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ABSTRACT
Database indexes are a core technique to speed up data retrieval

in any kind of data processing system. However, in the presence

of schemas with many attributes it becomes infeasible to create in-

dexes for all columns, as maintenance costs and space requirements

are simply too high. In these situations, a much more promising

approach is to adaptively index the data, i.e. the database gradually

partitions (or cracks) those columns that are frequently used in

selections. In doing so, the “indexedness” of a table adapts to the re-

quirements of the workload. A large body of work has investigated

database cracking, which is a subset of adaptive indexing.
Irrespective of their algorithmic behavior, essentially all these

works have in common, that the proposed methods use a simple

two-sided in-place cracking kernel at the core, which performs a

partitioning step. As this partitioning makes a large portion of the

total indexing e�ort, the choice of the kernel can make a factor of

two di�erence in the running time for a method sitting on top.

To approach the topic, we �rst perform an experimental evalua-

tion of existing state-of-the-art kernels and study their respective

downsides in detail. Based on the gained insights, we propose both

an advanced version of the best existing kernel as well as a new and

unconventional approach, which utilizes features of the operating

system as well as data parallelism. In our �nal evaluation of all

kernels, we vary entry size, index layout, selectivity, and number

of threads, and provide a decision tree to select the best cracking

kernel for the respective situation.
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1 INTRODUCTION
Database indexing is a classical way of achieving fast query execu-

tion. However, e�ectively pre-building indices requires knowing

the workload a priori and having enough time to build the indices.

These conditions are not always satis�ed, e.g. in schemas withmany

hundreds of frequently accessed attributes, in streaming environ-

ments, or with temporally changing workloads. As a consequence,

Database cracking [5, 11, 14, 21, 24] incrementally builds an adaptive
index as a side product of answering incoming queries.
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Figure 1: Column A is cracked by serving two range queries
using a crack-in-two kernel.

1.1 Core Idea of Adaptive Indexing:
Learn the Distribution of Search Predicates

The family of adaptive indexes is one of the many examples of

query processing techniques that learn statistics on the data and/or

queries, in order to speed-up query processing. The main idea of

adaptive indexing is to learn the distribution of selection predicates

in the queries and take that as a hint on how to index the data.

Early proposals of adaptive indexing, like the original database

cracking [14], gradually build a decision tree to learn the predicate

distribution of queries for a particular column. Database cracking

starts with an empty tree. Then, each incoming query is interpreted

as an insert operation on that decision tree, i.e. a hint how to re�ne

the decision tree, plus one partitioning step on the column, i.e. one

input partition is broken into two subpartitions using a so-called

crack-in-two kernel.
Figure 1 visualizes the concept of standard cracking [14], the

most basic form of database cracking. Initially, the so called cracker
column A has no partitions. When the �rst query Q1 arrives, the
cracker column is partitioned into two partitions according to the

range predicate A < 67 using a crack-in-two kernel. This introduces
a partition boundary or crack1. To process the next range query

Q2, we �rst identify the partition we have to re�ne to answer

A > 35. We see that the predicate requires a repartitioning of the

�rst partition, so we split it in two using the crack-in-two kernel

again. The column is incrementally indexed by repeatedly serving

range queries and query execution time improves as the adaptive

index becomes more accurate.

In this paper, we focus on the partitioning part: how to split

one partition into two subpartitions e�ciently using a cracking
kernel. These cracking kernels are the work horses in almost all

adaptive indexing proposals (and even very mundane techniques

like quicksort). Obviously, the choice of the cracking kernel has a

huge impact on the overall running time of the cracking method

1
The cracks are tracked in an auxiliary decision tree called the cracker index. That
index also re�ects the history of query predicates.
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sitting on top, as the entire physical reorganization of the cracker

column is performed by the kernel.

2 A BRIEF HISTORY OF ADAPTIVITY AND
LEARNING IN INDEXING

Before we look at how the state-of-the-art cracking kernels work

and perform, let us brie�y discuss the history and current position-

ing of adaptive indexing, to understand the impact of this work.

A cracker index is a model of the distribution of query predicates.

That model becomes more accurate over time. A similar observation

is obviously also true for any other tree-index like B-trees where the

inner nodes and/or each level of the tree represent a model of the

key column distribution at various levels. The literature on drawing

samples and modeling data distributions through histograms or

probability density functions (pdf) is immense and the e�ects of

exploiting data distributions for query processing (including in-

dexing) have been known for long. Prominent examples include:

bu�er trees [7], bulkloading [6], approximate query processing [8],

database compression [13], or even entropy encoding like Golomb-

Rice Codes [10] which are constructed by �rst scanning the data

to create a pdf, i.e. a model of the data distribution, and then us-

ing that pdf to construct the codes. A modern incarnation of this

idea, focusing on deep learning rather than traditional statistical

methods, is [18].

In a way, the initially proposed adaptive index [14], was a greedy

approach to sampling (or learning) the predicate distribution: each

predicate is directly translated into a re�nement of the recursive

partitioning process. This leads to a certain fragility w.r.t. the order

of incoming queries which was targeted by follow-up approaches

like stochastic cracking [11]. A comprehensive experimental eval-

uation of the di�erent approaches can be found in [24, 25]. More

recent work [22] investigates how to adapt the adaptivity (meta-

adaptivity), i.e. the index learns how to improve its learning strategy

(this is a form of meta-learning).

All these approaches have in common, that they perform simple

data partitioning at the core. This data partitioning is executed

by a cracking kernel. Thus, if we can improve the kernel, we can

improve a variety of adaptive indexing methods. Let us start by

analyzing the behavior of the state-of-the-art kernels.

