
73

Efficiently Computing Join Orders with Heuristic Search

IMMANUEL HAFFNER, Saarland University, Saarland Informatics Campus, Germany

JENS DITTRICH, Saarland University, Saarland Informatics Campus, Germany

Join order optimization is one of the most fundamental problems in processing queries on relational data.

It has been studied extensively for almost four decades now. Still, because of its NP hardness, no generally

efficient solution exists and the problem remains an important topic of research. The scope of algorithms to

compute join orders ranges from exhaustive enumeration, to combinatorics based on graph properties, to

greedy search, to genetic algorithms, to recently investigated machine learning. A few works exist that use

heuristic search to compute join orders. However, a theoretical argument why and how heuristic search is

applicable to join order optimization is lacking.

In this work, we investigate join order optimization via heuristic search. In particular, we provide a strong

theoretical framework, in which we reduce join order optimization to the shortest path problem. We then

thoroughly analyze the properties of this problem and the applicability of heuristic search. We devise crucial

optimizations to make heuristic search tractable. We implement join ordering via heuristic search in a real

DBMS and conduct an extensive empirical study. Our findings show that for star- and clique-shaped queries,

heuristic search finds optimal plans an order of magnitude faster than current state of the art. Our suboptimal

solutions further extend the cost/time Pareto frontier.

CCS Concepts: • Information systems→ Query planning; Query optimization.

Additional Key Words and Phrases: query optimization; query planning; join ordering

ACM Reference Format:
Immanuel Haffner and Jens Dittrich. 2023. Efficiently Computing Join Orders with Heuristic Search. Proc.
ACM Manag. Data 1, 1, Article 73 (May 2023), 26 pages. https://doi.org/10.1145/3588927

1 INTRODUCTION
The Structured Query Language (SQL) is the dominant programming language to query and trans-

form relational data, that is usually stored in (relational) database management systems ((R)DBMS).

SQL is a declarative language: it only expresses what to compute without specifying how to com-

pute. This declarative style of expressing operations burdens a DBMS with determining a query

execution plan (or simply query plan) that defines how the computations required by a query are

done. A crucial part of determining a query plan is determining a join order, i.e. the order in which

individual relations are joined by the respective join predicates of the query. The join order has

a major impact on the performance of the query plan and hence it is of utmost importance to a

DBMS to compute a “good” join order – or at least to avoid “bad” join orders [1, 19]. This problem

is known as the join order optimization problem (JOOP) and it is generally NP hard [3, 16]. There

exists a comprehensive body of work on computing join orders. It can be divided into work on

computing optimal join orders [3, 6, 11, 12, 16, 22, 32], work on greedy computation of potentially

Authors’ addresses: Immanuel Haffner, Saarland University, Saarland Informatics Campus, Saarbrücken, Germany, immanuel.

haffner@bigdata.uni-saarland.de; Jens Dittrich, Saarland University, Saarland Informatics Campus, Saarbrücken, Germany,

jens.dittrich@bigdata.uni-saarland.de.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).

2836-6573/2023/5-ART73

https://doi.org/10.1145/3588927

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

HTTPS://ORCID.ORG/0009-0003-8796-1129
HTTPS://ORCID.ORG/0000-0003-1015-804X
https://orcid.org/0009-0003-8796-1129
https://orcid.org/0000-0003-1015-804X
https://doi.org/10.1145/3588927
https://orcid.org/0009-0003-8796-1129
https://orcid.org/0000-0003-1015-804X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3588927

73:2 Immanuel Haffner & Jens Dittrich

suboptimal join orders [9, 24, 25, 37], work on adaptive re-optimization of join orders [17, 26, 28, 38],

and recent work based on machine learning [20, 21, 23].

Ono and Lohman [27] derive analytically the number of distinct plans w/o Cartesian products,

showing that the amount of plans is generally exponential in the number of relations. For queries

with many relations, the search space of plans quickly becomes too large to explore exhaustively.

DBMSs therefore define a threshold beyond which suboptimal but faster algorithms are used [25].

Interestingly though, optimal algorithms need not be exhaustive.

In the domain of AI planning, searching extremely large search spaces is a frequent task and

research in that area has brought forth algorithms to efficiently explore such search spaces. An

important class of such algorithms is best-first search (BFS). BFS enables efficiently finding optimal

or nearly optimal solutions without exhaustively exploring the entire search space. It has proven

itself useful in a wide range of applications [8, 30]. The question arises whether and how BFS can

be applied to JOOP.

1.1 Contributions
In this work, we present a new approach to join order optimization that is based on heuristic search,

an important subset of BFS. In particular, we make the following contributions.

(1) To the best of our knowledge, we present the first formal reduction of JOOP to shortest path.

We present formalizations for both bottom-up and top-down join ordering and investigate

their dualism. (Section 2)

(2) We define heuristic search, perform a theoretical analysis of heuristic search applied to our

shortest path problem, and elaborate the general search procedure. (Section 3)

(3) We present an efficient search space representation for both bottom-up and top-down search.

Additionally, we devise two crucial optimizations, one of which is highly particular to the

search space of JOOP. (Section 4)

(4) We identify and circumvent a potential pitfall when incorporating a DBMS cost model into

heuristic search, that severely limits the efficiency of the search. (Section 5)

(5) We experimentally evaluate our approach and compare it to state-of-the-art algorithms.

(Section 7)

(6) We propose a new benchmark that systematically explores the Query Graph Exploration

Landscape (QGraEL) along the three query graph dimensions number of relations, graph

density, and edge distribution. (Section 7.3)

The paper is organized in the order of contributions. We discuss related work in Section 6.

2 JOIN ORDER OPTIMIZATION AS A SHORTEST PATH PROBLEM
In this section, we formalize join order optimization as a shortest path problem. We begin with a

brief excursion to shortest path and graph search.We then reduce bottom-up join order optimization

to shortest path. We investigate the dualism of bottom-up and top-down join order optimization

when expressed as a shortest path problem. Lastly, we analyze the time complexity of solving JOOP

via shortest path.

2.1 The Shortest Path Problem
We formally define the shortest path problem on directed graphs as follows. Let 𝐺 ≔ (𝑉 , 𝐸)
be a graph with vertices 𝑉 and directed, weighted edges 𝐸 ⊆ {(𝑢, 𝑣,𝑤) | 𝑢, 𝑣 ∈ 𝑉 ,𝑤 ∈ R+}. For
an edge 𝑒 = (𝑢, 𝑣,𝑤), we call 𝑢 the tail, 𝑣 the head, and 𝑤 the weight of 𝑒 . A path 𝑃 =

𝑒1 . . . 𝑒𝑘 ∈ 𝐸𝑘 is a sequence of edges with ∀ 𝑖 ∈ {1, . . . , 𝑘 − 1}. head(𝑒𝑖) = tail(𝑒𝑖+1). We say that

𝑃 starts in tail(𝑒1), ends in head(𝑒𝑘), and has length |𝑃 | = 𝑘 . The weight of a path is defined as

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

Efficiently Computing Join Orders with Heuristic Search 73:3

A

B C

D

(a) Example query graph of four

relations and four joins.

bo
tt
om

-u
p

top-dow
n

A

B C

D

A

B C

D A

B C

D A

B C

D A

B C

D

𝑗𝐴𝐵 ({𝐴}, {𝐵}) with𝑤 = 𝐶 ({𝐴}, {𝐵}, 𝑗𝐴𝐵)

A

B C

D A

B C

D A

B C

D A

B C

D

A

B C

D

𝑗𝐴𝐵 ({𝐴}, {𝐵,𝐶, 𝐷 }) with𝑤 = 𝐶 ({𝐴}, {𝐵,𝐶, 𝐷 }, 𝑗𝐴𝐵)

𝑛0

𝑛∗

(b) Search space for the shortest path. Sets are represented by their

induced subgraph, e.g. 𝑛0 is
{
{𝐴}, {𝐵}, {𝐶}, {𝐷}

}
.

Fig. 1. Join ordering reduced to a shortest path problem.

weight(𝑃) ≔ ∑ |𝑃 |
𝑖=1

weight(𝑒𝑖). Let 𝑛0, 𝑛∗ ∈ 𝑉 be the start and goal of a search problem, respectively,

and further let P(𝑛0, 𝑛∗) ≔ {𝑃 | 𝑃 starts in 𝑛0 ∧ 𝑃 ends in 𝑛∗} be the set of all paths from 𝑛0 to 𝑛∗.
We then define the shortest path as

arg min
𝑃∈P(𝑛0,𝑛∗)

weight(𝑃) (Def. 1)

A shortest path algorithm computes a solution for the shortest path problem, that is a shortest path

algorithm computes for some 𝐺 ≔ (𝑉 , 𝐸) and 𝑛0, 𝑛∗ ∈ 𝑉 a path 𝑃 according to Def. 1.

2.2 Reducing JOOP to Shortest Path
Wewill now formulate join ordering as a shortest path problem. To do so, we need to formalize JOOP

and then reduce it to shortest path. Note, that this requires a reduction fromNP-hard JOOP to PTIME

shortest path where the size of the search space for shortest path is exponential in the size of the

query graph 𝐺Q (in the worst case). We use Figure 1 as a running example throughout this section.

For some query Q, let 𝐺Q ≔ (𝑅, 𝐽) be the query graph of Q, with relations 𝑅 as vertices and joins

𝐽 ⊆
(
𝑅
2

)
1
as edges. For Figure 1a, we have 𝑅 = {𝐴, 𝐵,𝐶, 𝐷} and 𝐽 =

{
{𝐴, 𝐵}, {𝐵,𝐶}, {𝐵, 𝐷}, {𝐶, 𝐷}

}
.

The goal of join order optimization is to order the joins in 𝐽 such that the induced plan for Q has

minimal cost. In this work, we restrict ourselves to binary, inner joins. We call a subset 𝑆 ⊆ 𝑅 a

subproblem of Q, e.g. {𝐴, 𝐵, 𝐷} is one subproblem of Q. We say that a join 𝑗 = {𝑟1, 𝑟2} ∈ 𝐽 joins

two disjoint subproblems 𝑆1, 𝑆2 if 𝑟1 ∈ 𝑆1 ∧ 𝑟2 ∈ 𝑆2. For example, join 𝑗𝐵𝐷 = {𝐵, 𝐷} ∈ 𝐽 joins

subproblems {𝐴, 𝐵} and {𝐷}, written 𝑗𝐵𝐷 ({𝐴, 𝐵}, {𝐷}). Every join 𝑗 ∈ 𝐽 can hence be treated as a

partial function 2
𝑅 × 2𝑅 ⇀ 2

𝑅
:

𝑗 : (𝑆1, 𝑆2) ↦→ 𝑆1 ⊎ 𝑆2 if 𝑗 = {𝑟1, 𝑟2} ∧ 𝑟1 ∈ 𝑆1 ∧ 𝑟2 ∈ 𝑆2
The precondition of 𝑗 ensures that 𝑗 is only applicable to two disjoint subproblems that are joinable

by 𝑗 . For example, 𝑗𝐵𝐷 ({𝐴, 𝐵}, {𝐷}) = {𝐴, 𝐵, 𝐷} while 𝑗𝐵𝐷 ({𝐴, 𝐵}, {𝐶}) is undefined. Note, that

this definition of 𝑗 requires specifying the two subproblems 𝑆1, 𝑆2 to join. However, we want to

represent a query plan as a sequence of joins, i.e. without explicitly specifying for each join what

subproblems are joined. We can leverage a join 𝑗 ’s precondition to formulate a hoisted definition 𝑗∗

1
The notation

(𝑆
𝑘

)
, read “from set 𝑆 choose 𝑘”, denotes all subsets of 𝑆 of size 𝑘 , i.e. {𝑠 ⊆ 𝑆 | |𝑠 | = 𝑘 }. Observe, that��� (𝑆𝑘) ��� = (|𝑆 |

𝑘

)
.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

73:4 Immanuel Haffner & Jens Dittrich

that operates on sets of subproblems. In particular, 𝑗∗ automatically selects from a set of pairwise

disjoint subproblems 𝑆1, . . . , 𝑆𝑛 the two subproblems 𝑆𝑖 , 𝑆𝑘 for which 𝑗 (𝑆𝑖 , 𝑆𝑘) is defined:

𝑗∗ : {𝑆1, . . . , 𝑆𝑛} ↦→
(
{𝑆1, . . . , 𝑆𝑛} \ {𝑆𝑖 , 𝑆𝑘 }

)
∪ { 𝑗 (𝑆𝑖 , 𝑆𝑘)}

where 𝑗 = {𝑟𝑖 , 𝑟𝑘 }, 𝑟𝑖 ∈ 𝑆𝑖 , and 𝑟𝑘 ∈ 𝑆𝑘 . For example, 𝑗∗
𝐵𝐷

({
{𝐴, 𝐵}, {𝐶}, {𝐷}

})
=

{
{𝐶}

}
∪{

𝑗𝐵𝐷 ({𝐴, 𝐵}, {𝐷})
}
. With the hoisted definition of joins, we can define a plan as a sequence

of joins. Let 𝑝 = 𝑗1 . . . 𝑗𝑛 be a plan. Then 𝑝 (S) ≔ 𝑗∗𝑛 ◦ · · · ◦ 𝑗∗1 (S) denotes the sequential application
of joins to some set of subproblems S. Any plan 𝑝 joining all relations 𝑅 of query Q, formally

𝑝

((
𝑅
1

))
= {𝑅}, is a feasible plan for Q. Consider, for example, the plan 𝑝 = 𝑗𝐵𝐷 𝑗𝐴𝐵 𝑗𝐶𝐷 . We have

𝑝
((𝑅
1

))
= 𝑗∗𝐶𝐷 ◦ 𝑗∗𝐴𝐵 ◦ 𝑗∗𝐵𝐷

({
{𝐴}, {𝐵}, {𝐶}, {𝐷}

})
= 𝑗∗𝐶𝐷 ◦ 𝑗∗𝐴𝐵

({
{𝐴}, {𝐵, 𝐷}, {𝐶}

})
= 𝑗∗𝐶𝐷

({
{𝐴, 𝐵, 𝐷}, {𝐶}

})
=
{
{𝐴, 𝐵,𝐶, 𝐷}

}
= {𝑅}

Note, that 𝑗𝐵𝐶 does not occur in the plan as it is subsumed by applying both 𝑗𝐵𝐷 and 𝑗𝐶𝐷 . The goal

of join order optimization is hence to compute a feasible plan 𝑝 of minimal cost.

