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Abstract

Forecasting severe weather conditions is still a very challenging and
computationally expensive task due to the enormous amount of data and the
complexity of the underlying physics. Machine learning approaches and especially
deep learning have however shown huge improvements in many research areas
dealing with large datasets in recent years. In this work, we tackle one specific
sub-problem of weather forecasting, namely the prediction of thunderstorms and
lightning. We propose the use of a convolutional neural network architecture
inspired by UNet++ and ResNet to predict thunderstorms as a binary classification
problem based on satellite images and lightnings recorded in the past. We achieve a
probability of detection of more than 94% for lightnings within the next 15 minutes
while at the same time minimizing the false alarm ratio compared to previous
approaches.

1 Introduction

Climate change will affect humanity in many ways over the next decades. Besides well known effects
such as the melting polar caps and the increasing sea levels, recent studies also predict an increasing
number of convective storms over the United States [17, 7, 4] and Europe [13]. Convective storms
are often accompanied by lightning, heavy rain, hail, and sometimes also tornadoes. In fields such as
aviation, thunderstorms can pose a real security threat if planes are not warned and detoured in time.
Predicting such severe weather conditions is therefore a core task for weather services. However, even
state-of-the-art systems such as NowCastMIX [9], a system operated by the German Meteorological
Service, still struggle with a high false alarm ratio, especially if the forecast period is increased to
one hour and beyond.

Most weather models currently in operational mode are based on numerical weather prediction (NWP)
and estimate the state of the atmosphere by applying transformations based on physical laws. Machine
learning algorithms have however shown recent success in many fields, especially those providing
large datasets for training. The availability of geostationary satellites, lightning detection networks
and other data sources therefore encourages researchers to investigate the application of machine
learning in the context of severe weather prediction.

In this work, we are focusing on one small sub-problem, namely the prediction of lightning and
thunderstorms. We propose the use of a convolutional neural network architecture inspired by
UNet++ [19] and ResNet [6], very similar to the architecture used by Peng et al. [12]. Based on
satellite images taken by the SEVIRI instrument onboard the current, second generation of Meteosat
satellites [15] and past lightning observations registered by the LINET network [2], we try to predict
whether there will be lightning or not in the future.
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Figure 1: Data preprocessing & network architecture

2 Related Work

Our approach is mainly based on satellite images, making convolutional neural networks a natural
choice for the network. Considering the fact that we try to distinguish areas affected by thunderstorms
and areas without such events, our work is closely related to the idea of image segmentation. Among
the many architectures proposed in this field throughout the last years, encoder-decoder networks
have become state-of-the-art. Fully convolutional networks (FCN) [11] and UNet [14] are among
the most successful and influential ones introducing the idea of skip connections. Follow-up works
extended these base networks in different ways, among them H-DenseUNet [10] and UNet++ [19]
which are inspired by dense connections between subsequent layers introduced in DenseNet [8]. In
the related field of image classification, ResNet [6] introduced the idea of residual learning. Peng
et al. [12] adopted the idea of residual learning for image segmentation tasks, introducing residual
blocks in the UNet++ architecture. Our architecture follows the same idea and differs only in details.

In the field of convection and thunderstorm prediction, several research groups have published first
results using machine learning approaches. Some of these approaches are based on Random Forests
as introduced by Breiman [3]. Ahijevych et al. [1] used parameters of a convection permitting model
to predict convective system initiation. More recent works focus directly on the prediction of lightings.
In a previous work [16], we proposed to use the error resulting from satellite image nowcasting as a
feature for lightning prediction based on Random Forests. Geng et al. [5] used a different approach
relying on NWP model parameters, lightning observations and a recurrent convolutional neural
network.

3 Dataset & Preprocessing

We follow the idea presented in our previous work [16], i.e. using the error of satellite image
nowcasting as a feature for lightning prediction. Our preprocessing pipeline depicted in Figure 1a is
therefore comparable: The error is computed by applying the optical flow algorithm TV-L1 [18] to
two consecutive satellite images T-30 and T-15 and taking the absolute difference to the original image
at T0. The lightning data are accumulated in maps with the same temporal and spatial resolution. In
contrast to their work, we intend to use images as input to our network and therefore omit the steps of
splitting the data into single tiles and applying manual convolution. We also add the last lightning
observations as an additional feature which has not been considered by Schön et al., leading to a total
of ten feature channels which we normalize to the range of [0,1].

Our dataset consists of satellite images and lightning observations taken between 2017-06-01 and
2017-07-04. Each original image of size 1114× 956 is split into 56 samples of size 160× 144. As
we have conducted a cross validation experiment, we split the complete data range into four test sets,
each surrounded by a twelve hour margin to avoid cross correlation effects with the training data.
The resulting test sets and their sizes can be seen in Table 1 in the Appendix.