3 REVISITING STATE-OF-THE-ART KERNELS
Branching Crack-in-Two. This kernel is used in the �rst work

on database cracking [14] and is an implementation of Hoare’s

partition algorithm [12]. Figure 2 shows the hot loop of the kernel.

1 while (begin < end) {

2 if (*begin < pivot) ++begin;

3 else if (*end >= pivot) --end;

4 else swap(*begin , *end);

5 }
Figure 2: Branching crack-in-two.

The algorithm maintains two cursors, called begin and end. The
cursor beginmarks the end of the partition of elements smaller than

the pivot and the cursor endmarks the beginning of the partition of

elements greater or equal to the pivot; elements in between begin
and end have yet to be partitioned. Initially, begin points to the

�rst element of the input and end points to the last element of the

input. In every iteration of the loop, the elements pointed to by

the two cursors are compared to the pivot. If an element belongs

inside the partition of its cursor, this cursor is advanced to the next

element and the partition grows. If no cursor has been advanced

in an iteration, both elements pointed to are swapped. Eventually,

all elements are partitioned and both cursors point to the same

element. The kernel terminates and the position of the crack is

returned.

Predicated Crack-in-Two. Pirk et al. [21] analyze branching

crack-in-two and observe that the conditional branches in the loop

body are frequently mispredicted, causing pipeline �ushes and im-

pairing performance. The e�ect of branch misprediction maximizes

as the selectivity of the query approaches 50%, where branches are

equally likely. The authors propose to replace conditional branch-

ing by predicated execution. The idea is to speculatively append an

element to both partitions, and only advance the cursor of the par-

tition the element belongs to. The goal of their work is to improve

crack-in-two from a CPU-bound to a memory-bound operation.

1 /* code to initialize the buffer (omitted) */

2 i = 0;

3 while (begin <= end) {

4 value = buffer[i]. values[buffer[i].which];

5 *begin = *end = value;

6 advance_lower = value < pivot;

7 advance_higher = value >= pivot;

8 begin += advance_lower;

9 end -= advance_higher;

10 buffer[i]. values[0] = *begin;

11 buffer[i]. values[1] = *end;

12 buffer[i].which = advance_higher;

13 i = 1 - i;

14 }

Figure 3: Predicated crack-in-two [21].
Figure 3 shows an excerpt of their implementation. Let us �rst focus

on how predicated execution is implemented. In lines 6 and 7, the

element value is compared to the pivot, and the results are saved

in two variables. In lines 8 and 9, these variables are used to update

the cursors begin and endwithout using conditional branches. The
algorithm speculatively stores one element at the positions pointed

to by the two cursors. In line 5, the element value is written to

positions begin and end. Since the element is appended to both

partitions, exactly one of the two speculative stores is correct while

the other store falsely overwrites an element. As we do not know

in advance which of the two stores is correct, both elements under

the cursors need to be backed up in a bu�er beforehand. In lines 10

and 11 and sketched in line 1, the elements under the cursors are

copied to the bu�er before they are speculatively overwritten in

the next iteration in line 5. In line 12, the �ag which in the bu�er

is set to indicate which of the two backed up elements has been

stored correctly. Note that the bu�er has two “levels”, addressed

by the index i. These two levels are necessary as the backup is

also speculative: although only one element is falsely overwritten,

both elements need to be backed up as we do not know beforehand

which store is incorrect. At the end of the loop body, the index i is

switched.

Vectorized Crack-in-Two. In the lines 1, 10, and 11 of Figure 3,
predicated crack-in-two backups the two elements to overwrite

in two bu�ers, where each bu�er can store a single element. To

get more predictable code, in vectorized crack-in-two [21] they

allow larger bu�ers, that backup entire chunks of data. In this

sense, vectorized crack-in-two can be seen as a generalization of
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predicated crack-in-two. In their evaluation, vectorized crack-in-

two is the best performing variant throughout all experiments.

As we can see, the three previously described kernels partition

the input in two parts. We want to mention here that there exist

works on crack-in-k kernels as well, which produce k partitions in

one reorganization step. For instance, in the �rst work on database

cracking [14], the authors propose a branching crack-in-three ker-

nel that they use to answer two-sided range queries. However, it

turned out that two consecutive calls to crack-in-two perform better

than a single crack-in-three call [24]. Thus, we focus on two-sided

kernels for the remainder of this work.

3.1 System Setup
We run our experiments on a compute server with two Intel

®
Xeon

®

E5-2620v4 CPUs at 2.10 GHz clock frequency and eight physical

cores each. Intel
®
Hyper-Threading and Intel

®
Turbo Boost are dis-

abled. The system has 32 GiBmainmemory, divided into twoNUMA

regions of 16 GiB each. The kernel of our OS is Linux 4.15. We use

cpuset [1] to isolate cores and exclusively run our benchmarks

on them. To ensure that all data resides on the same NUMA node

where the program is running, we bind our benchmark program to

the �rst node with numactl [2]. The benchmarks are compiled with

clang 5.0 and the options -O3 -march=native. All data points
reported are the median of �ve runs. We measure running time by

reading the TSC register; other events such as branch misses and

stalled cycles are counted (not sampled) with PAPI [3]. All experi-

ments are performed on a 4 GiB data set of (key, payload) tuples;
keys are unique and uniformly distributed over their respective

integer domain.

