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Abstract— Dataspace applications necessitate the creation of

associations among data items over time. For example, once

information about people is extracted from sources on the

Web, associations among them may emerge as a consequence

of different criteria, such as their city of origin or their elected

hobbies. In this paper, we advocate a declarative approach

to specifying these associations. We propose that each set of

associations be defined by an association trail. An association

trail is a query-based definition of how items are connected by

intensional (i.e., virtual) association edges to other items in the

dataspace. We study the problem of processing neighborhood

queries over such intensional association graphs. The naive ap-

proach to neighborhood query processing over intensional graphs

is to materialize the whole graph and then apply previous work

on dataspace graph indexing to answer queries. We present in

this paper a novel indexing technique, the grouping-compressed

index (GCI), that has better worst-case indexing cost than the

naive approach. In our experiments, GCI is shown to provide an

order of magnitude gain in indexing cost over the naive approach,

while remaining competitive in query processing time.

I. Iɴ�ʀ�����ɪ�ɴ

Dataspace systems have been envisioned as a new archi-
tecture for data management and information integration [1].
The main goal of these systems is to model, query, and
manage relationships among disparate data sources. So far,
relationships in these systems have been specified at the set or
schema level [2]. In several dataspace scenarios, however, it is
important to model associations between individual data items
across or within data sources. Such scenarios include social
content management [3] and personal information manage-
ment [4]. In personal information management, for example,
it is useful to associate messages and documents received in
the same context or timespan.

In this paper, we propose a declarative approach, called
association trails, to specifying associations among items in a
dataspace. An association trail is a query-based definition of
how items in the dataspace are connected by virtual association
edges to other items. A set of association trails defines a logical
graph of associations over the dataspace. As this graph is
purely logical and in principle does not need to be explicitly
materialized, we call it in this paper an intensional graph.
In addition, we term the edges of this graph intensional
edges or intensional associations. In contrast to solutions that
define associations extensionally [5], [6], [7], association trails
define associations logically and in bulk. As a consequence,
association trails are especially useful when data sources have
no explicit associations defined beforehand. In the following,
we illustrate association trails with an example.
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Fig. 1. A set of person profiles extracted from the Web is transformed by
association trails into an intensional graph of associations.

A. Example

While our techniques are applicable to many dataspace
scenarios, we will use as a running example for this paper
the modeling of an implicit social network. Figure 1(a) shows
a set of person profiles extracted from Web sources using in-
formation extraction techniques. Each profile states a person’s
name, along with the university she has attended, her year of
graduation, and her hobbies.

E����ʟ� 1 (I��ʟɪ�ɪ� S��ɪ�ʟ N����ʀ��) Users would like to
navigate their social dataspaces to find other users related
to them or to their topics of interest. Unfortunately, data ex-
tracted from loosely-connected sources is poor in associations
among users.
State of the art: Users may search their dataspaces with
keyword search engines. These systems have no knowlegde
about associations between data items. As a consequence, they



return only items that match the user’s specific request and
cannot enrich results with other relevant associated informa-
tion. While previous approaches extend search results with
elements in a dataspace or schema graph [7], [8], they are
of little use when connections are not explicitly defined as
in Figure 1(a). Users could rely, instead, on a recommender
system [9]. These systems are, however, limited to hard-coded
heuristics such as TF-IDF similarity to recommend related
profiles. Moreover, these systems do not model associations
among items, so users cannot extend the system by defining
associations based on new criteria.
Our goal: We provide a declarative technique to model
intensional associations among items in the dataspace. Users
or administrators provide to the system declarative association
definitions, called association trails. Consider that the follow-
ing association trails are given to the system:
1. People that went to the same university are related.
2. People that graduated on the same year are related.
3. People that share a hobby are related.

Now, users will have the view of the dataspace depicted
in Figure 1(b). They are able to browse a rich graph of
associations. In addition, search query results may be enriched
by items in their neighborhoods in the intensional graph. �

B. Contributions
In summary, this paper makes the following contributions:

(1) We present a new declarative formalism, association
trails, to define an intensional graph of connections among
instances in a dataspace (Section III; (2) We propose a new
query processing technique, the grouping-compressed index
(GCI), for neighborhood queries over such intensional graphs
(Section IV); (3) We show experimentally that GCI brings
an order of magnitude gain in indexing cost over the naive
approach, while remaining competitive in query processing
time (Section V).