We now reduce JOOP to shortest path. The idea of our reduction is that every application of a

join 𝑗 to two subproblems 𝑆1, 𝑆2 forms an edge in the search space for shortest path. The weight of

this edge is the cost of performing this join. Search starts in the initial vertex 𝑛0 =
(
𝑅
1

)
. The search

space consists of all vertices reachable from 𝑛0 through successive application of the joins in 𝐽 .

Figure 1b shows the search space for the query graph in Figure 1a. The search space is a directed

graph, with edges directed away from 𝑛0 (read bottom to top). The vertices of the search space are

sets of subproblems yet to be joined together. Each subproblem of a vertex is drawn as a connected
subgraph (csg) with solid edges; dashed edges represent joins not yet applied. Every path from the

start 𝑛0 =
(
𝑅
1

)
to the goal 𝑛∗ = {𝑅} is a sequence of joins joining all relations in 𝑅 and therefore a

feasible plan according to our definition. Further, the weight of such a path equals the cost of the

corresponding plan. We call the search space constructed by this reduction of JOOP to shortest

path SPJOOP. We can now solve JOOP by computing a shortest path according to Def. 1 in SPJOOP.

So far, we did not explain how weights are computed. It is fair to assume that a DBMS can

provide a cost model to predict the cost of joining two subproblems 𝐶 : 2
𝑅 × 2𝑅 × 𝐽 → R+. With

cost model 𝐶 , we can define the weight of an edge as

weight
(
(𝑢, 𝑣)

)
≔ min

{
𝐶 (𝑆1, 𝑆2, 𝑗)

���� 𝑗 ∈ 𝐽 ∧ 𝑆1, 𝑆2 ∈ 𝑢 ∧
𝑣 = (𝑢 \ {𝑆1, 𝑆2}) ∪ { 𝑗 (𝑆1, 𝑆2)}

}
A join subsumed by other joins can be evaluated in two ways: either by a join algorithm that

supports a conjunction of multiple predicates or by a selection succeeding the subsuming joins.

Either way, we expect 𝐶 to compute the costs accordingly.

2.3 The Dualism of Bottom-Up and Top-Down Join Order Optimization
The reduction in Section 2.2 is for bottom-up join ordering: initially all relations are disjoint in 𝑛0
and then joins are applied to join subproblems until all relations are joined together in 𝑛∗. In
top-down join ordering, we start with all relations already joined together and “undo” joins until
all relations are pairwise disjoint. Undoing joins means partitioning a subproblem 𝑆 into smaller

subproblems 𝑆1, 𝑆2 with ∃ 𝑗 ∈ 𝐽 . 𝑗 (𝑆1, 𝑆2) = 𝑆 . Observe in Figure 1b that top-down join ordering

corresponds to a search starting in 𝑛∗ with goal 𝑛0 and edges directed towards 𝑛0. The search space

of top-down join ordering is dual to that of bottom-up join ordering. Hence, top-down join ordering

is the dual problem of bottom-up join ordering.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

Efficiently Computing Join Orders with Heuristic Search 73:5

2.4 Complexity of SPJOOP

Join order optimization is well-known to be NP hard [3, 16]. This means that solving JOOP requires

time exponential in the size of the query graph 𝐺Q . Since our reduction of JOOP to shortest path

preserves optimality, solving JOOP by computing a shortest path in SPJOOP, that is constructed

by our exponential-time reduction in Section 2.2, must have worst-case time exponential in the

size of the query graph. To prove that this is indeed the case, we give the following constructive

argument.

Ono and Lohman [27] show that queries whose query graph𝐺Q = (𝑅, 𝐽) is a clique have Θ(3 |𝑅 |)
many connected complement pairs (ccp), where a ccp is a pair of subproblems (𝑆1, 𝑆2) s.t. ∃ 𝑗 ∈
𝐽 . 𝑗 (𝑆1, 𝑆2) and 𝑆1, 𝑆2 induce csgs in 𝐺Q . We show that for each ccp in 𝐺Q there exists at least
one vertex in SPJOOP : For every ccp (𝑆1, 𝑆2) in 𝐺Q there exists at least one set of subproblems S,
s.t. S contains the ccp. Exactly one such S contains the ccp and otherwise only base relations,

i.e. S =
{
𝑆1, 𝑆2

}
∪
(
𝑅\(𝑆1∪𝑆2)

1

)
. This S is a vertex in SPJOOP . Hence, SPJOOP has |𝑉 | ∈ Ω(3 |𝑅 |) many

vertices. Because every vertex in SPJOOP (except the goal) has at least one outgoing edge, there are

|𝐸 | ∈ Ω(3 |𝑅 |) many edges.

For computing a shortest path, we can choose from a broad set of shortest path algorithms.

Because we are only interested in shortest paths from 𝑛0 to 𝑛∗, our problem is the special case

single-pair shortest path, with pair (𝑛0, 𝑛∗). Schrijver [31] gives an extensive survey of shortest

path algorithms. In the class of uninformed (or blind) search, algorithms only have information of

the start 𝑛0 and the search space (cf. Figure 1b). This effectively means that the knowledge of 𝑛∗ is
of no use to uninformed search. Of this class of algorithms, even the asymptotically best have a

worst-case time complexity that is at least linear in the size of the search space, i.e. Ω(|𝑉 |) or Ω(|𝐸 |).
Since both |𝑉 | and |𝐸 | of SPJOOP are exponential in the size of the query graph 𝐺Q (in the worst

case), computing a shortest path in SPJOOP requires time exponential in the size of 𝐺Q (in the worst

case). However, the mentioning of uninformed search suggests that there must be informed search.

Informed search, or heuristic search, has additional knowledge beyond the problem description,

that allows for a goal-oriented search. We discuss this in the following Section 3.

3 JOOP AS A HEURISTIC SEARCH PROBLEM
After reducing JOOP to SPJOOP in Section 2, we explore how to solve SPJOOP with heuristic search.

We therefore extend search by a heuristic function. The heuristic function (or just heuristic) estimates

for a given vertex in the search space the weight of a shortest path from that vertex to a goal. The

heuristic enables the search to focus on vertices that it deems to lead to shorter paths. We can apply

heuristic search to our shortest path problem if we can define a heuristic for our search space. We

discuss important properties of heuristic functions in Section 3.1 and their impact on heuristic

search in Section 3.2. We motivate that heuristic search enables us to gradually sacrifice optimality,

in terms of plan cost, for efficiency. In Section 3.3, we then describe conceptually how we apply

heuristic search to SPJOOP with a potentially exponentially large search space. We present proof

sketches for completeness, soundness, and optimality in Section 3.4 and study different performance

criteria of heuristic search in Section 3.5. We discuss how to find a heuristic for SPJOOP in Section 5.

3.1 Properties of Heuristic Functions
A heuristic function ℎ estimates for some vertex 𝑣 the weight of a shortest path from 𝑣 to a goal.

The optimal heuristic ℎ∗ returns for each vertex 𝑣 exactly the weight of a shortest path from 𝑣 to a

goal. A heuristic ℎ is goal-aware if the heuristic value of any goal is 0, formally 𝑣 is goal⇒ ℎ(𝑣) = 0.

In SPJOOP, checking whether a vertex is a goal is simple and we therefore assume all heuristics to be

goal-aware. A heuristic underestimates if there exists a vertex for which the heuristic underestimates

the weight of a shortest path to goal, i.e. ∃ 𝑣 ∈ 𝑉 . ℎ(𝑣) < ℎ∗ (𝑣). Likewise, a heuristic overestimates

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

73:6 Immanuel Haffner & Jens Dittrich

if ∃ 𝑣 ∈ 𝑉 . ℎ(𝑣) > ℎ∗ (𝑣). A heuristic that never overestimates is called admissible. Admissibility

becomes important when we discuss optimality of heuristic search. A heuristic ℎ is called consistent
if the heuristic never overestimates the weight of a single edge, i.e. ∀ (𝑢, 𝑣,𝑤) ∈ 𝐸. ℎ(𝑢) ≤ ℎ(𝑣) +𝑤 .

Every consistent and goal-aware heuristic is also admissible and ℎ∗ is consistent.

3.2 Properties of Heuristic Search
To exploit a heuristic we need to perform heuristic search. In particular, we will focus on Dijkstra’s

algorithm [7] and famous 𝐴∗ [15]. There are two interesting properties of 𝐴∗, that we will mention

here, as they will guide us when we design and evaluate heuristics.

Optimality. Algorithm 𝐴∗ is optimal, that is it computes the shortest path from start to goal, if the

heuristic ℎ is admissible [15].

Time Complexity. Dechter and Pearl [5] have shown that if the heuristic ℎ is consistent, algo-

rithm 𝐴∗ is optimally efficient, i.e., there exists no BFS algorithm that finds a shortest path with

traversing fewer vertices of the search space.

According to these two properties, if we are able to devise an admissible heuristic for SPJOOP, we

are guaranteed that 𝐴∗ will find a shortest path, which corresponds to an optimal plan of JOOP.

Further, if we are able to devise a consistent heuristic for SPJOOP that is efficiently computable, i.e.

in PTIME, we know that we can efficiently solve SPJOOP (even if not in PTIME). A naïve attempt

would be to devise an optimal heuristic for SPJOOP. However, an optimal heuristic for SPJOOP cannot

be computed in PTIME:

Theorem 1. Unless P =NP, any optimal heuristic for SPJOOP is not in PTIME, formally:

∀ℎ.
(
∀ 𝑣 . ℎ(𝑣) = ℎ∗ (𝑣)

)
⇒ ℎ ∉ PTIME.

Wewill prove Theorem 1 by contradiction, showing that if an optimal heuristicℎwere computable

in PTIME, we could solve JOOP in PTIME, contradicting the fact that JOOP is NP hard [3, 16].

Our proof relies on the conjecture P ≠ NP and on bounding the complexity of shortest path. With

a depth 𝑑 , where 𝑑 is the minimal length of any path from 𝑛0 to 𝑛∗, and a maximum branching

factor 𝑏, the complexity of shortest path is in O(𝑏𝑑) [29]. In SPJOOP, 𝑏 is bounded by the number of

joins |𝐽 | and 𝑑 is exactly |𝑅 | − 1. Hence, we can bound the time complexity by O(|𝐽 | |𝑅 |−1). So far,

this bound is not really helpful. However, for optimal ℎ, 𝑏 becomes 1. We prove this by contradiction

(compare [8, Theorem 2.9 on p. 72]):

Lemma 1. Assume an edge (𝑢, 𝑣,𝑤) ∈ 𝐸 and further ∀ (𝑢, 𝑣 ′,𝑤 ′) ∈ 𝐸. ℎ∗ (𝑣) +𝑤 ≤ ℎ∗ (𝑣 ′) +𝑤 ′.
Then 𝑣 lies on a shortest path from 𝑢 to a goal.

Proof of Lemma 1 by contradiction. Assume 𝑣 does not lie on a shortest path from 𝑢 to goal.