3.2 Evaluation
With the description of the state-of-the-art kernels and the system

setup at hand, let us now evaluate howwell the kernels perform.We

compare the throughput of the kernels with the single core memory

bandwidth, as measured with the bandwidth benchmark [26]. This

baseline is the theoretical maximum, and allows us to judge how

far an algorithm is from being memory bound.
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Figure 4: Relative comparison of branching and predicated
crack-in-two to the single corememory bandwidth on array-
of-struct (AoS) and struct-of-arrays (SoA) layout.

Figure 4 shows a comparison of the running times of branching

crack-in-two, predicated crack-in-two, and vectorized crack-in-

two in relation to the system’s single core memory bandwidth.

The x-axis shows the selectivity, i.e. how many of the elements

are less than the pivot. The y-axis shows the running time of a

single crack-in-two invocation in seconds. The elements subject to

partitioning are 2-tuples of 4 or 8 Byte elements, abbreviated 4+4
and 8+8, respectively. We consider both array-of-struct (AoS) and
struct-of-arrays (SoA) layouts. Pirk et al.’s vectorized crack-in-two

was evaluated with a vector size of 1024 Byte using the source code

provided on BitBucket [20]. The implementation supports only AoS

layout, hence we are not able to provide an evaluation of vectorized

crack-in-two for SoA layout. We make three major observations:

(1) Branching crack-in-two is up to 7 times slower and predi-
cated crack-in-two is up to 6 times slower than the theoreti-
cal optimum. Branching crack-in-two takes the most time at 50%

selectivity, and improves drastically as the selectivity approaches

the extreme of 0% or 100%. Roughly below 20% and above 80%

selectivity, branching crack-in-two becomes faster than predica-

ted crack-in-two. The performance of predicated crack-in-two is

independent of the selectivity and the throughput stays constant.

(2) Vectorized crack-in-two is faster than predicated crack-
in-two for smaller elements. The smaller the elements, the more

predicated crack-in-two su�ers from backing them individually. As

vectorized crack-in-two backs up entire chunks, the element size is

less important for the running time.

(3) Smaller elements requiremore time than larger elements.
Since there are twice as many 4+4 tuples as 8+8 tuples, twice as

many instructions and comparison are executed.

Based on these observations, we conclude that the discussed ker-

nels are CPU bound, spending a majority of their running time on

evaluating comparisons, manipulating auxiliary data, and waiting

for instructions to retire. The impact of the element size gives us

an impression of how much overhead remains from being memory

bound and that there is still room for improvement.

4 IMPROVING STATE-OF-THE-ART
In the previous section, we have seen that the state-of-the-art ker-

nels do not fully utilize the capabilities of the system. To identify the

nature of the problems, let us investigate branching crack-in-two

and predicated crack-in-two in the following in detail.

In Figure 5, we compare branching crack-in-two and predicated

crack-in-two by branch misses, stalled cycles, and running time.

For branching crack-in-two, we can see that the amount of branch

misses strongly correlates with the algorithm’s running time. Fur-

ther, we see that stalls only occur for extreme selectivities. The

reason for that is that branch prediction succeeds very often and

the kernel processes data faster than it can be served. Hence, the

processor has to stall instructions until the data arrives in the �ll

bu�ers. For predicated crack-in-two, we observe no branch misses

at all, which corresponds to the algorithm’s use of predicated exe-

cution. However, we observe an unexpected high amount of stalled

cycles. The same argument as for branching crack-in-two, that data

cannot be served fast enough, does not apply here; the running

time of predicated crack-in-two is far away from exceeding the

memory’s bandwidth limits.

A major performance bottleneck of the algorithm only becomes

apparent when analyzing the compiled assembly code. The com-

piler is not able to promote the bu�er to registers, although it only

contains four elements and two �ags. We credit this behavior to the

complex address computation in line 4 of Figure 3. Communicating



DaMoN’18, June 11, 2018, Houston, TX, USA Immanuel Ha�ner, Felix Martin Schuhknecht, and Jens Di�rich

Branch Misses (Mil.) Stalled Cycles (Mil.) Running Time [s]

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
0

1

2

3

0

200

400

600

0

100

200

Selectivity

Va
lu

e

Algorithm
branching crack−in−two

predicated cracking

Element size
4+4 Byte

8+8 Byte

Branch Misses (Mil.) Stalled Cycles (Mil.) Running Time [s]

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
0

1

2

3

0

200

400

600

0

100

200

Selectivity

Va
lu

e

Algorithm
branching crack−in−two

predicated cracking

Element size
4+4 Byte

8+8 Byte

Branch Misses (Mil.) Stalled Cycles (Mil.) Running Time [s]

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
0

1

2

3

0

200

400

600

0

100

200

Selectivity

Va
lu

e

Algorithm
branching crack−in−two

predicated cracking

Element size
4+4 Byte

8+8 Byte

Branch Misses (Mil.) Stalled Cycles (Mil.) Running Time [s]

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
0

1

2

3

0

200

400

600

0

100

200

Selectivity

Va
lu

e

Algorithm
branching crack−in−two

predicated cracking

Element size
4+4 Byte

8+8 Byte

Branch Misses (Mil.) Stalled Cycles (Mil.) Running Time [s]

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
0

1

2

3

0

200

400

600

0

100

200

Selectivity

Va
lu

e

Algorithm
branching crack−in−two

predicated cracking

Element size
4+4 Byte

8+8 Bytecrack-in-twocrack-in-two

Figure 5: Low-level comparison of branching crack-in-two
and predicated crack-in-two.

the backups through memory rather than registers has two disad-

vantages. First, additional loads and stores are issued. Although

the bu�er remains in the L1 data cache and loads/stores are served

within few cycles, this signi�cantly increases the overall latency

per iteration. Second, using the which �ag to select one of the two

elements in the bu�er through address computation prevents using

the conditional move instruction CMOVcc of the x86 architecture.