II. Pʀ�ʟɪ�ɪɴ�ʀɪ��
Data and Query Model. In a nutshell, we assume the
dataspace to be represented in a graph data model and queried
by end-users with keyword queries. A dataspace is represented
by a graph G := (N, E), where N is a set of nodes and E is a
set of directed edges. Each node Ni ∈ N is a set of attribute-
value pairs Ni := {(ai

1, v
i
1), . . . , (ai

k, v
i
k)}, where each value is

either atomic or a bag of words. As can be easily seen, the
data in Figure 1(a) is represented in this data model. Note that
E = ∅ and attribute names have been omitted for visibility.

A query Q is an expression that selects a set Q(G) ⊆ N.
Admissible queries are conjunctions and disjunctions of filters
on attribute values and keywords. For example, the query yoga
university=NYU returns Node 7 in Figure 1(a).
Basic Index Structures. Given the queries above, we assume
two basic index structures, commonly found in state-of-the-
art search engines. First, an inverted index is a mapping from
token to the list of node identifiers of nodes containing that
token. We represent tokens as concatenations of keywords with
the attribute names and translate keyword queries into prefix

queries to the index [7]. Second, a rowstore is a mapping from
node identifier to the information (i.e., attribute-value pairs and
edges) associated with that node.

III. A����ɪ��ɪ�ɴ Tʀ�ɪʟ�
This section formalizes association trails and neighborhood

queries over intensional graphs.

A. Basic Form of an Association Trail
An association trail defines a set of edges in the intensional

graph. For example, in Figure 1(b), a single association trail
defines all sharesHobbies edges. We may thus interpret each
association trail as defining an intensional graph overlay on
top of the original dataspace graph.

D��ɪɴɪ�ɪ�ɴ 1 (A����ɪ��ɪ�ɴ Tʀ�ɪʟ) A unidirectional association
trail is denoted as

A := QL
θ(l,r)
=⇒ QR,

where A is a label naming the association trail, QL,QR are
queries, and θ is a predicate. The query results QL(G) are
associated to QR(G) according to the predicate θ, which
takes as inputs one query result from QL and one from QR.
Thus, we conceptually introduce in the association graph one
intensional edge, directed from left to right and labeled A, for
each pair of nodes given by QL �θ QR. We require that the
node on the left of the edge be different than the node on the
right, i.e., no self-edges are allowed.

A bidirectional association trail is denoted as

A := QL
θ(l,r)⇐⇒ QR.

The latter also means that the query results QR(G) are related
to the query results QL(G) according to θ. �

An association trail relates elements from the data sources
by a join predicate θ. Therefore, association trails cover
relational and non-relational theta-joins as special cases. While
knowing the form of θ may allow us to improve performance
(see Section IV-B), conceptually θ may be an arbitrarily
complex function. This means that Definition 1 also models
use cases such as content equivalence and similar documents.

A straightforward extension to our model is to define θ as a
matching function generating several edges between a pair of
nodes. This may be useful to model individual matches created
by multi-valued attributes, e.g., modeling each hobby match
in sharesHobbies by a separate intensional edge.

U�� C��� 1 (S��ɪ�ʟ N����ʀ��) The intensional graph of Fig-
ure 1(b) is defined by the following association trails:

sameUniversity := class=person
θ1(l,r)⇐⇒ class=person,

θ1(l, r) := (l.university = r.university).

graduatedSameYear := class=person
θ2(l,r)⇐⇒ class=person,

θ2(l, r) := (l.gradYear = r.gradYear).

sharesHobbies := class=person
θ3(l,r)⇐⇒ class=person,

θ3(l, r) := (∃h ∈ l.hobbies : h ∈ r.hobbies).



These association trail examples show how to define a logical
graph of associations among elements in the dataspace. They
use queries that select elements to be related and predicates
that specify join semantics among those elements. When taken
together, the association trails above result in a multigraph
(displayed in Figure 1(b)). This intensional multigraph is
actually a view, which can be refined over time by adding
more association trails in a pay-as-you-go fashion. �

B. Neighborhood Queries
We focus on a special class of exploratory queries over

intensional graphs termed neighborhood queries. For simplic-
ity, our presentation in the following sections is focussed on
unidirectional association trails, as it is simple to extend our
techniques to the bidirectional case.

Neighborhood queries were used by Dong and Halevy to
explore a dataspace [7]. They assume that the dataspace graph
is given extensionally, i.e., each edge in the graph is explicitly
materialized. Unfortunately, their definition does not apply
to intensional graphs. As such, we generalize neighborhood
queries below to intensional graphs. We first define what a
neighborhood is in our context.

