex Creation
(C)o-Partiti

-Partitioning
Data (L)oading

20000

(o]

L

A b % %,

10 nodes 50 nodes 100 nodes

... Why buy a car with 1000hp if 200hp are just
enough?

An interesting result from our work is also that we can
beat materialized views for some queries.

With this let‘s close this footnote and go back to
Hadoop MapReduce performance.

UDFs in Hadoop allow us to boost query performance
without changing the underlying system.

However, what are the...

from Hadoop++ paper: The problem is that in order to
have fast queries we first have to “massage” the data
before, i.e. create indexes, co-partition and so forth.
This takes time. Hadoop does not have to spend this
time and therefore uplloading the data to HDFS is fast.
In contrast, for Hadoop++ (but als HadoopDB) we also
have to do a lot of extra work. This extra work is very
costly. So costly that only after running many queries
these investments are amortized. In other words, if we
only want to run a few queries exploiting our indexes
and co-partitioning, we shouldn‘t use Hadoop++ in the
first place but rather run the queries directly on
Hadoop! How could we fix this problem?

=> back-e-eecarning?

=> |naexselectien
aigos?

=> Coarse-granuilar
iITexes

MapReduce
Intro

[SOCC 2011]
[VLDB 2012a]
[int* patent]

Hadoop Aggressive Indexing Library

We could drop the idea of using indexes: just scan
everything.

Well we are not gonna follow this approach.

We could invest into better index selection algorithms.
If we pick the wrong index, index creation is unlikely to
be amortized. Therfore making the right choice is
important. Therefore...

Well we are not gonna follow this approach.

Or: as it is expensive to create all these indexes, we
better investigate coarse-granular indexes, i.e. indexes
that are cheaper to construct and yet give some benefit
at query time.

Well we are not gonna follow this approach.

We do something different. Which brings me to...

... the third part of my talk.
The approach | would like to present is coined HAIL.

HAIL means Hadoop Aggressive Indexing Library.

For details see our paper:

Jens Dittrich, Jorge-Arnulfo Quiane-Ruiz, Stefan
Richter, Stefan Schuh, Alekh Jindal, Jérg Schad. Only
Aggressive Elephants are Fast Elephants. VLDB 2012/
PVLDB, Istanbul, Turkey. http://infosys.uni-saarland.de/
publications/HAIL.pdf

A predecessor of this work focussing on data layouts in
HDFS is our paper:

Alekh Jindal, Jorge-Arnulfo Quiane-Ruiz, Jens Dittrich.
Trojan Data Layouts: Right Shoes for a Running
Elephant. ACM SOCC 2011, Cascais, Portugal. http://
infosys.uni-saarland.de/publications/JQD11.pdf

HAIL

¥

horizontal partitions

HAIL

L R S L L el -

‘ﬁ;’

HDFS blocks

horizontal partitions 64MB (default)

HAIL

HAIL

L ov L ove L ons L one L ONs 1 ONG -

So back to Bob again. Recall tath Bob wants to analyze
a large file with Hadoop MapReduce.

So he first has to upload his file to HDFS.

In our approach we replace HDFS with HAIL. HAIL is
an extension of HDFS.

As before Bob's file gets partiitoned into HDFS blocks...

those blocks are relatively large, at least 64MB

then those blocks get partitioned to the different
datanodes (just as above)

HAIL

¥
HAIL

L R S L L el

-

¥

HAIL

[Te]e]
bubed Aud du-

ﬁ?-'

HAIL

[Te]e]
bmim A -

L ov L ove L ons L one L ONs 1 ONG

-

the HDFS blocks also get replicated (just as above)

but then, before writing the data to the local disks on
the different datanodes, we do something in addition:

we sort the data on each HDFS block in main memory.
Each replica is sorted using a different sort cirteria.
This means after sorting each HDFS block is available
in three different sort orders - roughly corresponding to
three different clustered indexes.

Notice that we do not redistribute data across HDFS
blocks! Data that was on one particular block in
standard HDFS will sit on the same HDFS block in
HAIL. In other words: the different copies of the block
contain the same data - yet in different sort orders.

Again, we do this for each and every copy of a block.

Notice that this is done without introducing additional I/
O. We fully piggy-back on the existing HDFS upload
pipeline.

¥

HAIL

[Te]e]
fLdat Mt -2

L A S S S L | G

¥

HAIL

YVYY Fvyy vl

L R S L L el -

€

HAIL

AR AATANAR -

LS S S S S | S

Failover

HAIL

VYTV VYTV vl N

- Y

Eventually uploading (and indexing) is finished.

What does this mean for HDFS failover?

Well actually, nothing changes. All data sits on the
same HDFS blocks as before. For instance, if we lose
DN2 and DN6, we can still retrieve block 3 from DNG.
That block might not be sorted along the desired sort
criteria, but it contains all the data. And we can use the
remaining block to recreate additional copies in other
sort orders.

little

Details

HAIL Upload Pipeline

HAIL Query Pipeline

Experiments

Well it is all somewhat more complex than explained in
the previous example.