1 first = *begin;

2 second = *end;

3 while (begin <= end) {

4 /* first level , i=0 */

5 *begin = *end = first;

6 left = begin[1];

7 right = end[-1 ];

8 advance_lower = first < pivot;

9 begin += advance_lower;

10 end += advance_lower - 1;

11 first = advance_lower? left:right;

12 /* second level , i=1 */

13 *begin = *end = second;

14 left = begin[1];

15 right = end[-1 ];

16 advance_lower = second < pivot;

17 begin += advance_lower;

18 end += advance_lower - 1;

19 second = advance_lower? left : right;

20 } Figure 6: Predicated++ crack-in-two.

4.1 Predicated++ Crack-in-Two
To promote the backups to registers, we must get rid of the complex

address computation. First we eliminate the indirection introduced

by having two levels, which are addressed by index i. To do so, we

manually unroll the loop by factor 2. This allows us to specialize the

two instances of the loop body for the two values of i, i.e. 0 and 1.

The bu�er is split in two, where either instance of the loop body is

assigned one of the levels of the bu�er. Explicitly addressing the

level with index i is now super�uous. Loading the next element

from the bu�er still requires address computation involving the

which �ag. Let us examine Figure 3 again. Using the which �ag to

determine which element to load from the bu�er in line 4 is only

necessary because in lines 10 and 11 both elements are backed up

unconditionally. Alternatively, we can only backup the element

that will be selected by the which �ag. Thereby, the which �ag

becomes redundant and need not be stored. Further, as only the

selected element is stored, the bu�er shrinks in size to store just

two elements, one for each level.

Figure 6 shows our optimized predicated crack-in-two algorithm,

called predicated++ crack-in-two. Lines 1 and 2 correspond to the ini-
tialization of the bu�er; the elements under the cursors are backed

up. Lines 4 to 11 show the loop body specialized for i = 0, lines 12

to 19 show the specialization for i= 1. In line 5, the selected element

is speculatively appended to both partitions. In lines 6 and 7 the

next elements are loaded unconditionally into temporaries called

left and right. Lines 8 to 10 perform the comparison and advance

the cursors. In line 11, the next element is selected and stored in

the bu�er first. Lines 12 to 19 are equivalent.

4.2 Rewired Crack-in-Two
Before we evaluate predicated++ crack-in-two, let us discuss an-

other approach for kernel improvement. As we have seen before,

the performance of in-place partitioning algorithms is limited by

inherent data dependencies. In traditional crack-in-two kernels, in

each iteration an element is loaded, compared to the pivot, stored,

and one of the two pointers delimiting the partitions is advanced. In

the next iteration, again an element is loaded. The CPU must delay

execution of this load until the store operation of the previous itera-

tion retires [9, 16]. To overcome this limitation, we must �nd a way

to decouple successive iterations. When we look at out-of-place

partitioning, we see that the structure of the main loop is roughly

the same as for in-place partitioning: an element is loaded from the

input, compared to the pivot, stored at the output location, and the

pointer associated to that output location is updated. The subtle

di�erence here is that loading an element in one iteration need not

be delayed until the store of the previous iteration retires.

We conclude that, in order to break the aforementioned long-

latency data dependency, an output location di�erent from the

input location in form of a bu�er is required. This bu�er must be

“small” and of �xed size. But how can this algorithm be in-place

if input data is written to a bu�er? The answer is that we have to

move the partitioned data inside the bu�er back into the memory

region of the input. A simple way to do so is copying the data inside

the bu�er back into the memory region of the input. For example,

consider Pirk et al.’s vectorized crack-in-two, which uses small,

cache-resident bu�ers and a tuned AVX2 copy routine. Despite the

e�ort, it achieves only small improvement over predicated crack-

in-two for 4+4 tuples and performs worse for 8+8 tuples. As we can

see, copying back the partitioned data adds considerable overhead

and nulli�es the reason for using a bu�er in the �rst place. So how

to make use of the bu�er and avoid copying back partitioned data?

The answer lies in the rewiring of memory, that grants us the
required �exibility. Traditionally, the programmer works solely on

virtual memory. This virtual memory is transparently mapped to

physical memory by the operating system. To get a handle on the

mapping, in [23] we reintroduce physical memory to user space in

form of so-called main-memory �les. Using the mmap system call, it

is possible to freely map (or rewire) a virtual page to an o�set in

a main-memory �le. As that �le is internally backed by physical

memory, we establish a transitive mapping from virtual to physical

pages. This mapping can be freely manipulated at runtime, enabling

interesting opportunities in algorithm design. In the following, we

explain how rewiring is used to move the partitioned data inside

the bu�er back into the input’s virtual memory region.

4.2.1 Core Idea and Example. We explain rewired crack-in-two

by performing an example run step by step. The example is given in

Figure 7 and pseudocode is provided in Appendix A. In the �rst row,

there are three virtual memory regions, separated by a small gap.
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Figure 7: Rewired crack-in-two on an input of �ve pages. The partition to crack has the lower boundary 13 and upper bound-
ary 42. The cracking predicate is 27. The physical pages are labeled A-I. The bu�ers consist of two pages each.

The left region is the bu�er for elements less than the pivot, and is

backed by the two physical pages A and B. The right region is the

bu�er for elements greater or equal to the pivot, and is backed by

the two pages H and I. The region in between is the input, backed

by pages C to G, which we want to partition with the pivot 27.

Before our rewired crack-in-two is invoked, the cracking strategy

�nds the lower and upper bounds of the region that is cracked.