4 Network Architecture & Training

Our network architecture closely follows the proposal of Peng et al. [12] by combining UNet++ [19]
with residual building blocks. An overview of the architecture for inference is depicted in Figure 1b.
Each node R in the figure is a single residual block. If a node has more than one incoming edge, the
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Figure 2: Comparison of True Positive Rate, True Negative Rate, Accuracy, and False Alarm Ratio

tensors are simply concatenated. The details of the architecture can be found in Appendix A. To
tackle the problem of imbalanced classes, we use a weighted binary cross entropy loss and set the
weight for the positive class to the ratio # negative samples : # positive samples. Details about our
architecture and experimental setup can be found in Appendix A and B.

5 Results

The main metrics for our evaluation are True Positive Rate (TPR), True Negative Rate (TNR),
Accuracy and False Alarm Ratio (FAR) whose formulas are given in Appendix C. Figure 2a depicts
the accumulated results over all four cross validation test sets. The RUNet++ bars correspond to our
newly tested architecture whereas RF 129 and RF 66 are Random Forests as described in our previous
work [16]. The Random Forests were trained on a balanced subset of the data. As the ratio of positive
samples is 0.066%, the dataset has approximately 1,500 negative samples per positive sample and
we can recompute the accuracy and FAR over all data by re-weighting the TNR with this factor. To
compare the impact of residual blocks in the UNet++ architecture, we also trained a standard UNet++
architecture with the same size as our new, residual version. We eliminated the first 1× 1 convolution
layer (i.e. a layer that simply scales the input linearly) as well as the skip connection, leaving a basic
building block consisting of two convolutions, normalizations and activations each.

Our results indicate that UNet++ and RUNet++ in general achieve a similar performance compared
to Random Forests. However, in a direct comparison, they tend to predict the negative class better,
resulting in a lower FAR which highly depends on the number of false positives in such an extremely
imbalanced dataset. Reducing the FAR without sacrificing too much TPR is essential for the
operational use as humans tend to mistrust systems that often fail. In addition, convolutional neural
networks offer the advantage of directly processing image slices instead of single pixel values as
compared to Random Forests, eliminating the need of additional preprocessing steps.

Comparing the standard UNet++ architecture with our modified version RUNet++, we can see that
our model outperforms the standard architecture by 3.5% in terms of TPR. We evaluated the test
set every 5 epochs, which allows us to have a closer look at the development of the TPR and TNR
during the model training. Figure 2b indicates that although both models achieve a similar overall
performance, RUNet++ converges much faster, which allows for a faster training.

6 Conclusion

Compared to previous works in the domain of lightning prediction, our approach shows promising
results. It beats the results by Schön et al. in terms of accuracy and false alarm ratio. A comparison
with the work of Geng et al. is more difficult as the underlying dataset is different, but our approach
shows that similar results can be achieved without the use of computationally expensive NWP model
parameters. The results presented in this paper are only a first investigation of convolutional neural
networks in the context of lightning prediction. There is still future work to do, such as extending the
forecast period and adding new features and data to confirm the capability of the system to generalize
to other years and seasons. The high false alarm ratio might be minimized by putting more weight to
the negative class during loss computation, potentially leading to fewer false positives at the cost of a
worse detection of lightnings.
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A Network Architecture Details

The shape of our Residual UNet++ architecture is very similar to the original UNet++ architecture [19], but uses
residual blocks including local skip connections as the basic building block of the network, as it was already
proposed by Peng et al. [12]. The implementation is based on Python 3.7.3 using PyTorch 1.1.0.

Figure 3a shows an overview of the complete network: Each node R in this overview represents a single residual
block. The input is a tensor of shape (B, C, W, H) with B denoting the batch size, C the number of feature
channels, W and H the width and height of the image respectively. In our case, the input tensor has the shape
(112, 10, 160, 144), and is fed to the first node R0,0. The final output of the network is a tensor of shape (B, 1,
W, H) and will be retrieved from F0,3.

Each diagonal arrow pointing downwards represents a downsampling step which is implemented using a
maximum pooling operation with a 2× 2 kernel and a stride of two. This downsampling step divides the width
and height of the image in halves, but at the same time doubles the width of the residual blocks. The diagonal
arrows pointing upwards represent the opposite operation, namely bilinear upsampling, doubling the width and
height of the image.

Residual blocks at depth zero, i.e. the nodes R0,0 to R0,3, have a width of 16 which gets doubled with increasing
depth, leading to a width of 128 for R3,0. If a residual block has two incoming edges, we simply concatenate
the inputs before feeding them to the first layer of the residual block. The final layers of the network, named
F0,1 to F0,3, are simple convolutional layers with a 1× 1 kernel returning a single feature map which is fed to a
sigmoid function and compared to the desired target value.