Then ∃ (𝑢, 𝑣 ′,𝑤 ′) ∈ 𝐸 with 𝑣 ≠ 𝑣 ′ and 𝑣 ′ lies on a shortest path from 𝑢 to goal. By optimality of

ℎ∗, it holds ℎ∗ (𝑢) = ℎ∗ (𝑣 ′) +𝑤 ′. Because 𝑣 does not lie on a shortest path from 𝑢 to goal, it holds

ℎ∗ (𝑢) < ℎ∗ (𝑣) +𝑤 . Hence, ℎ∗ (𝑣 ′) +𝑤 ′ < ℎ∗ (𝑣) +𝑤 . E □

By Lemma 1, if ℎ is optimal, it is sufficient for a search algorithm to pursue only a single edge

minimizing ℎ(𝑣) +𝑤 . This means, with an optimal heuristic the branching factor 𝑏 becomes 1 and

our time complexity bound collapses to O(1 |𝑅 |−1) = O(1). However, our bound does not account

for the evaluation of ℎ.

Proof of Theorem 1 by contradiction. With 𝑑 = |𝑅 | − 1 and 𝑏 ≤ |𝐽 |, ℎ is evaluated at most(
|𝑅 | − 1

)
· |𝐽 | times. This term is polynomial in the size of the query graph𝐺Q = (𝑅, 𝐽). Assume for

the sake of contradiction that we have an optimal heuristic ℎ ∈ PTIME. We would then be able to

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

Efficiently Computing Join Orders with Heuristic Search 73:7

Algorithm 1 BFS with on-demand search space computation.

1: function BFS(𝑛0 : start vertex)

2: L ← [𝑛0] ⊲initialize open list
3: while L not empty do
4: 𝑢,𝑔𝑢 ← extract-best(L) ⊲extract next best vertex with its cost
5: if 𝑢 is goal then
6: return Success ⊲found path from 𝑛0 to 𝑛∗
7: end if
8: for each (𝑢, 𝑣, 𝑤) ∈ 𝐸 in expand(𝑢) do ⊲expand 𝑢
9: add(L, 𝑣, 𝑔𝑢 + 𝑤) ⊲add successors of 𝑢 to L
10: end for
11: end while
12: return Failure ⊲no path from 𝑛0 to 𝑛∗ was found
13: end function

compute a shortest path in SPJOOP in PTIME. Since a shortest path in SPJOOP is an optimal plan for

JOOP, we would be able to solve JOOP in PTIME. E □

We now know that an optimal heuristic cannot be computed efficiently, i.e. in PTIME. However, if

we were able to approximate ℎ∗ by some heuristic ℎ ∈ PTIME and ℎ were consistent, then we could

compute an optimal solution optimally efficiently with 𝐴∗. Interestingly, for practical purposes, the
heuristic need not be consistent to achieve an effective branching factor close to 1.

3.3 Searching an Exponentially Large Space
In Section 2.4 we learned that the number of vertices |𝑉 | and the number of edges |𝐸 | of SPJOOP are
exponential in the size of the query graph 𝐺Q . Hence, finding a shortest path in SPJOOP requires

time exponential in the size of𝐺Q . Constructing the entire search space a priori to the actual search

would render our approach inefficient if not infeasible. Therefore, in our algorithm we will explore

the search space on demand only.

We describe conceptually how the search space is computed successively and on demand by

BFS and provide pseudo-code in Algorithm 1. We assume that BFS uses a container of vertices,

usually called open list; some BFS algorithms implement this open list as a priority queue (e.g. 𝐴∗),
some implement it as a single vertex (e.g. hill climbing). In each iteration of BFS, the best vertex
is extracted from the open list to be expanded next (line 4). The definition of best depends on the

search algorithm and is usually based on some combination of the weight 𝑔 of the path by which

the vertex was reached from the start 𝑛0 and the heuristic value ℎ of the vertex. For example, 𝐴∗

defines best as the vertex minimizing 𝑔 + ℎ. When a vertex is expanded, some or all successors (but

at least one) of this vertex are computed and added to the open list (line 9). BFS proceeds until one

of two termination criteria is met: (1) When a goal is extracted from the open list (line 5), BFS has

found a path from start to this goal and the search terminates successfully. (2) When the open list

runs empty, no path from start to a goal was found and BFS terminates unsuccessfully (line 12).

Depending on the BFS algorithm, we may in the worst case explore the entire search space before

reaching a goal. For 𝐴∗, this may happen when all joins have nearly the same cost, making edge

weights nearly uniform and degrading 𝐴∗ to breadth-first search. We believe, that situations in

which (almost) the entire search space is explored are highly unlikely in the real world. We provide

Table 1 in Section 3.5, which supports our claim with empirical data.

Figure 2 shows an example run of 𝐴∗ on the search space in Figure 1b. The algorithm starts in

vertex 𝑛0 = 1 . We annotate each vertex with the weight 𝑔 of the path from start 1 . Additionally,

we annotate vertices with their heuristic value ℎ. For example, start 1 has 𝑔 = 0, ℎ = 50. Vertex 1

represents the four subproblems {𝐴}, {𝐵}, {𝐶}, and {𝐷}. We expand 1 by applying any one of the

four possible joins in 𝐽 , thereby generating four successors. For each such successor we compute

the weight 𝑔 of the path from the start to that successor as well as the heuristic ℎ. We label each

edge with its weight, as resulting from expansion. For the expansion of 1 , edges are labeled 20,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

73:8 Immanuel Haffner & Jens Dittrich

A

B C

D

A

B C

D A

B C

D A

B C

D A

B C

D

𝑤 = 20
7
0

1
2
0 10

A

B C

D A

B C

D A

B C

D A

B C

D

2
0

30

A

B C

D

3
0

15

1

2

3 4

5

𝑔 = 0

ℎ = 50

𝑔 = 20

ℎ = 50

𝑔 = 70

ℎ = 70

𝑔 = 120

ℎ = 30

𝑔 = 10

ℎ = 40

𝑔 = 30

ℎ = 20
𝑔 = 40

ℎ = 15

𝑔 = 60 3 / 𝑔 = 55 4

ℎ = 0

Fig. 2. Search tree for bottom-up 𝐴∗. Vertices are labeled 1 with their order of expansion. Dashed edges

mark vertices generated by expansion and are labeled with the weight of the edge. Solid edges

additionally were pursued by the search. Two vertices are never generated and the goal is generated twice,

first with 𝑔 = 60 by 3 and then with 𝑔 = 55 by 4 . The final plan is 𝐴1 (𝐵1 (𝐶 1𝐷)).

70, 120, and 10. The vertex of minimal 𝑔 + ℎ that was not yet expanded is expanded next. Here, 2

with 𝑔 + ℎ = 10 + 40 = 50 is expanded. 2 represents the three subproblems {𝐴}, {𝐵}, and {𝐶, 𝐷}.
From 2 , we can either join {𝐴} with {𝐵} or {𝐵} with {𝐶, 𝐷}. Hence, the two successors 3 & 4

are generated by expansion of 2 . We again compute 𝑔 and ℎ of these successors. Next, 3 with

𝑔 + ℎ = 50 is expanded into goal 5 with 𝑔 = 60, ℎ = 0. Notice, that at this point, the algorithm does

not terminate yet, as we only added a goal 5 (line 9 in Algorithm 1). The next vertex to expand is 4

and expansion yields 5 , again. However, this time 5 is reached by a path with weight 𝑔 = 55. The

next vertex to expand is 5 with 𝑔 + ℎ = 55 + 0. Since 5 is a goal, the search terminates successfully

with a shortest path of weight 55.

3.4 Completeness, Soundness, Optimality
In this section, we show that the successive computation of the search space during BFS does not

harm completeness, soundness, and optimality. We therefore sketch the proofs for these properties,

assuming a BFS algorithm that is complete, sound, and optimal. However, before we do so, let us

highlight three properties of the search space, that will help us with the proofs. (1) The search

space is acyclic: there is no non-empty path that starts and ends in the same vertex. (2) The search

space has no dead-ends: every vertex except the goal has at least one successor. (3) The goal 𝑛∗ has
depth |𝑅 | − 1: every path from 𝑛0 to 𝑛∗ has exactly length |𝑅 | − 1. These properties follow directly

from the construction of the search space in Section 2.2.

Completeness. As the search space has no dead-ends, expand yields for each non-goal vertex

at least one successor. Because the search space is acyclic, each expand reduces the distance (in

edges) to 𝑛∗ by one. Therefore and because the goal has finite depth, BFS will find a path from 𝑛0
to 𝑛∗, if one exists.
Soundness. Soundness of our heuristic search follows from soundness of the reduction in Sec-

tion 2.2, soundness of the BFS algorithm, and soundness of expand. The latter is sound if it yields

for a given vertex 𝑢 only successors 𝑣 w.r.t. 𝐸, i.e. ∃ (𝑢, 𝑣,𝑤) ∈ 𝐸.
Optimality. In Section 2.2 we have shown that an optimal solution of the problem reduced to

shortest path corresponds to an optimal solution of JOOP. Assuming optimality of BFS, what remains

to show is that expand preserves optimality. This is the case if for every vertex 𝑢, expand(𝑢) yields

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

Efficiently Computing Join Orders with Heuristic Search 73:9

Table 1. Comparison of DPCCP to search with Dijkstra and 𝐴∗↓ + ℎsum by #ccps enumerated to compute an

optimal plan.

chain cycle star clique

5 10 15 5 10 15 5 10 15 5 10 15

DPCCP 20 165 560 36 321 1106 32 2304 114 688 90 28 501 7 141 686

Dijkstra ↑ 10 438 2702 13 130 2875 18 218 404 22 2884 26 992

Dijkstra ↓ 20 202 2629 44 650 6288 24 1026 61 739 91 191 313 >30 000 000

𝐴∗↓ + ℎsum 10 53 522 16 118 557 10 265 12 568 29 20 969 7 050 206

at least one vertex 𝑣 s.t. 𝑣 lies on a shortest path from 𝑢 to goal. If expand yields all successors, this

is trivially the case.

We now have a profound understanding of heuristic search and its applicability to our shortest

path problem. Before we dive into the algorithmic challenges in Section 4, we present different

performance criteria for evaluating heuristic search.

3.5 Performance Criteria
There are different measures to assess the performance of heuristic search. Of course, we look at

running times in our evaluation in Section 7. If we allow for suboptimal solutions, an additional

measure is how far off a computed solution is from an optimal solution (i.e. a shortest path). Another

measure, that we already learned about in Section 3.2, is the effective branching factor 𝑏∗, which
allows us to evaluate how informative a heuristic is to the search. However, 𝑏∗ cannot be measured

directly but is derived from the depth of the goal (which is |𝑅 | − 1) and another important measure

for heuristic search: the number of generated vertices [29]. Because the depth of the goal is fixed,

the only remaining variable for computing 𝑏∗ is the number of generated vertices. Therefore, this

number alone already allows us to compare different heuristics by how informative they are to the

search. It also allows us to compare different search algorithms by how goal-oriented they explore

the search space. We can even compare our approach to classical dynamic programming (DP):

the number of vertices generated corresponds to the number of ccps joined and can directly be

compared to the number of ccps enumerated by DP.

With this knowledge, we conduct our first experiment. We compare classical DP implemented

by DPCCP [22] to blind and heuristic search. As blind search we perform Dijkstra’s algorithm

in both directions: bottom-up, labeled Dijkstra↑, and top-down, labeled Dijkstra↓. As heuristic

search we perform 𝐴∗↓ (top-down) with admissible heuristic ℎsum (cf. Section 5). We compare the

three algorithms by the number of ccps joined in Table 1. Because heuristic ℎsum is admissible, 𝐴∗↓
computes an optimal plan, like DPCCP and Dijkstra’s algorithm. The best result in each column is

underlined. Before we draw conclusions from our experiment, we want to emphasize that DPCCP

enumerates all ccps exactly once without duplicates [22]. The proportion of unique ccps to the

number of relations |𝑅 | is polynomial for chain and cycle topologies and exponential for star and

clique topologies [22, 27]. From the results in Table 1, we can make two key observations: (1) On star

and clique topologies, Dijkstra↑ enumerates significantly less ccps than DPCCP. On chain and cycle

topologies, 𝐴∗↓ + ℎsum enumerates significantly less ccps than DPCCP. We conclude that heuristic

search is able to find an optimal plan without enumerating all ccps; sometimes only a fraction of

all ccps is required. (2) When we compare our two top-down searches, Dijkstra↓ and 𝐴∗↓ + ℎsum, we

observe how much of an impact the heuristic has on the search: the heuristic sometimes reduces

the number of ccps enumerated by more than one order of magnitude.

According to Observation 1, search and particularly heuristic search finds a provably optimal

plan without the need to enumerate all ccps. In contrast, traditional algorithms for computing an

optimal solution enumerate all ccps (with or without duplicates) [11, 12, 22, 32, 35, 36]. Whether it

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

73:10 Immanuel Haffner & Jens Dittrich

is possible to compute an optimal plan via search in less time depends on whether search can be

implemented efficiently. We describe the algorithmic challenges we face in the following Section 4.