In our scenario, the index already contains the cracks 13 and 42,

which are the lower and upper bounds for our crack-in-two run.

Elements highlighted in red evaluated less than the pivot, elements

highlighted in blue evaluated greater equals to the pivot. Elements

highlighted in gray have been partitioned.

1.We begin with backing up elements that lie outside the cracked

region but inside pages that are part of the cracked region. The

elements 10, 9, 1 in page D lie outside the cracked region, but page

D is part of the cracked region, and hence these elements must

be backed up. We know that all elements left of crack 13 are less

than 13, and by transitivity less than our pivot 27. Therefore, we

simply copy the three elements to the bu�er of smaller elements.

Similarly, for page G we copy the elements 49, 77 to the bu�er of

larger elements. Note that this bu�er is �lled from right to left.

2. After performing the backups, we must partition the rest of

the pages D and G. We partition the remainder of page D, which

is the element 31. The element is greater than our pivot, and is

therefore appended to the right bu�er.

3. The rest of page G is partitioned. Both elements 26, 18 are less

than the pivot and are appended to the left bu�er.

4. By now we partitioned exactly two pages into our two bu�ers

of two pages each. We infer that at least one page of a bu�er is

�lled, and at most two pages are �lled in total. In step four we test

the bu�ers to �nd out which bu�er’s “�rst” page is �lled, i.e. we

test pages A and I from the third row. We �nd that page A is �lled

and page I is not. Therefore, page A needs to be rewired back into

the virtual memory region of the input. The arrows in the fourth

row picture how the mapping from virtual to physical pages is

permuted. For example, the virtual memory region that was backed
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by physical page D in the third row is now backed by physical page

A. It is safe for us to rewire these pages, because all elements from

the rewired input page D have been partitioned into the bu�ers; no

element is lost. Page B is moved to the start of the bu�er, and page

D becomes the second page of that bu�er. The elements in page D

are discarded and page D becomes a fresh, empty bu�er page. Page

I need not be rewired, and we proceed to the next step.

5. As we rewired a page from the left bu�er, we need to parti-

tion the next input page from the left, page E. Observe that it is

guaranteed that both bu�ers have at least one whole page of free
space left. This follows immediately from the previous step, where

we rewired the �rst �lled page of each bu�er. Partitioning moves

elements 23, 19, 16 to the left and element 38 to the right bu�er.

6. After partitioning one whole page to the bu�ers, we can again

infer that at least one page of a bu�er is �lled, and at most two pages

are �lled in total. We test both bu�ers and �nd that pages B and

I in the �fth row are �lled. Hence, both pages need to be rewired

back into the virtual memory region of the input. The arrows in

the sixth row depict the rewiring process.

7. The last page from the input, page F, is partitioned into the

bu�ers and the algorithm �nishes. The next two steps show how

the elements remaining in the bu�er are rewired back into the

virtual memory region of the input.

8. Currently, in row seven, the remaining elements are dissected

into two bu�ers. To merge them into one bu�er we append the

elements in the right bu�er to the left bu�er. It holds that this merge

will always exactly �ll the �rst page of the left bu�er.

9. At last, we rewire page D into the virtual memory region of

the input. The algorithm terminates by returning the position of

the crack, which lies in the page that was rewired last.

A concerned reader might argue that rewiring introduces heavy

fragmentation of the data, having a negative e�ect on sequential

access performance. However, this concern is not justi�ed: Virtual

to physical address translation has to happen for every memory

access, no matter whether accessed physical pages are consecutive.

4.2.2 SIMD. Rewired crack-in-two spends most of its running

time in partitioning the data to the bu�ers. We can exploit data

parallelism to speed up this task. We use the advanced vector ex-
tensions 2 (AVX2) [15] to partition 256 bits of keys and 256 bits

of payloads in a data parallel fashion. Figure 8 shows our SIMD

pipeline for 4 Byte elements, which is greatly inspired by the work

of Menon et al. [19]. First, eight keys are loaded into a SIMD register.

Then, the keys are compared to the pivot, yielding a 256 bit mask.

Using movemask we convert this mask to an index, an 8 bit integer

composed of the most signi�cant bits of the masksm7, . . . ,m0. The

number of 1-bits in this integer corresponds to the number of keys

that are less than the pivot. We can extract this number e�ciently

with the popcount instruction. Further, we use the index to access a
pre-computed, constant lookup table (LUT) of permutation vectors.

Such a permutation vector is then used to permute the keys and

payloads (p7, . . . ,p0) such that the elements inside the SIMD regis-

ter are properly partitioned. We append the entire SIMD register to

both lo and hi bu�er. Yet, we advance the boundaries of the bu�ers

only by num_less and 8−num_less, respectively. To optimize the

SIMD pipeline as much as possible, we made extensive use of the

Intel Architecture Code Analyzer (IACA) [17]. Of our many di�erent

<

0b10110010

movemask
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vector from LUT

permute
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Figure 8: The SIMD pipeline of partitioning.
implementations, we found the one described above to achieve the

highest throughput. For AoS layout, the innermost loop consists

of only 29 µOps – which nicely �t into the µOp loop bu�er – and

takes on average 9.00 clock cycles per iteration for 4 Byte elements

(30 µOps and 10.42 cycles for 8 Byte). For SoA layout, the innermost

loop consists of 27 µOps and takes on average 7.90 clock cycles per

iteration for 4 Byte elements (27 µOps and 8.84 cycles for 8 Byte).

4.2.3 Multithreading. Tomake use of multi-core systems, which

are omnipresent nowadays, we also want to parallelize cracking.