We play some other tricks. For instance, while reading
the input file, we immediately parse the data into a
binary PAX (column like) layout. The PAX data is then
sent to the different datanodes. We also had to make
sure to not break the involved data consistency-checks
used by HDFS (packet acknowledge). In addition, we
extended the namenode to record additional
information on the sort orders and layouts used for the
different copies of an HDFS block. The latter is needed
at query time. None of these changes affects principle
properties of HDFS. We just extend and piggyback.

At query time HAIL needs to know how to filter input
records and which attributes to project to in
intermediate result tuples. This can be solved in many
ways. In our current implementation we allow users to
annotate their map-function with the filter and
projection conditions. However this could also be done
fully transparently by using static code analysis as
shown in: Michael J. Cafarella, Christopher Ré:
Manimal: Relational Optimization for Data-Intensive
Programs. WebDB 2010. That code analysis could be
used directly with HAIL. Another option, if the map()/
reduce()-functions are not produced by a user, is to
adjust the application. ...

...Possible “applications® might be Pig, Hive, Impala or
any other system producing map()/reduce() programs
as its output. In addition, any other application not
relying on MapReduce but just relying on HDFS might
use our system, i.e. applications diurectly working with
HDFS files.

Upload Times

Upload Time
Hadoo Hadoop++ [HAIL
6800 [| p H p
(&)
[0
£ 5100
(0]
£ 3400
®
o 1700 132
o
° 0
0 1 2 3
Number of created indexes
all with 3 replicas
Upload Time
Hadoo Hadoop++ HAIL
6800 [| p H p [|
(&)
[0
£ 5100
o 372
£ 3400
®
o 1700 [ma2
o
° 0
0 1 2 3
Number of created indexes
all with 3 replicas
Upload Time
Hadoo Hadoop++ HAIL
6800 [| p H p [|
(&)
[0
£ 5100
o 372
£ 3400
®
g 1700 132 71
° 0

0 1 2 3
Number of created indexes

all with 3 replicas

What happens if we upload a file to HDFS?

Let‘s start with the case that no index is created by any
of the systems.
Hadoop takes about 1132 seconds

Hadoop++ is considerably slower. Even though we
switch off index creation here, Hadoop++ runs an extra
job to convert the input data to binary. This takes a
while.

What about HAIL?

HAIL is faster than Hadoop HDFS. How can this be?
We are doing more work than Hadoop HDFS, right?
For instance, we convert the input file to binary PAX
during upload directly. This can only be slower than
Hadoop HDFS but NOT faster. Well, when converting
to binary layout it turns out that the binary
represenation of this dataset is smaller than the textual
representation. Therefore we have to write less data
and SAVE 1/0. Therefore HAIL is faster for this dataset.
This does not necessarily hold for all datasets. Notice
that for this and the following experiments we are not
using compression yet. We expect compression to be
even more beneficial for HAIL.

Upload Time

Hadoo Hadoop++ HAIL
6800 [| p W P [|
(&)
[0
2,
(0]
£
e)
@©
o
o
)

2 3
Number of created indexes
all with 3 replicas

Upload Time

Hadoo Hadoop++ HAIL
6800 [| p W P [|
(&)
[0
2,
(0]
£
e)
3
o 712
= [|

2 3
Number of created indexes
all with 3 replicas|
Upload Time
M Hadoop [Hadoop++ [HAIL

= 6800 s
[0
2. 5100
o)
£ 3400
®
—8_ 1700 [671 704 72 77
)

Number of created indexes

3

all with 3 replicas|

Replica Scalability

I Hadoop B HAIL

4300

3225

2150

1075

Upload time [sec]

3 6 7
(default) .
Number of created replicas

- = = Hadoop upload time with 3 replicas 3710

10

So what happens if we start creating indexes? We
should then feel the additional index creation effort in
HAIL.

For Hadoop++ we observe long runtimes.
For HAIL, in contrast to what we expected, we observe
only a small increase in the upload time.

The same observation holds when creating two
clustered indexes with HAIL...

...or three.

This is because, standard file upload in HDFS is 1/O-
bound. The CPUs are mostly idle. HAIL simply exploits
the unused CPU ticks that would be idling otherwise.
Therefore the additional effort for indexing is hardly
noticeable.

Disk space is cheap. For some situations It could be
affordable to store more than three copies of an HDFS
block. What would be the impact on the upload times?
The next experiment shows the results...

Here we create up to 10 replicas - corresponding to 10
different clustered indexes.

We observe that in the same time HDFS uploads the
data without creating any index, HAIL uploads the data,
converts to binary PAX, and creates six different
clustered indexes.

Scale-Out

2200

1650

1100

550

Upload Time [sec]

Syn uv

Syn uv
50 nodes 100 nodes
Number of Nodes

modulo variance, see [VLDB 2010b]

Query Times

Individual Jobs: Weblog, RecordReader

I Hadoop [Hadoop ++ [l HAIL

4000

3000

2000

1000

RR Runtime [ms]

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5

MapReduce Jobs

Individual Jobs: Weblog, Job

M Hadoop M Hadoop++ [l HAIL

1500

160
125 [

750

375

Job Runtime [sec]

1008143 100d145

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5

MapReduce Jobs

We also evaluated upload times on the cloud using
EC2 nodes. Notice that experiments on the cloud are
somewhat problematic due to the high runtime variance
in those environments.