Observation 2 exemplifies the impact the heuristic has on the search’s performance. Therefore,

in Section 5, we explore and evaluate different heuristics.

4 ALGORITHMIC CHALLENGES
To be able to efficiently search for a shortest path from 𝑛0 to 𝑛∗, we must be able to efficiently

explore the search space. In Section 3.3, we argue that we must not compute the entire search space

a priori to the search but instead compute the explored regions successively. Exploring the search

space is done by successively expanding vertices to their successors, as exemplified in Figure 2.

In Section 4.1, we present a vertex representation that enables efficient generation of successors

via expand and efficient evaluation of a heuristic function ℎ. Consequently, in Section 4.2 we

show how to efficiently compute successor vertices for this representation in bottom-up and top-

down search. As the search’s performance also heavily depends on the implementation of the

open list, we present in Section 4.3 an implementation that supports fast insertion of generated

successors, fast extraction of the next best vertex, and efficient handling of duplicates. As we shall

see in Section 4.4, some duplicates are actually desired while others are undesired. We develop an

algorithm to suppress the generation of undesired duplicates already when expanding a vertex,

thereby preventing attempts to insert undesired duplicates into the open list.

4.1 Vertex Representation
The vertices of our search space are sets of subproblems, i.e. sets of sets of relations. We can

incrementally assign to each relation in the query graph a unique index, starting at 1. For the

query graph in Figure 1a, we could assign indices 𝐴 ↦→ 1, 𝐵 ↦→ 2, 𝐶 ↦→ 3, 𝐷 ↦→ 4. Each subproblem

can then be represented as a bit vector 𝑏1 . . . 𝑏 |𝑅 | with bit 𝑏𝑖 set if relation with index 𝑖 is within

the subproblem. For example, the subproblem {𝐶, 𝐷} is represented by the bit vector 0011. A

vertex is then represented as a sequence of bit vectors V , with one bit vector per subproblem.

Additionally, the bit vectors are kept sorted lexicographically to allow for hashing and efficient

equality testing. For example, the vertex with label 2 in Figure 2,

{
{𝐴},{𝐵},{𝐶,𝐷 }

}
, is represented

byV = [1000, 0100, 0011]. To efficiently store and operate on bit sets, we employ the same case

distinction as Neumann and Radke [25], using a 64 bit integer for queries with up to 64 relations, a

128 bit integer for up to 128 relations, a dynamic array of 64 bit vectors for up to 1024 relations, and

a dynamic array of sorted relations for more than 1024 relations.

4.2 Vertex Expansion
Given a vertex 𝑢, expand(𝑢) must compute all outgoing edges of that vertex. The term “outgoing”

is now relative to the direction of join ordering: outgoing edges in bottom-up join ordering are

incoming edges in top-down join ordering and vice versa, cf. Figure 1b. Given the representation

V𝑢 of a vertex 𝑢 in the search space, the task is to compute all edges (𝑢, 𝑣,𝑤) ∈ 𝐸, i.e. the outgoing
edges of 𝑢. We now make a case distinction about the search direction.

Bottom-Up Search. In bottom-up search, there exists an edge (𝑢, 𝑣,𝑤) ∈ 𝐸 if there is a join 𝑗 ∈ 𝐽

s.t. 𝑗∗ (𝑢) = 𝑣 . Expanding the definition of hoisted joins from Section 2.2, we get

𝑗∗ (𝑢) = 𝑣 ⇔ ∃ 𝑆1 ≠ 𝑆2 ∈ 𝑢. 𝑣 =
(
𝑢 \ {𝑆1, 𝑆2}

)
∪
{
𝑗 (𝑆1, 𝑆2)

}
From this definition we can derive Algorithm 2 to compute all outgoing edges of 𝑢: we simply need

to test for all pairs of subproblems (𝑆1, 𝑆2) whether there exists a join 𝑗 ∈ 𝐽 s.t. 𝑗 (𝑆1, 𝑆2).
Time Complexity. Algorithm 2 iterates over all pairs of subproblems (skipping symmetric pairs)

and over all joins. Note that there can be at most |𝑅 | many subproblems inV𝑢 . In the innermost

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

Efficiently Computing Join Orders with Heuristic Search 73:11

Algorithm 2 Bottom-up vertex expansion.

function expandBottomUp(V𝑢 : representation of vertex 𝑢)
for 𝑖 = 1 to |V𝑢 | − 1 do

for 𝑘 = 𝑖 + 1 to |V𝑢 | do
𝑏𝑖 ← V𝑢 [𝑖] ⊲representation of subproblem 𝑆1

𝑏𝑘 ← V𝑢 [𝑘] ⊲representation of subproblem 𝑆2

for each 𝑗 ∈ 𝐽 joining 𝑏𝑖 and 𝑏𝑘 do
𝑙 ← V𝑢 [1 : 𝑖 − 1] ◦ V𝑢 [𝑖 + 1 : 𝑘 − 1] ⊲slice V𝑢 to replace 𝑏𝑖 . . .
𝑟 ← V𝑢 [𝑘 + 1 : |V𝑢 |] ⊲. . . and 𝑏𝑘 by (𝑏𝑖 | 𝑏𝑘) . . .
V𝑣 ← 𝑙 ◦

(
𝑏𝑖 | 𝑏𝑘

)
◦ 𝑟 ⊲. . . and maintain lexicographical order

yield V𝑣 by 𝑗 (𝑆1 = 𝑏𝑖 , 𝑆2 = 𝑏𝑘) ⊲emit how to generate successor
end for

end for
end for

end function

Algorithm 3 Top-down vertex expansion.

function expandTopDown(V𝑢 : representation of vertex 𝑢)
for 𝑖 = 1 to |V𝑢 | do ⊲partition each subproblem of V𝑢

for each ccp

(
𝑏1, 𝑏2

)
in PARTITIONMinCutAGaT(V𝑢 [𝑖]) do ⊲[12, Fig. 6]

V𝑣 ← V𝑢 [1 : 𝑖 − 1] ◦ V𝑢 [𝑖 + 1 : |V𝑢 |] ⊲remove subproblem at index 𝑖
InsertSortedLex(V𝑣 , 𝑏1) ⊲insert 𝑏1 lexicographically
InsertSortedLex(V𝑣 , 𝑏2) ⊲insert 𝑏2 lexicographically
yield V𝑣 by 𝑗 (𝑆1 = 𝑏1, 𝑆2 = 𝑏2) ⊲emit how to generate successor

end for
end for

end function

loop,V𝑢 is sliced to constructV𝑣 . This can be done in a single pass overV𝑢 . We can therefore bound

Algorithm 2’s time by O(|𝑅 |3 · |𝐽 |). Judging by the asymptotic runtime, our algorithm appears to

be very inefficient. However, our experiments in Section 7 reveal that expansion makes up for only

a small fraction of overall search time.

Top-Down Search. Analogously to bottom-up search, in top-down search, there exists an edge

(𝑢, 𝑣,𝑤) ∈ 𝐸 if there is a join 𝑗 ∈ 𝐽 s.t. 𝑗∗ (𝑣) = 𝑢. Again, by expanding the definition of hoisted

joins from Section 2.2, we get

𝑗∗ (𝑣) = 𝑢 ⇔ ∃ 𝑆1 ≠ 𝑆2 ∈ 𝑣 . 𝑢 = 𝑣 \ {𝑆1, 𝑆2} ∪
{
𝑗 (𝑆1, 𝑆2)

}
⇔ ∃ 𝑆1 ≠ 𝑆2 ∈ 𝑣 ∃ 𝑆 ∈ 𝑢. 𝑗 (𝑆1, 𝑆2) = 𝑆

This means, there exists an edge (𝑢, 𝑣,𝑤) ∈ 𝐸 if there is a subproblem 𝑆 in 𝑢 that can be partitioned

into subproblems 𝑆1, 𝑆2 in 𝑣 such that there is a join 𝑗 ∈ 𝐽 with 𝑗 (𝑆1, 𝑆2) = 𝑆 . Enumerating these

partitions is exactly the problem of top-down join ordering [6, 11, 12, 36]. We select an existing

partitioning algorithm to enumerate all ccps of a subproblem, here PARTITIONMinCutAGaT [12], to

implement top-down vertex expansion in Algorithm 3.

Time Complexity. Fender and Moerkotte [12] analyze the time complexity ofMincutLazy and

find that it is worst for clique queries with O(|𝑅 |2) time. MinCutAGaT, which is based on

MincutLazy, exhibits the same asymptotic runtime behavior. Analyzing our Algorithm 3, we

see that the outer-most loop performs no more than |𝑅 | iterations. Further, slicingV𝑢 to construct

V𝑣 and the two invocations of InsertSortedLex require at most O(|𝑅 |) time. We conclude that Al-

gorithm 3’s time complexity is bounded by O(|𝑅 |4). Note thatMinCutBranch [11] exhibits better

asymptotic runtime behavior thanMinCutAGaT for cycle and clique queries but is significantly

more complex. As our evaluation in Section 7 shows, vertex expansion takes only a small share of

overall search time and we therefore opt for MinCutAGaT in this work.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

73:12 Immanuel Haffner & Jens Dittrich

Algorithm 4 Add vertex to open list with duplicate handling.

function add(L : open list, 𝑣 : vertex to add, 𝑔𝑣 : cost of 𝑣)
if 𝑣 in L.table then ⊲is 𝑣 a duplicate?

if 𝑔𝑣 < L.table[𝑣] .𝑔 then ⊲reached 𝑣 on a cheaper path?
if L.table[𝑣].handle is None then ⊲not in open list?
L.table[𝑣].handle← insert(L.heap, 𝑣, 𝑔𝑣 + ℎ (𝑣))
L.table[𝑣] .𝑔← 𝑔𝑣 ⊲remember cost of 𝑣

else
decrease-key(L.heap, L.table[𝑣].handle, 𝑔𝑣 + ℎ (𝑣)) ⊲update cost
L.table[𝑣] .𝑔← 𝑔𝑣 ⊲remember updated cost

end if
end if

else
L.table[𝑣].handle← insert(L.heap, 𝑣, 𝑔𝑣 + ℎ (𝑣)) ⊲insert and save handle
L.table[𝑣] .𝑔← 𝑔𝑣 ⊲remember cost of 𝑣

end if
end function

Algorithm 5 Extract best vertex from open list.

function extract-best(L : open list)

𝑣, 𝑔𝑣 ← find-min(L.heap) ⊲get best vertex and its cost
delete-min(L.heap) ⊲remove best vertex from heap
L.table[𝑣].handle← None ⊲update handle
return 𝑣, 𝑔𝑣

end function

4.3 Open List and Duplicate Detection
As shown in Algorithm 1, BFS extracts in each iteration of the outer loop the next best vertex from

the open list with extract-best, expands it into its successors, and adds the successors to the open

list with add. To efficiently implement extract-best and add, we require a data structure that

efficiently supports (1) finding the next best vertex, (2) removing the next best vertex, and (3) adding

newly generated successor vertices. There is one more operation that the data structure should

support. To motivate this, let us look again at the example in Figure 2. The goal 5 is generated

twice, first by 3 with 𝑔 = 60 and afterwards by 4 with 𝑔 = 55. When 5 is generated the second

time, it is already present in the open list. One way to support this, is by allowing for duplicates in

the open list. This is safe, since duplicates have the same heuristic value ℎ and hence the duplicate

with smaller 𝑔 is extracted first from the open list. However, if duplicates occur frequently, they

cause the open list to grow unnecessarily large, thereby degrading performance. A better way to

cope with duplicates is to detect them while they are being added to the open list. We therefore

devise a scheme for the detection of duplicates (DeDup): A new vertex is immediately added to the

open list. When a duplicate vertex is being added to the open list, we compare the 𝑔 values of this

duplicate and the vertex already in the open list. A duplicate with equal or greater 𝑔 is discarded,

as it cannot lead to finding shorter paths. A duplicate with smaller 𝑔 means that we have found a

shorter path from 𝑛0 to this vertex. Instead of adding the duplicate to the open list, we reduce 𝑔 of

the vertex already within the open list to 𝑔 of the duplicate that is being added. The data structure

should therefore also support an operation to (4) reduce 𝑔 of an already incorporated vertex.