We elaborate two approaches to do so: (1) Initially, split the data

set into n equally sized chunks. For each incoming query, crack

the chunks independently. Queries are then served by extracting

the qualifying partitions of each chunk. (2) Alternatively, we can

parallelize the crack-in-two phase. The partition to crack is split into

n equally sized chunks, the chunks are cracked independently with

any crack-in-two kernel, and then the cracked chunks are merged

by a single thread to obtain exactly one crack. In the remainder

of this section, we focus on the second approach and explain how

rewiring can be used to signi�cantly improve over state-of-the-art.

In Section 5.3 we will evaluate both approaches.

The second approach was proposed by Pirk et al. [21] and termed

re�ned partition &merge. The authors engineer a specialized version
of predicated crack-in-two, that enables cheap merging. In Figure 9,

we can see how re�ned partition & merge splits data into three

chunks, where a chunk consists of two slices. The size of a slice is

chosen depending on the expected selectivity of the predicate, such

that the elements smaller than the predicate �t into the left slice

of the chunk, and the elements greater or equal to the predicate �t

into the right slice of the chunk. The slices are chosen such that

if the prediction of the selectivity is correct, almost no data needs

to be moved in the merge phase. It is generally di�cult to predict

the selectivity of a predicate precisely and hence we do not want

to rely on this assumption.

We present rewired partition & merge, a merge algorithm that is

completely independent of the selectivity of the predicate and the

used crack-in-two algorithm. We explain our algorithm along the

example in Figure 10 using three threads.

0. We divide the input data into three equally sized chunks,

and crack each chunk independently and concurrently using any

crack-in-two algorithm.

1. In the next step, we collect all pages entirely less than the

pivot from right to left, giving Pl = [I , F ,E,A]. Similarly, we collect

all pages entirely greater or equal to the pivot from left to right,

giving Pд = [C,D,H , J ,K ,L]. The cracks are collected from left to
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Figure 9: Re�ned partition & merge with a predicted se-
lectivity of 50%. Thread 0 partitions pages A,B,K,L (green),
thread 1 partitions pages C,D,I,J (orange), and thread 2 par-
titions pages E,F,G,H (yellow).
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Figure 10: The merge phase of rewired partition & merge.

right and stored in a sorted set Scrack = {cB , cG , c J }, sorted by their
location in the input data.

After computing Pд , Pl , and Scrack, we compute the pages to

rewire. Starting with index i = 0, we extract pages pli from Pl and
pдi from Pд . If pli is right of pдi , we add the pair (pli ,pдi ) to the list
of pages to swap, and increment i . For i = 0, pl0 = I and pд0 = C ,
and because I is right ofC , we add (I ,C) to the list of pages to swap.
Similarly, for i = 1, we add (F ,D) to the list. For pages E and H ,

however, E is not right of H , and we stop.

The list of pages to rewire is [(I ,C), (F ,D)]. We process this

list from right to left, swapping the pages in a tuple via rewiring.

First, pages F and D are rewired. Because of the particular order

in which we rewire pages, we can immediately tell that rewiring

pages F and D introduces a new crack between pages E and D
(highlighted in row 2), and we add this crack to Scrack. Next, we
rewire pages I and C . The crack c J at the beginning of page J is
thereby removed and hence erased from Scrack. After rewiring, we
have Scrack = {cB , cD , cG }.

2. Swapping pages in step 1 brought us close to the partitioned

state. However, the pages containing the cracks Scrack still con-

tain incorrectly placed data. To place data correctly, we swap the

leftmost element greater or equal to the pivot with the rightmost

element less than the pivot, similar to branching crack-in-two. How-

ever, whenever we reach a page boundary, we continue at the next

crack. In step 2, we swap elements of page B with elements of

pageG , until we reach the end of page B and the crack in page B is

removed.

3. We advance from page B to the next crack, which is at the

beginning of page D. Then we swap elements between page D and

page G until the crack in G is removed.

4. Eventually, all cracks but one have been removed. The last

remaining crack partitions the data into elements less than the

pivot and elements greater or equal to the pivot. Rewired partition

& merge terminates and returns the position of that crack.

To summarize, rewired crack-in-two can be dissected into two

phases: In the �rst phase, we create n equally sized partitions and

crack them independently and concurrently using n threads. We

call this phase parallel partitioning. The second phase, which starts

after parallel partitioning terminates, is called the merge phase. In
the merge phase, a single thread collects and rewires incorrectly

placed pages and swaps remaining incorrectly placed elements. At

the very end of the merge phase, a single crack remains in the data

set. Rewired partition & merge terminates by returning the position

of this crack.

In contrast to re�ned partition & merge, our rewired parti-

tion & merge does not rely on a specialized crack-in-two kernel or

the correct prediction of the predicate selectivity.

5 EVALUATION
As we have introduced an improved version of predicated crack-in-

two in form of predicated++ crack-in-two and our unconventional

approach of rewired crack-in-two, let us now perform a compar-

ison with branching crack-in-two, predicated crack-in-two, and

vectorized crack-in-two to �nd out whether we are able to improve

the weak spots of the baselines.

5.1 Running Time by Selectivity
First, we evaluate the performance of the crack-in-two kernels

for varying selectivity of the predicate. We run every algorithm

on the same initial data set, where the pivot is chosen to achieve

the desired selectivity. Figure 11a depicts our results. The black

horizontal line shows the theoretical single core bandwidth.