For details see our paper:

Jorg Schad, Jens Dittrich, Jorge-Arnulfo Quiane-Ruiz
Runtime Measurements in the Cloud: Observing,
Analyzing, and Reducing Variance

VLDB 2010/PVLDB, Singapore.
http://infosys.cs.uni-saarland.de/publications/
SDQ10.pdf

slides: http://infosys.cs.uni-saarland.de/publications/
SDQ10talk.pdf

What about query times?

Here we display the RecordReader times. They
correspond roughly to the data access time, i.e. the
time for further processing, which is equal in all
systems - is factored out.

We observe that HAIL improves query runtimes
dramatically.

Hadoop resorts to full scan in all cases.

Hadoop++ can benefit from its index if the query
happens to hit the right filter condition.

In contrast, HAIL supports many more filter conditions.

What does this mean for the overall job runtimes?

Well, those results are not so great.

The benefits of HAIL over the other approaches are
marginal?

How come?

It has to do with...

Scheduling Overhead

.15I6|(a)doop [l Hadoop++ [HAIL [] Overhead

El R

0

Job Runtime [sec]

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5
MapReduce Jobs

HAIL Scheduling

Hadoop Scheduling

map(row) -> set of (ikey, value)

MapReduce
HAIL

“ P sort order

w = 7 map tasks (aka waves)

= 7 times scheduling overhead

HAIL Scheduling

map(row) -> set of (ikey, value)

MapReduce
HAIL

“ I sort order

= 1 map task (aka wave)

ﬁﬂ % = 1 times scheduling overhead
%\HAIL Split

...the Hadoop scheduling overhead. Hadoop was
designed having long running tasks in mind. Accessing
indexes in HAIL, however, is in the order of
milliseconds. These milliseconds of index access are
overshadowed by scheduling latencies.

You can try this out with a simple experiment. Write a
MapReduce job that does not read any input, does not
do anything, and does not produce any output. This
takes about 7 seconds - for doing nothing.

How could we fix this problem?

By...

...introducing “HAIL scheduling®.

But let's first look back at standard Hadoop scheduling:

In Hadoop, each HDFS block will be processed by a
different map task. This leads to waves of map tasks
each having a certain overhead.

However the assignment of HDFS blocks to map tasks
is not fixed.

Therefore, ...

...in HAIL Scheduling we assign all HDFS blocks that
need to be processed on a datanode to a single map
task. This is achieved by defining appropriate “splits.
see our paper for details.

The overall effect is that we only have to pay the
scheduling overhead once rather than 7 times (in this
example).

Notice that in case of failover we can simply reschedule
index access tasks - they are fast anyways.
Additionally, we could combine this with the recovery
techniques from RAFT, ICDE 2011.

What are the end-to-end query runtimes with HAIL

Scheduling?
Query Times
with HAIL Scheduling
Individual Jobs: Weblog Now the good RecordReader times seen above

translate to (very) good query times.

Hadoo Hadoop++ [HAIL
1500 _ P W P

125 PR o 100143 1008145

750

375

Job Runtime [sec]

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5
MapReduce Jobs

What about failover?

Failover

We use two configurations for HAIL. First, we configure
HAIL to create indexes on three different attributes, one
for each replica. Second, we use a variant of HAIL,
coined HAIL-1ldx, where we create an index on the

B Hadoop W HAIL Slowdown same attribute for all three replicas. We do so to
10.3 % slowdown measure the performance impact of HAIL falling back
to full scan for some blocks after the node failure. This
happens for any map task reading its input from the
killed node. Notice that, in the case of HAIL-1Idx, all
Hadoop HAIL HAIL-1ldx map tasks will still perform an index scan as all blocks

Systems have the same index.

Overall result: HAIL inherits Hadoop MapReduce‘s
10 nodes, one killed failover properties.

Failover

1500

1125
750 10.5 % slowdown 5.5 % slowdown

375

Job Runtime [sec]

Summary(Summary(...))

MapReduce
Intro

BigData
=>

‘i@’hadaap

[Tlap/Reduce;

BigData
=>

‘i@’hadaap

[Tlap/Reduce;

of this talk

What | tried to explain to you in my talk is:

Hadoop MapReduce is THE engine for big data
analytics.

By using good trojans you can improve system
performance dramatically AND after the fact --- even for
closed-source systems.

BigData

=>

:@hadaap

[Tlap/Reduce;

fast indexing

AND

fast querying

infosys.uni-saarland.de

HAIL allows you to have fast index creation AND fast
query processing at the same time.

project page:
http://infosys.uni-saarland.de/hadoop++.php

Copyright of alls Slides Jens Dittrich 2012

annotated slides are available on that page