Data structures fit for this task are heaps. They provide exactly the aforementioned required

operations (1) find-min, (2)delete-min, (3) insert, and (4)decrease-key. There aremany different

implementations of heaps, e.g. binary heap, binomial heap, Fibonacci heap, and pairing heap, to

name a few [4, 6.1 Heaps on p. 151]. Some heaps do not support decrease-key. In that case, the

operation can be emulated by first deleting the vertex of old 𝑔 and then re-inserting the vertex

with new 𝑔. However, we shall use boost::heap::fibonacci_heap, which efficiently supports

the decrease-key operation.
2

2
Note that Boost implements max-heaps.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

Efficiently Computing Join Orders with Heuristic Search 73:13

Table 2. The impact of DeDup. We run Dijkstra ↑ on queries of 10 relations and count new and duplicate

vertices.

chain cycle star clique

without DeDup #new 497 819 115 1497

#duplicates 182 577 224 726 72 13 710

with DeDup

#new 497 819 115 1497

#duplicates 1140 1408 22 191

DeDup requires that we can search for a particular vertex in the heap – an operation that is

usually not (efficiently) supported. We therefore naïvely use a hash table in addition to the heap. The

hash table serves two purposes: (1) It stores for each seen vertex a handle. If the vertex is currently

in the heap, the handle references the heap entry. Otherwise, the vertex has been extracted from

the heap and the handle is None. (2) The hash table stores for each seen vertex the weight 𝑔 of

the cheapest path by which the vertex was reached. With the handle we are able to perform a

decrease-key operation when a vertex is reached on a cheaper path. It also enables us to identify

whether a vertex is currently in the heap or has already been deleted. Storing 𝑔 inside the hash table

enables us to discard duplicates not reached on a cheaper path, even when the vertex has already

been extracted from the open list. DeDup implicitly requires that the heap can provide handles

to entries. This is usually the case when the heap provides referential stability3 of its elements.

We implement add and extract-best with DeDup in Algorithm 4 and Algorithm 5, respectively.

Note, that in the pseudo-code the open list L contains both the heap and the hash table. Further,

Algorithm 4 defines the best vertex as the one minimizing 𝑔𝑣 + ℎ(𝑣), as is required by 𝐴∗; any other

definition of best is possible.
We demonstrate the necessity of DeDup with a small experiment. We compare two implementa-

tions of the open list: one implementation with DeDup and one implementation that simply allows

for duplicates and performs no duplicate checking at all. We compute optimal plans for queries of

10 relations using bottom-up search with Dijkstra’s algorithm and we count the new and duplicate

vertices generated by vertex expansion. We present our findings in Table 2. Note, that whether

we allow for duplicates in the open list only affects how many duplicates are generated and how

often the same vertex is expanded but it does not affect which unique vertices are expanded or

generated. The explored region of the search space remains the same. Hence, and as we expect, the

amount of newly generated, unique vertices is independent of whether we allow for duplicates.

In stark contrast, the amount of duplicates generated when allowing for duplicate vertices in the

open list is up to two orders of magnitude larger. To understand why allowing for duplicates in the

open list has such a devastating effect on the amount of vertices generated, we have to understand

that every single duplicate extracted from the open list is expanded and hence all its generated

successors become duplicates in the open list, leading to an exponential blow-up of duplicates.

In the following Section 4.4, we discuss how we further prevent some duplicates of ever being

generated.

4.4 Duplicate Prevention
In previous Section 4.3, we proposed DeDup to efficiently eliminate duplicates in the open list.

However, DeDup does not prevent the generation of duplicates during vertex expansion. In the

following, we identify two classes of duplicates: desired and undesired duplicates. We then devise

a scheme to prevent the generation of undesired duplicates during vertex expansion (PreDup). We

consequently extend vertex representation from Section 4.1 and expansion from Section 4.2.

3
Referential stability is also called pointer stability.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

73:14 Immanuel Haffner & Jens Dittrich

A

B C

D

A

B C

D A

B C

D

A

B C

D

A1B B1C

(A
1B)

1C A1 (B1C)

𝑛0

𝑣

(a) Desired duplicate, with each of the two paths

corresponding to a unique partial plan.

A

B C

D

A

B C

D A

B C

D

A

B C

D

A1B C1D

C1D A1B

𝑛0

𝑣

(b) Undesired duplicate, with both paths corre-

sponding to the same partial plan.

Fig. 3. Example of desired versus undesired duplicates.

𝑢

𝑣

𝑢′ 𝑢′′

𝑣 ′ 𝑣 ′′

𝑗
1 (𝑞, 𝑟)

𝑗2(𝑠,
𝑡)

𝑗2(𝑠,
𝑡)

𝑗
1 (𝑞, 𝑟)

=
𝑷 ′ 𝑷 ′′

Fig. 4. General pattern of undesired duplicates. Vertex 𝑢 must contain four subproblems 𝑞, 𝑟, 𝑠, 𝑡 , s.t. 𝑞 can be

joined with 𝑟 and 𝑠 can be joined with 𝑡 . The order of the two joins can be permuted, resulting in two paths 𝑃 ′

and 𝑃 ′′ of exact same weight, i.e. weight(𝑃 ′) = weight(𝑃 ′′). Hence, 𝑣 is generated twice with the same cost.

To introduce the notion of desired and undesired duplicates, let us consider the two examples

in Figure 3. Both examples show a fraction of the search space of Figure 1b. In Figure 3a, we see two

paths leading from the start 𝑛0 to a vertex 𝑣 , where relations A, B, and C have been joined. These

two paths, despite leading to the same vertex, correspond to two different partial plans: one plan
joins A and B first, the other joins B and C first. In contrast, in Figure 3b, we see two distinct paths

from 𝑛0 to 𝑣 that correspond to the exact same partial plan: although the two paths order the joins

A1B and C1D differently, this ordering has no semantics in the corresponding partial plan. In

the example of Figure 3a, we do want to generate the duplicate of 𝑣 , as it may reveal a shorter path

to 𝑣 . If the duplicate does not reveal a shorter path, it will be discarded by DeDup (cf. Section 4.3).

In the example of Figure 3b, however, we would be wise not to generate the duplicate of 𝑣 . Its path

corresponds to an already considered partial plan. Therefore, 𝑣 has already been generated with

the exact same cost 𝑔 and hence the duplicate of 𝑣 will definitely be discarded by DeDup.

We devise a scheme to prevent the generation of such undesired duplicates during vertex

expansion, named PreDup. We say that a duplicate vertex is undesired, if the vertex was reached

before on some path 𝑃 ′ and is now reached on a different path 𝑃 ′′ and it can be shown that –

independent of cardinalities – weight(𝑃 ′) = weight(𝑃 ′′). In that case, we say path 𝑃 ′′ is redundant.
We provide a general pattern of undesired duplicates in Figure 4. There is a redundant path between

vertices 𝑢 and 𝑣 , if 𝑢 has four subproblems 𝑞, 𝑟, 𝑠, 𝑡 such that 𝑞 can be joined with 𝑟 and 𝑠 can be

joined with 𝑡 , i.e. ∃ 𝑗1, 𝑗2 ∈ 𝐽 . 𝑗1 (𝑞, 𝑟), 𝑗2 (𝑠, 𝑡). In that case, any path from 𝑢 to 𝑣 that includes both

these joins can be transformed into another, valid path from 𝑢 to 𝑣 by exchanging the order of the

two joins. These two paths have the exact same weight, hence 𝑣 is generated twice with exact same

cost 𝑔. The idea of PreDup is to prevent the generation of undesired duplicates by preventing the

search from pursuing redundant paths. More precisely, in Figure 4, the search may either perform
𝑗2 (𝑠, 𝑡) after 𝑗1 (𝑞, 𝑟) or 𝑗1 (𝑞, 𝑟) after 𝑗2 (𝑠, 𝑡) but not both. To implement this, we exploit the fact that

our vertex representation in Section 4.1 keeps the sequence of bit vectorsV sorted lexicographically.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

Efficiently Computing Join Orders with Heuristic Search 73:15

Algorithm 6 Extension of Algorithm 2 to prevent redundant paths.

function expandBottomUp(V𝑢 : representation of vertex 𝑢)
for 𝑖 = 1 to |V𝑢 | − 1 do

for 𝑘 = 𝑖 + 1 to |V𝑢 | do
𝑏𝑖 ← V𝑢 [𝑖] ⊲representation of subproblem 𝑆1

𝑏𝑘 ← V𝑢 [𝑘] ⊲representation of subproblem 𝑆2

if
(
𝑏𝑖 | 𝑏𝑘

)
<
lex
∇(V𝑢) then

⊲undesired duplicate?
continue ⊲skip

end if
for each 𝑗 ∈ 𝐽 joining 𝑏𝑖 and 𝑏𝑘 do

𝑙 ← V𝑢 [1 : 𝑖 − 1] ◦ V𝑢 [𝑖 + 1 : 𝑘 − 1]
𝑟 ← V𝑢 [𝑘 + 1 : |V𝑢 |]
V𝑣 = 𝑙 ◦

(
𝑏𝑖 | 𝑏𝑘

) ∇ ◦ 𝑟 ⊲maintain lexicographical order

yield V𝑣 by 𝑗 (𝑆1 = 𝑏𝑖 , 𝑆2 = 𝑏𝑘) ⊲emit how to generate successor
end for

end for
end for

end function

We have 𝑗1 (𝑞, 𝑟) = 𝑞 ∪ 𝑟 and 𝑗2 (𝑠, 𝑡) = 𝑠 ∪ 𝑡 , with either 𝑞 ∪ 𝑟 <lex 𝑠 ∪ 𝑡 or 𝑠 ∪ 𝑡 <lex 𝑞 ∪ 𝑟 . We store

inV the subproblem that was the result of the most recent join, indicated with ∇. By storing the

most recently joined subproblem, we can suppress the generation of undesired duplicates during

expand: we skip joins whose join result is lexicographically smaller than the stored subproblem

of the expanded vertex. For example, let 𝑞 <lex 𝑟 <lex 𝑠 <lex 𝑡 . When expanding 𝑢 we get 𝑢′ with
∇(V𝑢′) = 𝑞 ∪ 𝑟 and 𝑢′′ with ∇(V𝑢′′) = 𝑠 ∪ 𝑡 and

forV𝑢′ : 𝑗2 (𝑠, 𝑡) = 𝑠 ∪ 𝑡 ≮≮≮
lex

𝑞 ∪ 𝑟 = ∇(V𝑢′) ✓

forV𝑢′′ : 𝑗1 (𝑞, 𝑟) = 𝑞 ∪ 𝑟 <lex 𝑠 ∪ 𝑡 = ∇(V𝑢′′) ✗

Because we suppress join results that are lexicographically smaller than the stored subproblem,

during vertex expansion the stored subproblem can only become larger w.r.t. the lexicographical or-

dering. Hence, no matter how 𝑣 ′′ is reached from𝑢′′ in Figure 4, we know that ∇(V𝑣′′) ≥lex ∇(V𝑢′′)
and therefore 𝑗1 (𝑞, 𝑟) is suppressed when expanding 𝑣 ′′. We extend our algorithm for bottom-up ver-

tex expansion of Section 4.1 accordingly in Algorithm 6 and highlight the necessary modifications.

In the initial vertex 𝑛0 =
(
𝑅
1

)
, the lexicographically smallest subproblem is marked. An extension

of top-down expansion, as in Algorithm 3, would be analogous: the most recently partitioned

subproblem is stored and subproblems lexicographically smaller than the most recently partitioned

subproblem are not further partitioned. In the initial vertex of top-down search, i.e. 𝑛0 = {𝑅}, the
single subproblem 𝑅 is marked. We need to show that BFS with expand as in Algorithm 6 is still

complete, sound, and optimal.

Completeness. Looking at Figure 4, we see that our scheme only prevents expanding 𝑣 ′′ to 𝑣 , i.e.
the edge 𝑣 ′′ 𝑣 , still leaving an alternative path from 𝑢 to 𝑣 . More generally, all vertices that were

reachable from 𝑛0 before our modification are still reachable from 𝑛0. This particularly holds true

for 𝑛∗.
Soundness. Our scheme neither introduces new edges into the search space nor does it alter the

weights of existing edges. Therefore, any path found from 𝑛0 to 𝑛∗ corresponds to a feasible plan.

Optimality. In Figure 4, the paths 𝑃 ′ and 𝑃 ′′ have the exact same weight. If either of the paths,

say 𝑃 ′′, is eliminated by our scheme, then 𝑣 is still reached by 𝑃 ′ of exact same weight as 𝑃 ′′. If 𝑃 ′′

was an optimal path, so is 𝑃 ′, and hence an optimal path to 𝑣 is found.