We see that Pirk et al.’s predicated crack-in-two outperforms

branching crack-in-two only for selectivities in the range of 20% −

80% for AoS and 40%− 60% for SoA layout. In the best case, predica-

ted crack-in-two improves over branching crack-in-two by 40% less

running time. Vectorized crack-in-two performs better on 4 Byte

elements, but slightly worse on average for 8 Byte elements.

Still, the algorithms are 3-4 times slower than the theoretical opti-

mum, and certainly not memory bound. Our predicated++ crack-in-
two has at least 33% less running time than predicated respectively

vectorized crack-in-two, and outperforms branching crack-in-two

in the range of 10% − 90% with a best of 2.5x the throughput of

branching crack-in-two. Our rewired crack-in-two on small pages

always performs worse than predicated++ crack-in-two, even when

using SIMD. Rewired crack-in-two on huge pages, however, shows

signi�cantly lower running times. The reason is soft page faults,

that occur whenever a page is accessed for the �rst time after being

rewired. These page faults happen 512 times more often for small

pages. On AoS layout, the SIMD variants of our rewired crack-in-

two algorithms perform equally to slightly better than their scalar

counterparts. Rewired crack-in-two on huge pages improves over
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(a) Crack-in-two running time under varying selectivity.
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(b) Accumulated time of 1000 uniformly distributed cracking steps.

Figure 11: Comparison of crack-in-two kernels on both AoS
and SoA layout for 4 and 8 Byte elements.

predicated++ crack-in-two by 30% less running time for 4 Byte el-

ements on AoS layout. On SoA layout, the non-SIMD version of

rewired crack-in-two on huge pages is slightly slower than predi-

cated++ crack-in-two. However, the SoA layout makes SIMD data

access particularly cheap, and the SIMD variant greatly improves

over its scalar variant. For 4 Byte elements, the algorithm improves

over predicated++ crack-in-two by 35% less running time. Overall,

predicated++ crack-in-two and rewired crack-in-two are able to

tighten the gap towards the memory’s bandwidth limit. The im-

proved variants outperform branching crack-in-two on selectivities

of 5% − 95%, and improve the throughput by up to 3.5x.

5.2 End-to-End Running Times
In our next experiment, we compare the algorithms by performing

1000 uniformly distributed cracks on the key range and compare

the end-to-end running time. The cracker index is implemented

with a std::map [4]. Figure 11b shows our results. Analyzing the
plot validates our �ndings from the �rst experiment. The fastest

algorithms again have the shortest running times in this experiment.

It is interesting to see that predicated crack-in-two performs just

as good (AoS) or even worse (SoA) than branching crack-in-two.

Although predicated crack-in-two improves over the worst case

of branching crack-in-two, i.e. at a selectivity of 50%, a uniform

distribution of selectivities frequently hits a point where branching

crack-in-two is actually faster. Therefore, the accumulated running

time of predicated crack-in-two is higher than branching crack-

in-two. As faster algorithms outperform branching crack-in-two

on a wider range of selectivities, less cracks fall outside this range,

where branching crack-in-two would be faster. For instance, in the

�rst experiment rewired crack-in-two (hugepages) outperforms

branching crack-in-two by up to 3.5x but the di�erence in this

experiment is just a factor of 2x. We suppose that rewired crack-in-

two in particular has relatively high costs for corner case handling,

i.e. proper initial partitioning of the boundary pages.

5.3 Multi-Threaded Execution
So far, we purely looked at single-threaded cracking on the entire

column. However, following the �rst approach of Section 4.2.3, we

can divide the column non-semantically into chunks and crack

these chunks individually in parallel. Thus, in Figure 12, we show

the scaling behavior of the kernels under multi-threaded execution

in comparison with their single-threaded counterpart. We focus on

AoS layout with 8 Byte elements and compare end-to-end times for

1000 queries. We vary the number of threads up to eight to fully

utilize a single CPU.
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Figure 12: Scaling capabilities of the kernels when varying
the threads from 1 to 8 under AoS layout and 4+4 Byte.
As we can see, the slower methods branching crack-in-two and

predicated crack-in-two show the best scaling capabilities and scale

essentially linearly with the number of threads. In contrast to that,

the methods that were faster in single-threaded mode reach their

highest performance with four threads already. The rewired meth-

ods perform the worst under multi-threading. The reason for this

is the serialized handling of mmap by the operating system.

To evaluate the second approach of Section 4.2.3, we compare

our rewired partition & merge with Pirk et al.’s re�ned parti-

tion & merge and and vary the number of threads to up to eight. We

measure the time for the parallel partitioning phase and the merge

phase separately and present them in a stacked area plot in Fig-

ure 13a. As baseline, we again show the single core bandwidth limit.

The time at the bottom of each blue area shows the time taken by

the partitioning phase. We can see that for any number of threads

our algorithm performs faster than re�ned partition & merge. Our
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algorithm spends signi�cantly less time in the partitioning phase,

and the merge phase of our algorithm takes so little time it is not

even visible in the plot.

A slight modi�cation of rewired crack-in-two was necessary to

make the algorithm scale well with the number of threads. When

�lling the bu�ers using regular store operations, the cachelines of

the bu�ers are �rst streamed to the CPU before they are modi�ed.

This works �ne as long as the bandwidth of the memory bus is not

exhausted. However, loading the cachelines before modifying them

doubles the amount of bytes read from main memory, and jams the

memory bus with unnecessary I/O. Since increasing the number of

threads puts more pressure on the memory bus, we want to reduce

memory I/O to a minimum to maximize scalability. Since we know

that the bu�er is written only, we can replace the regular stores

by non-temporal stores that bypass the caches and do not require

loading the corresponding cacheline �rst. This cuts the reads from

main memory in half and makes rewired partition & merge scale

well with an increasing number of threads.