For the training phase, we use a form of deep supervision: We apply a sigmoid function to each final layer and
sum up the losses L0,1 to L0,3 before backpropagation, indicated by the red arrows. For inference however, we
only consider the output of the final layer F0,3.

The architecture of a single residual block is depicted in Figure 3b. The first convolution layer receives a tensor
of shape (B, M, 160, 144) as input where M denotes the width of the tensor generated by concatenation of
the previous layers’ outputs. As the residual block is supposed to have a width of N, this first layer applies N
1× 1 convolutions and outputs a tensor of shape (B, N, 160, 144) which is forwarded to the following layers,
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(a) Detailed architecture overview: Each node R is a residual block as
depicted on the right.
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Figure 3: Architecture of Residual UNet++
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Table 1: Cross validation sets and their number of samples.
Testing Training

Test Set Time Range # Samples # Samples

1 2017-06-01 00:30 to 2017-06-08 23:00 42668 53140
2 2017-06-09 11:00 to 2017-06-17 09:45 15960 79848
3 2017-06-17 21:45 to 2017-06-25 20:15 12096 85000
4 2017-06-26 08:15 to 2017-07-04 06:30 23740 73356

Table 2: Possible outcomes of the confusion matrix.
True class

Predicted class Positive Negative

Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

indicated by the small N next to each connection. The plus sign between the second batch normalization and the
final activation simply sums the outputs of the second batch normalization and the first convolution layer. All
convolution layers apply zero padding to keep the original image dimensions.

If we consider R0,1 as an example, we see that this node receives as input the outputs of R0,0 with shape (B,
16, 160, 144) and R1,0 with shape (B, 32, 160, 144) which are concatenated to a tensor of shape (B, 48, 160,
144) where 48 is the width M of the tensor in Figure 3b. As the residual blocks of depth zero operate with a
width of 16, the first layer of the residual block will apply 16 convolutions and generate a tensor of shape (B, 16,
160, 144). This step is necessary to avoid incompatible tensor shapes for the residual connection which adds
the output of the first convolution layer to the output of the second batch normalization layer before the final
activation.

B Experimental Setup

All our experiments have been conducted on a computer equipped with two Intel Xeon E5-2600 v4 processors
with a total of 32 GB of RAM. To accelerate the training, we used two Nvidia GTX 1080 Ti graphics cards.

We have fixed the number of epochs to 30, resulting in a training time of roughly 17 hours per cross validation
step. The learning rate was initialized with a value of 0.01 and decreased by a factor of 10 if the training loss
showed no relative improvement of 1% during the last 5 epochs. The optimizer chosen was Stochastic Gradient
Decent with a weight decay factor of 0.1. The batch size has been fixed to 112, i.e. the number of samples
generated from two original images.

The loss function L used during training was weighted binary cross entropy. It is defined as a final sigmoid
activation followed by a binary cross entropy computation where a special weight is applied to the positive class:

Ln = −(p · yn · log(σ(xn)) + (1− yn) · log(1− σ(xn)))

In the above formula, n denotes the number of the current sample and σ the sigmoid activation function applied
to the model outputs xn. yn is the true class of the sample and p the weight applied to the positive class.

The cross validation sets are built by diving the data into four time ranges of equal size, depicted in Table 1.
Each test set covers the data of roughly eight days. The corresponding training sets have been built by taking
all remaining data minus a twelve hour margin around each test set to avoid unwanted cross correlation effects
between training and test set. For the first test set, this means that the model was trained using all data from
2017-06-09 11:00 to 2017-07-04 06:30. The resulting number of samples in each training and test set is also
given in the table. The imbalance in size between the different sets is due to corrupt satellite image files.

C Evaluation Metrics

To evaluate our approach, we use four different evaluation metrics, namely True Positive Rate, True Negative
Rate, Accuracy and False Alarm Ratio. All of them can be computed by considering the values of the confusion
matrix. To generate this matrix, we compare the predicted class of each pixel on each image with the true class
it is supposed to have, i.e. we perform a strict matching between prediction and true class. Depending on the
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result, we distinguish four outcomes of this comparison which are denoted in Table 2: True Positives (TP), False
Positives (FP), False Negatives (FN) and True Negatives (TN). Each cell of the confusion matrix finally contains
the number of samples fulfilling the corresponding combination of predicted and true class.

The four evaluation metrics used in our paper are then defined as follows:

• True Positive Rate (also called Probability of Detection, POD): TP
TP + FN

• True Negative Rate: TN
TN + FP

• Accuracy: TP + TN
TP + TN + FP + FN

• False Alarm Ratio: TP
TP + FP
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