To evaluate the gain of PreDup, we rerun the same experiment as in Table 2. This time, we use

DeDup (cf. Section 4.3) and compare bottom-up search with and without PreDup. We present our

findings in Table 3. Let us first look at star topology: We see that the number of generated new

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

73:16 Immanuel Haffner & Jens Dittrich

Table 3. The impact of PreDup on the experiment of Table 2. Both configurations include DeDup (cf. Sec-

tion 4.3).

chain cycle star clique

DeDup only

#new 497 819 115 1497

#duplicates 1140 1408 22 191

DeDup + PreDup

#new 377 626 115 891

#duplicates 299 419 22 109

Table 4. The impact of the definition of edge weights on the number of vertices generated. We run Dijkstra ↑

on queries of 10 relations. Both approaches compute a solution that is optimal w.r.t. Def. 2.

chain cycle star clique

#vertices generated

with Def. 3 1014 2484 344 1864

with Def. 4 676 1045 137 1000

and duplicate vertices does not change. This is expected, as in star topology there are no bushy

plans and therefore there are no redundant paths and no undesired duplicates. Next we look at

chain, cycle, and clique topologies: We see that the number of generated duplicates is significantly

reduced, as we expected. However, and maybe to your surprise, we can also see that the number of

generated new vertices shrunk. To understand why that is the case, let us reconsider Figure 2. With

our scheme for preventing undesired duplicates, we have ∇(2) = {𝐶, 𝐷}. When 2 is expanded, our

scheme prevents the generation of 3 as successor, since {𝐴, 𝐵} <lex {𝐶, 𝐷}. However, successor 4 is

still generated and consequently a shortest path is found, with one unique vertex less generated.

5 HEURISTIC FUNCTIONS FOR JOOP
So far, we presented how to solve join order optimization by heuristic search and the algorithmic

challenges that arose. In this section, we present three heuristics for the search problem and their

respective heuristic properties. However, we must first understand how to derive edge weights

from a DBMS’ cost model and how heuristics depend on the cost model.

5.1 From DBMS Cost Model to Edge Weights
In Section 2.2 we introduced a cost model 𝐶 and used it to define the weights of the edges of the

search space. The weight of a path is defined as the sum of the weights of its edges. A heuristic

estimates the weight of a shortest path to the nearest goal. Therefore, heuristics depend on the cost

model. It is hard, if not infeasible, to define an informative heuristic independent of the cost model.

In this work, we focus on the well-known and frequently used cost model Cout, that assesses a plan

by the sum of the cardinalities of all intermediate results [3, 11, 12, 24, 25]. It is recursively defined

as

𝐶out (𝑇) ≔
{
0 if 𝑇 ∈ 𝑅
|𝑇 | +𝐶out (𝑇1) +𝐶out (𝑇2) if 𝑇 = 𝑇1 1𝑇2

(Def. 2)

In order to weigh the edges of the search space according to Cout, we must recursively decom-

pose Def. 2 to match our definition of cost model 𝐶 from Section 2.2:

𝐶 (𝑆1, 𝑆2, 𝑗) ≔ |𝑆1 1 𝑆2 | (Def. 3)

While this definition of 𝐶 is coherent with Cout, it has one major pitfall that significantly hurts

bottom-up heuristic search: According to Def. 2, the cardinality of the result set of the query is

always included in the total cost. When comparing entire plans by their cost, the cardinality of

the result set always cancels out. This is, however, not the case when comparing two entries of

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

Efficiently Computing Join Orders with Heuristic Search 73:17

the open list in bottom-up heuristic search: Every entry for the goal already includes in its 𝑔 the

cardinality of the result set while entries for non-goal vertices do not include this cardinality in

their 𝑔 yet, despite the fact that this cardinality occurs as edge weight on any path to goal. When

the heuristic frequently underestimates, this leads to goals added to the open list being artificially

pushed towards the end, delaying their expansion and ultimately delaying finding a plan. We

therefore devise a variant of 𝐶 that simply excludes the cardinality of the result set:

𝐶 (𝑆1, 𝑆2, 𝑗) ≔
{
0 if 𝑗 (𝑆1, 𝑆2) = 𝑅

|𝑆1 1 𝑆2 | otherwise

(Def. 4)

Plans optimal w.r.t. Def. 4 are also optimal w.r.t. Cout of Def. 2. We evaluate the impact of the two

definitions of 𝐶 on bottom-up heuristic search by comparing the number of vertices generated

in Table 4. Our experiment demonstrates that with Def. 4 bottom-up heuristic search converges

faster towards a goal. Note that this pitfall does not exist in top-down heuristic search, as the

cardinality of the result set is immediately incorporated in all vertices when the initial vertex is

expanded.

5.2 Four Simple Heuristics
The following heuristics are designed particularly for Cout of Def. 2, with edge weights computed

according to Def. 4. In addition to the cost model, heuristics depend on the direction of the search,

i.e. bottom-up vs. top-down, because heuristics estimate the distance to goal and the goal depends

on the search’s direction.

The zero heuristic. The simplest heuristic is the one assigning the same constant value to any

vertex. This heuristic provides no additional information to the search. We define the particular

constant heuristic with constant zero ℎzero (𝑣) = 0. Observe, that ℎzero is goal-aware, consistent, and

admissible. When used as heuristic for 𝐴∗, the search degrades into Dijkstra’s algorithm. Naturally,

ℎzero can be used for both bottom-up and top-down search.

The sum heuristic. This heuristic provides a lower bound for the remaining cost to reach the goal

in top-down search. All subproblems that are not base relations are yet to be partitioned. Looking

at Def. 4, each subproblem that is not a base relation will add its cardinality to the overall cost Cout.

We can therefore calculate a lower bound for the remaining cost by summing up the cardinalities

of all subproblems that are no base relations:

ℎsum (𝑣) ≔
∑︁

𝑆 ∈ 𝑣\𝑅
|𝑆 |

Since ℎsum is a lower bound of the remaining cost, it never overestimates and therefore it is

admissible and can be used to compute an optimal plan. Note that ℎsum only accounts for the current
subproblems, i.e. the subproblems in 𝑣 . It does not consider any subproblems formed by partitioning

subproblems in 𝑣 . Therefore, ℎsum often underestimates the remaining cost dramatically and the

error grows with the distance (in #edges) of 𝑣 to the goal.

The GOO heuristic(s).We devise a heuristic ℎGOO↑ for bottom-up search by greedily computing

a reasonable path from the current vertex to goal using greedy operator ordering (GOO) [9]. GOO

iteratively selects and joins two subproblems until only a single subproblem remains. The two

subproblems to join 𝑆1, 𝑆2 are chosen to minimize |𝑆1 1 𝑆2 |. As ℎGOO↑ estimates the remaining

distance to goal by computing an actual path, the heuristic never underestimates. However, because

the subproblems to join 𝑆1, 𝑆2 are chosen greedily, the heuristic often overestimates. Hence, BFS

with ℎGOO↑ does not guarantee finding an optimal plan. We also devise a variant of this heuristic for

top-down search, named ℎGOO↓. This variant partitions each subproblem 𝑆 = 𝑆1 1 𝑆2 s.t. |𝑆1 | + |𝑆2 |
is minimized.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

73:18 Immanuel Haffner & Jens Dittrich

5 7 9 11

#relations

1.0

1.2

1.4

1.6

1.8

2.0

b
∗

chain

5 7 9 11

#relations

1.0

1.3

1.6

1.9

2.2

cycle

5 7 9 11

#relations

1.0

1.3

1.6

1.9

2.2

star

5 7 9 11

#relations

1.0

1.6

2.2

2.8

3.4

clique

A∗↑ + hzero A∗↑ + hGOO↑ A∗↓ + hzero A∗↓ + hsum A∗↓ + hGOO↓

Fig. 5. Information value of different heuristics.

5.3 Informative Value of Heuristic Functions
We compare the four heuristicsℎzero,ℎsum,ℎGOO↓, andℎGOO↑ by how informative they are to heuristic

search. We assess the heuristics by their effective branching factor 𝑏∗ (cf. Section 3.2). Note, that 𝐴∗

with ℎzero is exactly Dijkstra’s algorithm. We calculate 𝑏∗ – the average branching factor per vertex
expansion – from the depth 𝑑 of the goal and the number 𝑁 of generated vertices by solving the

following equation [29].

𝑁 = 𝑏∗ + (𝑏∗)2 + · · · + (𝑏∗)𝑑 (Def. 5)

We experimentally determine 𝑏∗ for the four heuristics on the four topologies chain, cycle, star,

and clique. We consider both bottom-up and top-down search with 𝐴∗. We vary the number of

relations from 5 to 15, count the generated vertices, and from that derive the actual branching

factor 𝑏∗ according to Def. 5. We repeat each experiment five times with different seed (for details

see Section 7). We present our results in Figure 5. We can generally observe that different heuristics

provide different information value to the search and that their information value varies between

the query topologies. In particular, we make five important observations: (1) 𝐴∗↑ + ℎzero is generally
more informative than 𝐴∗↓ + ℎzero. This is due to Def. 4, where in bottom-up search the cost 𝑔 of a

vertex already includes the cardinality of the current subproblems, which is not the case in top-

down search. (2) ℎsum corrects the aforementioned deficiency of ℎzero and significantly reduces 𝑏∗.
(3) For chain and cycle topology, 𝐴∗↓ + ℎsum results in smaller 𝑏∗ than 𝐴∗↑ + ℎzero, while for star and

clique topology, exactly the opposite is the case. This observation suggests that different types of

queries are better solved by bottom-up or top-down search. (4) Both 𝐴∗↑ + ℎGOO↑ and 𝐴
∗
↓ + ℎGOO↓

achieve least 𝑏∗ for cycle, star, and clique topologies. This inadmissible heuristic causes the search

to quickly converge towards a goal, but the solution can be suboptimal. (5) We can observe for

each heuristic how 𝑏∗ evolves with growing number of relations. When 𝑏∗ grows with increasing

number of relations, then the information value of the heuristic shrinks. Contrary, if 𝑏∗ shrinks with
increasing number of relations, the information value of the heuristic grows. For example, ℎGOO↓’s

information value for star topology grows the more relations the query involves. The information

value of ℎsum for clique topology shrinks with increasing number of relations.

6 RELATEDWORK
Classical Join Ordering — Ibaraki and Kameda [16] prove that the problem of join order opti-

mization is generally NP hard, even when allowing for only a single join method (i.e. nested-loops

join). The authors provide a polynomial-time greedy algorithm, that computes an optimal plan if

the query graph is a tree, e.g. a star query. The algorithm requires that the cost function, under

which optimization is performed, satisfies the adjacent sequence interchange (ASI) property. The
ASI property requires that a cost-benefit ratio, named rank, can be computed for each join. The

work was further extended by Krishnamurthy et al. [18] and the algorithm is sometimes referred

to as IK/KBZ. Cluet and Moerkotte [3] show that summarizing the cardinalities of intermediate

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

Efficiently Computing Join Orders with Heuristic Search 73:19

results serves as a good cost model, named Cout, that also satisfies the ASI property. We do not

require ASI for heuristic search.

Selinger et al. [32] were the first to use DP to compute an optimal join order. Their algorithm,

frequently referred to as DPsize, enumerates all (partial) plans in increasing number of relations, until

a final, optimal plan is found. Cartesian products are performed as late as possible, i.e. never when

the query graph is connected. Ono and Lohman [27] derive analytically for different topologies the

number of distinct plans, excluding Cartesian products. For both star and clique topology, the num-

ber of plans is exponential in the number of relations. Vance and Maier [36] and Vance [35] improve

upon DPsize by devising a more efficient enumeration scheme following Gray code order [13]. This

algorithm is frequently referred to as DPsub. Moerkotte and Neumann [22] further improve plan

enumeration via DP. Their algorithm DPCCP enumerates all connected pairs of connected subgraphs

without duplicates by traversing the query graph in a particular order. Chaudhuri et al. [2] invent

top-down plan enumeration by decomposing a set of relations into two smaller sets and recursively

computing optimal plans for these sets. In their work, the authors only consider linear plans.

DeHaan and Tompa [6] generalize top-down plan enumeration to bushy plans and exclude Carte-

sian products. Their algorithm builds upon efficiently finding minimal graph cuts by computing the

biconnected components of the query graph, that are organized in the biconnection tree. The authors
show that top-down planning integrates well with cost-based branch-and-bound pruning, however

the benefit is limited when Cartesian products are excluded. Fender and Moerkotte [11, 12] further

improve top-down plan enumeration with two algorithms: (1) TDMinCutAGaT extends the work

of DeHaan and Tompa [6] by replacing the biconnection tree with an advanced generate and test
routine. (2) TDMinCutBranch avoids connectedness checks by ensuring that only ccps are generated,

thereby improving the complexity of finding a cut.

While the aforementioned algorithms enumerate all ccps, heuristic search is often able to find

a provably optimal plan without enumerating all ccps. On the contrary, when the heuristic is

uninformative, duplicates occur frequently. Branch-and-bound pruning is implicitly performed by

the open list when ordering by 𝑔 or 𝑔 + ℎ and ℎ is goal-aware. In contrast to prior work, heuristic

search pursues those joins first that it deems to lead to cheaper plans.

Greedy Join Ordering — Fegaras [9] presents greedy operator ordering (GOO), a greedy algorithm

that repeatedly joins in each iteration the two subproblems leading to the smallest result size, until

all relations are joined. GOO is a BFS with the heuristic defined as the result size of the most recent

join and greedy BFS as search.