Since the merge phase of our algorithm is barely visible in Fig-

ure 13a, we provide another plot where we focus on the merge

phase only. Figure 13b shows the time spent on merging the parti-

tioned chunks. The number above each area shows the maximum

time spent on merging, aggregated over all selectivities. The inter-

esting shape of re�ned partition & merge stems from the fact that

the algorithm cuts partitions into slices depending on the predicted

selectivity of the pivot. If prediction is accurate, the proportions

of the slices make merging very cheap. We did not assume that

the selectivity of the pivot can be predicted, and simply �xed the

predicted selectivity to 50%. Therefore, the algorithm takes the least

time for a selectivity of 50%. The extremes of 0% and 100% selectivity

are also very cheap because only very few elements are incorrectly

placed in the beginning and hence only very few elements must be

moved during the merge phase.

Our merge algorithm rewires pages that are entirely less or

entirely greater or equal to the pivot and hence avoids moving

elements whenever possible. Our algorithm only needs to move

incorrectly placed elements of pages that contain a crack. Since

every thread creates exactly one crack, we expect the merge phase

to process the elements of one page per thread.
2
Subsequently, the

amount of work spent in the merge phase depends mostly on the

number of threads, and the time is almost constant over di�erent

selectivities. However, the time taken by the merge phase slightly

increases with the number of threads. In a direct comparison, our

merge algorithm improves over Pirk et al.’s merge algorithm by a

factor of up to 58x. If the selectivity of a predicate can be estimated,

we expect re�ned partition & merge to perform roughly as fast as

our rewired partition & merge. However, if the estimate is just 5%

o�, this could already mean a slow-down by an order of magnitude.

Therefore, we want to stress that the advantage of our rewired

merge phase is not just the very fast merging itself, but also that

the algorithm does not rely on precise selectivity estimates.

2
The merge phase may introduce new or remove existing cracks. However, for n
threads the expected number of cracks and hence pages to process is n.

6 CONCLUSION
In this experimental study, we revisited the state-of-the-art data-

base cracking kernels and identi�ed their major weak spots. We

exposed branch misprediction and stalling as obstacles making the

kernels CPU bound. Based on these insights, we introduced ad-

vanced kernels in form of predicated++ crack-in-two and (SIMD)

rewired crack-in-two, which reduce the aforementioned problems

and utilize the memory bandwidth of the system more e�ciently.

Our evaluation shows that the choice of the kernel can make a dif-

ference of up to factor 2x. Finally, based on the parameters that we

vary in our experimental evaluation, we conclude our work with the

decision tree shown in Figure 14, that provides recommendations

which kernel to use in which situation.

borderline
selectivity?

no
yes

branching 
crack-in-two

8+8 Byte?
no

yes

predicated++ 
crack-in-two

yes

rewired crack-in-two 
(hugepages)

AoS?
no SIMD rewired crack-in-two 

(hugepages)

Figure 14: Kernel decision tree. A selectivity is classi�ed as
borderline, if it is below 5% or above 95%.
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A PSEUDOCODE OF REWIRED
CRACK-IN-TWO

Data: lo bu�er buflo , hi bu�er bufhi
Input : left boundary lb, right boundary rb, the pivot
Output :position of the crack for the given pivot

// Initialize variables.

1 pagele� ← page of lb
2 pageright ← page of rb
3 pagelo ← pagele�
4 pagehi ← pageright

// Handle the two boundary pages.

5 if lb not a page boundary then
6 copy elements left of lb in pagele� to buflo
7 if rb not a page boundary then
8 copy elements right of rb in pageright to bufhi
9 if lb not a page boundary then
10 partition elements right of lb in pagele� to bu�ers

11 pagele� ← pagele� +1
12 if rb not a page boundary then
13 partition elements left of rb in pageright to bu�ers

14 pageright ← pageright −1

// At least one buffer is half full; rewire.

15 fromLe�← buflo is half full?
16 isInit← buflo is half full? and bufhi is half full?
17 if buflo is half full then
18 rewire buflo and pagelo
19 pagelo ← pagelo +1

if bufhi is half full then
rewire bufhi and pagehi
pagehi ← pagehi −1

/* Partition one page at a time. */

23 while pagele� ≤ pageright do
// Partition the next page.

24 cur_page← fromLe� ? pagele� : pageright
25 partition all elements in cur_page to bu�ers

26 if fromLe� then pagele� ← pagele� +1
27 else pageright ← pageright −1

// Determine which page to partition next.

28 isFilledlo ← buflo is half full?
29 isFilledhi ← bufhi is half full?
30 if isInit and not isFilledlo and not isFilledhi then
31 isInit← False

32 fromLe�← not fromLe�
33 else if isFilledlo and isFilledhi then
34 isInit← True

35 fromLe�← True

36 else if isFilledlo then
37 fromLe�← True

38 else if isFilledhi then
39 fromLe�← False

// Rewire half-full buffers.

40 if isFilledlo then
41 rewire buflo and pagelo
42 pagelo ← pagelo +1
43 if isFilledhi then
44 rewire bufhi and pagehi
45 pagehi ← pagehi −1
46 end

// Compute position of the crack.

47 cur_page← fromLe� ? pagelo : pagehi
48 o�set← size(buflo)

// If necessary, merge buffers and rewire.

49 if o�set , 0 then
50 append elements of bufhi to buflo
51 rewire cur_page and buflo
52 return cur_page + o�set // Return crack position.

Algorithm A.1: Pseudo-code for rewired crack-in-two.
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