Neumann [24] proposes query simplification to reduce the complexity of plan enumeration

until it becomes tractable with DP. Simplification introduces ordering constraints, reducing the

considered plans but sacrificing optimality. Neumann and Radke [25] propose linearization of the

query graph. Their algorithm, named LinearizedDP, precedes DPCCP with a linearization phase

based on IK/KBZ. Linearization, similarly to query simplification, reduces the amount of plans

considered by DP, rendering DP suboptimal.

Heuristic Search — To the best of our knowledge, Sellis [33] work on MQO is the first to apply

heuristic search in the context of query optimization. In this particular work, multiple plans are

generated for each query and a heuristic search algorithm then selects for each query exactly one

plan, considering common intermediate results and minimizing the overall cost of executing all

queries. Note, that this is a different optimization problem than join order optimization, where a

single plan for a single query is computed.

Marcus et al. [21] train an ML model to predict the cost of the best plan constructible from a

given partial plan. They use this model as heuristic for BFS. An argument is missing as to why the

problem can be solved by search and whether the learned model has good heuristic properties. A

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

73:20 Immanuel Haffner & Jens Dittrich

Algorithm 7 Generation of cardinalities.

function cardinality-gen(𝐺Q : query graph of query Q, 𝑐min : minimum cardinality, 𝑐max : maximum cardinality)

𝐶 ← new HashMap() ⊲cardinalities of subproblems
for each 𝑟 in𝐺Q .𝑅 do ⊲initialize cardinalities of base relations

𝐶 [𝑟] ← rand(𝑐min, 𝑐max) ⊲random cardinality in range 𝑐min to 𝑐max
end for
𝐶′ ← new HashMap() ⊲maximum possible cardinality per subproblem
for each csg (𝑆1, 𝑆2) of𝐺Q do ⊲enumerated in DPCCP [22] order

𝑐1 ← cardinality(𝑆1,𝐶,𝐶′, 𝑐min, 𝑐max) ⊲get cardinality of 𝑆1
𝑐2 ← cardinality(𝑆2,𝐶,𝐶′, 𝑐min, 𝑐max) ⊲get cardinality of 𝑆2
if 𝑆1 ∪ 𝑆2 not in𝐶′ then

𝐶′ [𝑆1 ∪ 𝑆2] ← 𝑐1 · 𝑐2 ⊲set max. cardinality of 𝑆1 ∪ 𝑆2
else

𝐶′ [𝑆1 ∪ 𝑆2] ← min(𝐶′ [𝑆1 ∪ 𝑆2], 𝑐1 · 𝑐2) ⊲update max. cardinality
end if

end for
𝐶 [𝐺Q .𝑅] ← cardinality(𝐺Q .𝑅) ⊲cardinality of result
return𝐶

end function

function cardinality(𝑆 ,𝐶 ,𝐶′ , 𝑐min , 𝑐max)
if 𝑆 not in𝐶 then ⊲no fixed cardinality for 𝑆 yet?

𝑐′ ← min(𝐶′ [𝑆], 𝑐max
2) ⊲max. cardinality of 𝑆 , bounded by 𝑐max

2

𝐶 [𝑆] ← 𝑐min + (𝑐′ − 𝑐min) · rand(0, 1) ⊲random cardinality of 𝑆
end if
return𝐶 [𝑆]

end function

general analysis of the search problem is lacking. Since the learned model may overestimate plan

costs, the heuristic is inadmissible and hence search is suboptimal.

7 EVALUATION
7.1 Setup
System — We implement our heuristic search and related state-of-the-art join ordering algorithms

in mutable [14], a main-memory database system currently developed at our group. Queries are

provided to mutable as SQL statements, for which mutable computes a query plan with one of the

join ordering algorithms. We use cost model Cout in all experiments. mutable provides an interface

to read cardinalities from a file. We use this feature to provide exact cardinalities to the process of

join order optimization. We further exploit this feature to simulate queries with varying selection

and join selectivities without the need to generate actual data.

Data — We evaluate all algorithms on the four query topologies chain, cycle, star, and clique,

as they are a de-facto standard for evaluating join order optimization [6, 10, 12, 22, 24, 34]. In

addition, with this work we introduce a new benchmark which includes the former four topologies

as special cases (Section 7.3). We vary number of relations and to simulate varying selection and join

selectivities, we randomly generate 10 cardinality files per query. A file assigns to each subproblem

a cardinality, where the cardinality assigned to a base relation represents the cardinality after

selection (i.e. including selection selectivities) and the cardinality assigned to a subproblem of

multiple relations represents the cardinality after selection and join (i.e. including selection and

join selectivities). We randomly generate these cardinalities with our algorithm cardinality-gen,

given in Algorithm 7. Note that our algorithm produces correlated selectivities, i.e. it does not hold

in general that sel(𝐴 1 𝐵 1 𝐶) = sel(𝐴 1 𝐵) · sel(𝐵 1 𝐶).
Hardware —We run our experiments on a desktop computer with an AMD Ryzen Threadripper

1900X CPU at 3.8GHz and 32GiB DDR4 main memory. We disable the CPU’s dynamic frequency

scaling to reduce noise in our measurements.

Visualization — In line charts, the lines connect the arithmetic means and are highlighted by

their 95% confidence interval. In box plots, the boxes show the interquartile range (25% - 75%) with

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

Efficiently Computing Join Orders with Heuristic Search 73:21

10 20 30 40 50

#relations

100 µs

1 ms

10 ms

100 ms

1 s

10 s

O
p
ti

m
iz

a
ti

o
n

ti
m

e chain

10 20 30 40 50

#relations

cycle

10 15 20

#relations

star

10 15

#relations

clique

DPCCP TDMinCutAGaT A∗↑ + hzero A∗↓ + hzero A∗↓ + hsum

(a) Optimization time of optimal algorithms.

10 20 30 40 50

#relations

10 µs

100 µs

1 ms

10 ms

100 ms

1 s

O
p
ti

m
iz

a
ti

o
n

ti
m

e chain

10 20 30 40 50

#relations

cycle

10 15 20

#relations

star

10 15

#relations

clique

LinearizedDP GOO A∗↑ + hGOO↑ A∗↓ + hGOO↓

(b) Optimization time of suboptimal algorithms.

10 13 16 19 22 25 28

1

10

102

103

104

N
o
rm

a
li

z
e
d

P
la

n
C

o
st

chain

10 12 14 16 18 20

star

10 13 16 19 22 25 28

#relations

1

10

102

103

104

N
o
rm

a
li

z
e
d

P
la

n
C

o
st

cycle

10 11 12 13 14 15 16

#relations

clique

LinearizedDP GOO A∗↑ + hGOO↑ A∗↓ + hGOO↓

(c) Plan cost of suboptimal algorithms, normalized to the optimal plan cost as computed by optimal algorithms,

e.g., DPCCP .

Fig. 6. Comparison of heuristic search to state of the art.

a horizontal bar at the median (50%) and whiskers range from min to max – hence there are no

outliers.

7.2 Comparison to State of the Art
We compare our join order optimization via heuristic search to state-of-the-art algorithms. We dis-

tinguish between optimal and potentially suboptimal algorithms. We first compare by optimization

time and then, for the potentially suboptimal algorithms, we compare the computed plans by their

normalized cost.

We compare the optimization times of optimal join ordering algorithms in Figure 6a. We make

4 key observations: (1) For chain and cycle, the fastest heuristic search is 𝐴∗↓ + ℎsum. (2) For star

and clique, the fastest heuristic search is 𝐴∗↑ + ℎzero. (3) 𝐴
∗
↓ + ℎsum always outperforms 𝐴∗↓ + ℎzero,

emphasizing the importance of an informative heuristic. (4) Both DPCCP and TDMinCutAGaT are

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

73:22 Immanuel Haffner & Jens Dittrich

unmatched by our heuristic search on the chain and cycle topologies. On the star and clique

topologies, however, our𝐴∗↑ + ℎzero performs best, at roughly 10𝑥 faster than DPCCP or TDMinCutAGaT.

We compare the optimization times of suboptimal algorithms in Figure 6b. For all four topologies,

we make the same observation: GOO is fastest, heuristic search is slowest, and LinearizedDP

lies in between. On chain and cycle, both heuristic searches are equally fast, whereas on star and

clique, 𝐴∗↑ + ℎGOO↑ is significantly faster than 𝐴∗↓ + ℎGOO↓. In addition to the optimization times, we

evaluate in Figure 6c the cost of the plans computed by suboptimal algorithms, normalized to the

cost of an optimal plan. We can see that 𝐴∗↑ + ℎGOO↑ generally produces the best plans. In particular,

𝐴∗↑ + ℎGOO↑ improves over GOO in almost all cases. Surprisingly, 𝐴∗↓ + ℎGOO↓ produces significantly

worse plans than 𝐴∗↑ + ℎGOO↑ on star and clique topologies. LinearizedDP produces exceptionally

costly plans on the star and clique topologies. This is due to LinearizedDP’s greedy linearization

step, that is based on IK/KBZ, a greedy algorithm to compute optimal linear plans [16, 18, 25]. The
problem with IK/KBZ is that it assumes uncorrelated join selectivities, an artificial constraint that

is not provided by our data generation (cf. Algorithm 7). Therefore, IK/KBZ computes a suboptimal

linearization, which rules out many good plans for LinearizedDP.

A general observation that we can make for heuristic search is that both optimization time and

plan cost are correlated to the effective branching factor 𝑏∗ of Figure 5: a smaller 𝑏∗ leads to less

optimization time and a better plan. This general rule does not apply, however, when comparing two

searches of opposite direction, e.g. on star topology, 𝐴∗↓ + ℎGOO↓ achieves smaller 𝑏∗ than 𝐴∗↑ + ℎzero,

but the latter is always faster. This supports our hypothesis from Section 5.3, that different types of

queries are better solved by bottom-up or top-down search.

7.3 QGraEL: A New Benchmark for JOOP
Motivation. We analyze the four topologies studied in Section 7.2 together with the queries of

the TPC-H and JOB benchmarks. For our analysis we introduce two measures on the query graph:

density and edge skew. Density is simply defined as the graph density 𝐷 (𝐺Q) ≔ 2 | 𝐽 |
|𝑅 | (|𝑅 |−1) with

𝐺Q ≔ (𝑅, 𝐽), and it captures the ratio between actual edges and maximally possible edges in𝐺Q .
We define edge skew as a measure for the distribution of degrees in 𝐺Q , where the degree of a
vertex is simply the number of edges at this vertex. We calculate edge skew as the 𝑝-value of the

𝜒2 test of the actual distribution of degrees in𝐺Q and expecting a uniform distribution of degrees.

For example, a cycle has a uniform distribution of degrees, i.e. every relation has a degree of 2. The

𝜒2 test will then compute 𝑝 = 1 for no edge skew. For star, one relation has high degree while all

other relations have degree 1 and 𝑝 will be close to 0, signaling high edge skew.
With measures density and edge skew, we draw the entire landscape of queries in Figure 7. For

density in Figure 7a, clique is at the upper limit with a density of 1, i.e. every possible join exists

in 𝐺Q , and chain and star are at the lower limit, with exactly 𝑛 − 1 joins for 𝑛 relations; graphs

with fewer joins are disconnected. For edge skew in Figure 7b, clique and cycle have a uniform

distribution of degrees and are at the upper limit of 1. With increasing number of relations, the

edge skew of star increases and 𝑝 converges towards 0.

We additionally draw the queries of TPC-H and JOB into the landscape in Figure 7. We observe

that all those queries have close to minimal density and high edge skew, leaving large uncharted

spaces in both dimensions.

A New Benchmark.With this work we propose the new benchmark Query Graph Exploration

Landscape (QGraEL). It systematically explores query graphs in three dimensions: number of

relations, density, and edge skew. We evaluate every query in QGraEL with both DPCCP and

𝐴∗↑ + ℎzero and compare their optimization times. This enables us to evaluate for which graph

properties which algorithm performs better.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

Efficiently Computing Join Orders with Heuristic Search 73:23

0 5 10 15 20 25 30

#relations

0.0

0.5

1.0

D
e
n
si

ty

uncharted
space

disconnected

(a) By density.

0 5 10 15 20 25 30

#relations

0.0

0.5

1.0

E
d
g
e

sk
e
w

(p
-v

a
lu

e
)

d
iscon

n
ected

chain

cycle

star

clique

TPC-H

JOB

(b) By edge skew (𝑝-value).

Fig. 7. Landscape of possible query graphs.

0 5 10 15 20 25 30

#relations

0.0

0.5

1.0

D
e
n
si

ty

timed out

disconnected

(a) By density.

0 5 10 15 20 25 30

#Relations

0.0

0.5

1.0

E
d
g
e

sk
e
w

(p
-v

a
lu

e
)

d
iscon

n
ected

S
p
e
e
d
-u

p
o
v
e
r

D
P

C
C

P

←
s
lo

w
e
r

fa
s
t
e
r
→

10×

2×

5×

1×

2×

5×

10×

(b) By edge skew (𝑝-value).

Fig. 8. Speed-up of 𝐴∗↑ + ℎzero over DPCCP in QGraEL. The color encodes the relative improvement of opti-

mization time, and it is capped at 10 in both directions. Note, that in the worst case, 𝐴∗↑ + ℎzero was less than
10x slower than DPCCP while in the best case we achieve speed-ups >1000x.

A∗↓ + hsum
@ chain-40

Expand()

explore state

h sum()

OpenList::add()

OpenList::extract best()

cardinality estimation

fibonacci heap::pop()

fibonacci heap::push()

unordered map::find()

unordered map::insert()

0% 20% 40% 60% 80% 100%

Relative execution time

A∗↑ + hzero
@ star-22C

a
ll

st
a
c
k

Fig. 9. Detailed running time analysis of heuristic search.

Results. Figure 8 shows our results, depicted along the three dimensions number of relations,

density, and edge skew. We explore the landscape as much as possible, i.e. until either algorithm

reaches a fixed timeout. The color encodes the improvement or deterioration of heuristic search

over DPCCP. We observe that large spaces of the landscape that have been unexplored so far are

clearly dominated by heuristic search, with exceptional speed-ups of up to 1000x.

7.4 Detailed Evaluation of Heuristic Search
We perform an in-depth evaluation of heuristic search to understand how much the different

operations contribute to the overall optimization time. We measure how much time is spent in

each function via statistical profiling with the Linux perf tool. We profile two runs: 𝐴∗↓ + ℎsum on a

chain query of 40 relations (chain-40) and 𝐴∗↑ + ℎzero on a star query of 22 relations (star-22). We

visualize the collected profiling data as a flame graph, that is a stacked horizontal bar chart, where

one bar corresponds to one function and the width of the bar corresponds to the time spent within

this function. When one function is called from another function, their bars are vertically stacked

from bottom to top and in the order of the call stack. Figure 9 presents our findings. For search with

𝐴∗↑ + ℎzero, the heuristic is optimized out during compilation and hence does not appear in the flame

graph. We can see that search spends a large share of its optimization time in Expand(), however

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

73:24 Immanuel Haffner & Jens Dittrich

10−4 10−3 10−2 10−1 100

Time [s]

1.0

1.5

2.0

N
o
rm

a
li

z
e
d

p
la

n
c
o
st

ours

star-18

DPCCP TDMinCutAGaT GOO A∗↑ + hzero A∗↑ + hGOO↑

10−4 10−3 10−2 10−1 100

Time [s]

ours

clique-15

Fig. 10. Pareto frontier of optimization time vs. plan cost.

only a fraction of time is spent inside the function itself. This observation supports our claim in

Section 4.2, that vertex expansion makes up for only a small fraction of overall search time. On

chain-40, most time is spent on evaluating the heuristic and on extracting the top element from

the heap. On star-22, more than half of the time is spent on cardinality estimation. Note, that

the optimization times are relative: on star-22 search does not spend more time on cardinality

estimation than on chain-40 but instead search on star-22 spends less time on managing the open

list. This is due to search on star-22 being more goal-oriented than search on chain-40, hence
generating less duplicate vertices. The generation of duplicates on chain-40 leads to frequent

recalculation of heuristic values without progressing further towards the goal.

8 CONCLUSION
With this work, we provide a sound and generic framework for join order optimization via heuristic

search. Our optimizations make heuristic search practical for application in a real DBMS, as our

evaluation confirms. Figure 10 shows that we are able to extend the Pareto frontier of optimization

time vs. plan cost. Our optimal solution 𝐴∗↑ + ℎzero outperforms state of the art by up to 2 orders of

magnitude on star and clique topologies. Our suboptimal solution 𝐴∗↑ + ℎGOO↑ provides a middle

ground between GOO, which is fast but shows high variance in plan quality, and our optimal

solution.

While this paper aims to be self-contained, there are many aspects or variations to our approach

that did not fit into a single paper. We would like to give a glimpse of what future research may

focus on: • designing more informative heuristics, potentially tuned for different query topologies,

• applying different search strategies, e.g. beam search, iterative deepening𝐴∗, fringe search, • anytime
search, where search proceeds until a resource is exhausted or search is stopped and then retrieving

the best plan found so far, or • bidirectional heuristic search, where search is simultaneously

performed bottom-up and top-down and when both searches meet, a plan is found. We believe that

our work serves as a foundation for and enables future research in the direction of computing join

orders with heuristic search.

We would like to thank Karl Bringmann (MPII) for clarifying Section 2.4 & Section 3.2 and

proofreading Theorem 1, Daniel Gnad (Linköping University) for supporting this work with his

expertise in AI planning, and Felix Brinkmann for conducting an initial investigation on the

applicability of AI planning to JOOP as part of his Bachelor’s thesis.

REFERENCES
[1] Brian Babcock and Surajit Chaudhuri. 2005. Towards a robust query optimizer: a principled and practical approach. In

Proceedings of the 2005 ACM SIGMOD international conference on Management of data. 119–130.
[2] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseok Shim. 1995. Optimizing queries with

materialized views. In Proceedings of the Eleventh International Conference on Data Engineering. IEEE, 190–200.
[3] Sophie Cluet and Guido Moerkotte. 1995. On the complexity of generating optimal left-deep processing trees with

cross products. In International Conference on Database Theory. Springer, 54–67.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

Efficiently Computing Join Orders with Heuristic Search 73:25

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2016. Introduction to Algorithms. The
MIT Press.

[5] Rina Dechter and Judea Pearl. 1985. Generalized best-first search strategies and the optimality of A. Journal of the
ACM (JACM) 32, 3 (1985), 505–536.

[6] David DeHaan and Frank Wm Tompa. 2007. Optimal top-down join enumeration. In Proceedings of the 2007 ACM
SIGMOD international conference on Management of data. 785–796.

[7] Edsger W Dijkstra et al. 1959. A note on two problems in connexion with graphs. Numerische mathematik 1, 1 (1959),

269–271.

[8] Stefan Edelkamp and Stefan Schrodl. 2011. Heuristic search: theory and applications. Elsevier.
[9] Leonidas Fegaras. 1998. A new heuristic for optimizing large queries. In International Conference on Database and

Expert Systems Applications. Springer, 726–735.
[10] Pit Fender. 2014. Algorithms for Efficient Top-Down Join Enumeration. (2014).

[11] Pit Fender and Guido Moerkotte. 2011. A new, highly efficient, and easy to implement top-down join enumeration

algorithm. In 2011 IEEE 27th International Conference on Data Engineering. IEEE, 864–875.
[12] Pit Fender and Guido Moerkotte. 2011. Reassessing top-down join enumeration. IEEE Transactions on Knowledge and

Data Engineering 24, 10 (2011), 1803–1818.

[13] Frank Gray. 1953. Pulse code communication. US Patent 2,632,058.

[14] Immanuel Haffner, Marcel Maltry, Joris Nix, Jens Dittrich, and Luca Gretscher. 2023. mutable. https://mutable.uni-

saarland.de

[15] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A formal basis for the heuristic determination of minimum

cost paths. IEEE transactions on Systems Science and Cybernetics 4, 2 (1968), 100–107.
[16] Toshihide Ibaraki and Tiko Kameda. 1984. On the optimal nesting order for computing n-relational joins. ACM

Transactions on Database Systems (TODS) 9, 3 (1984), 482–502.
[17] Navin Kabra and David J DeWitt. 1998. Efficient mid-query re-optimization of sub-optimal query execution plans. In

Proceedings of the 1998 ACM SIGMOD international conference on Management of data. 106–117.
[18] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo. 1986. Optimization of Nonrecursive Queries.. In VLDB, Vol. 86.

128–137.

[19] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2015. How good

are query optimizers, really? Proceedings of the VLDB Endowment 9, 3 (2015), 204–215.
[20] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, and Tim Kraska. 2021. Bao: Making

learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data.
1275–1288.

[21] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim Kraska, Olga Papaemmanouil, and

Nesime Tatbul23. 2019. Neo: A Learned Query Optimizer. Proceedings of the VLDB Endowment 12, 11 (2019).
[22] Guido Moerkotte and Thomas Neumann. 2006. Analysis of two existing and one new dynamic programming algorithm

for the generation of optimal bushy join trees without cross products. In Proceedings of the 32nd international conference
on Very large data bases. Citeseer, 930–941.

[23] Parimarjan Negi, Matteo Interlandi, Ryan Marcus, Mohammad Alizadeh, Tim Kraska, Marc Friedman, and Alekh

Jindal. 2021. Steering query optimizers: A practical take on big data workloads. In Proceedings of the 2021 International
Conference on Management of Data. 2557–2569.

[24] Thomas Neumann. 2009. Query simplification: graceful degradation for join-order optimization. In Proceedings of the
2009 ACM SIGMOD International Conference on Management of data. 403–414.

[25] Thomas Neumann and Bernhard Radke. 2018. Adaptive optimization of very large join queries. In Proceedings of the
2018 International Conference on Management of Data. 677–692.

[26] Kenneth W Ng, Zhenghao Wang, Richard R Muntz, and Silvia Nittel. 1999. Dynamic query re-optimization. In

Proceedings. Eleventh International Conference on Scientific and Statistical Database Management. IEEE, 264–273.
[27] Kiyoshi Ono and Guy M. Lohman. 1990. Measuring the Complexity of Join Enumeration in Query Optimization.. In

VLDB, Vol. 97. 314–325.
[28] Matthew Perron, Zeyuan Shang, Tim Kraska, and Michael Stonebraker. 2019. How I learned to stop worrying and love

re-optimization. In 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 1758–1761.
[29] Stuart Russell and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach (4 ed.). Prentice Hall.

[30] Saïd Salhi. 2017. Heuristic search: The emerging science of problem solving. Springer.
[31] Alexander Schrijver. 2004. Combinatorial optimization: Polyhedra and efficiency (algorithms and combinatorics).

Journal-Operational Research Society 55, 9 (2004), 1018–1018.

[32] P. Griffiths Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, and Thomas G. Price. 1989.

Access Path Selection in a Relational Database Management System. In Readings in Artificial Intelligence and Databases.
Elsevier, 511–522.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

https://mutable.uni-saarland.de
https://mutable.uni-saarland.de

73:26 Immanuel Haffner & Jens Dittrich

[33] Timos K Sellis. 1988. Multiple-query optimization. ACM Transactions on Database Systems (TODS) 13, 1 (1988), 23–52.
[34] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. 1997. Heuristic and randomized optimization for the join

ordering problem. The VLDB Journal 6, 3 (1997), 191–208.
[35] Bennet Vance. 1998. Join-order optimization with Cartesian products. Oregon Graduate Institute of Science and

Technology.

[36] Bennet Vance and David Maier. 1996. Rapid bushy join-order optimization with cartesian products. ACM SIGMOD
Record 25, 2 (1996), 35–46.

[37] Florian Waas and Arjan Pellenkoft. 2000. Join order selection (good enough is easy). In British National Conference on
Databases. Springer, 51–67.

[38] Wentao Wu, Jeffrey F Naughton, and Harneet Singh. 2016. Sampling-based query re-optimization. In Proceedings of the
2016 International Conference on Management of Data. 1721–1736.

Received July 2022; revised October 2022; accepted November 2022

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 73. Publication date: May 2023.

	Abstract
	1 Introduction
	1.1 Contributions

	2 Join Order Optimization as a Shortest Path Problem
	2.1 The Shortest Path Problem
	2.2 Reducing JOOP to Shortest Path
	2.3 The Dualism of Bottom-Up and Top-Down Join Order Optimization
	2.4 Complexity of SPJOOP

	3 JOOP as a Heuristic Search Problem
	3.1 Properties of Heuristic Functions
	3.2 Properties of Heuristic Search
	3.3 Searching an Exponentially Large Space
	3.4 Completeness, Soundness, Optimality
	3.5 Performance Criteria

	4 Algorithmic Challenges
	4.1 Vertex Representation
	4.2 Vertex Expansion
	4.3 Open List and Duplicate Detection
	4.4 Duplicate Prevention

	5 Heuristic Functions for JOOP
	5.1 From DBMS Cost Model to Edge Weights
	5.2 Four Simple Heuristics
	5.3 Informative Value of Heuristic Functions

	6 Related Work
	7 Evaluation
	7.1 Setup
	7.2 Comparison to State of the Art
	7.3 QGraEL: A New Benchmark for JOOP
	7.4 Detailed Evaluation of Heuristic Search

	8 Conclusion
	References