D��ɪɴɪ�ɪ�ɴ 2 (N�ɪɢʜʙ�ʀʜ���) Given a query Q and a set of
association trails A∗, the neighborhood NQ

A∗ of Q with respect
to A∗ is given by

NQ
A∗ :=




∅, if A∗ := ∅
(Q ∩ Qi

L) �θi Qi
R, if A∗ := {Ai}

NQ
{A1} ∪ NQ

{A2} ∪ . . . ∪ NQ
{An}, if A∗ := {A1, A2, . . . , An}

where Qi
L and Qi

R are the queries on the left and right sides
of trail Ai, respectively, and θi is the θ-predicate of Ai. �

The definition above states that the neighborhood includes
all instances associated through A∗ to instances returned by Q.
They are obtained by a semi-join that filters all instances in
Qi

R that are connected to elements of Q also appearing in Qi
L.

We ignore self-edges in order to simplify our presentation.

D��ɪɴɪ�ɪ�ɴ 3 (N�ɪɢʜʙ�ʀʜ��� Q��ʀʏ) For a query Q and a set
of association trails A∗, the neighborhood query

�
QA∗ is given

by
�
QA∗ := Q ∪ NQ

A∗

We call the results obtained by Q primary query results and
the results obtained by NQ

A∗ neighborhood results. �

IV. Q��ʀʏ Pʀ�����ɪɴɢ T��ʜɴɪ����
A. Naive Approach

The most intuitive query processing strategy is to explicitly
materialize all edges in the intensional graph. At query time,
we lookup this materialization to obtain the neighborhoods
for each element returned by the original query Q. Other
dataspace [7] and graph indexing techniques [5], [6] could
also be applied on top of the naive materialization to reduce
query time. However, they will make indexing time even larger
for the naive approach. As our experiments reveal (Section V),
indexing is the most dramatic cost driver for this strategy.

Given a set of association trails A∗ = {A1, A2, . . . , An}, the
materialization of the intensional graph can be obtained by
the join Q1

L ��θ1 Q1
R ∪ . . . ∪ Qn

L ��θn Qn
R. This materialization

can be stored in a join index [10], represented by an inverted
list as in Figure 2(a). Clearly, if the queries Qi

L and Qi
R each

return N nodes, then the association trail Ai may generate up
to O(N2) edges in the multigraph.

(a) Naive Approach (Full Mate-
rialization)

(b) Grouping-Compressed In-
dex (GCI)

Fig. 2. Query processing alternatives for association trails sameUniversity
and graduatedSameYear.

B. Grouping-Compressed Index (GCI)
The quadratic growth in the size of the naive materialization

of Section IV-A is often a consequence of grouping effects
in the association trail join predicates. In an equi-join, for
example, all nodes with the same value for a join key will
join with one another, generating a clique in the graph for
that association trail. In a clique of size C, we would naively
store C2 edges in the naive materialization.

As an alternative, we could: (1) explicitly represent the
edges from a given node n1 in the clique to all the other nodes
{n2, . . . , nC} and (2) for each remaining node in the clique,
represent special lookup edges �n j, n1, lookup� that state n j
connects to the same nodes as n1. Thus, we represent the
information in the clique with C normal edges for n1 plus
C − 1 edges for the lookup edges of all remaining nodes.
In short, a reduction in storage space (and consequently join
indexing time) from C2 edges to 2 ·C − 1 edges. We call this
representation grouping compression. Figure 2(b) shows our
representation for the grouping-compressed index.

One important challenge we address in our work is how to
query GCI without decompressing each clique to its original
C2 edges. The core idea of our method is to operate in two
phases. In the build phase, we create a table with aggregate
counts from all lookup edges for the original query results. In
the probe phase, we may use this table to avoid looking up
normal edges for nodes in the same clique several times. Due
to space limitations, we refer the reader to Vaz Salles’s PhD
thesis for the presentation of our query algorithm [11].

V. E���ʀɪ��ɴ��
In this section, we evaluate how the grouping-compressed

index (GCI) compares to the naive approach (Naive).
Dataset. We have evaluated our system with a real dataset of
biographies and filmographies from IMDb [12]. Person pro-
files were obtained from the biographies of actors, actresses,
writers, and directors, totalling 1,909,796 people. Each profile



included the person’s first and last names, birthdate, place of
birth, and height. In addition, we imported all the explicit
connections between people and the movies they worked
in. There were a total of 1,414,654 movies and 14,250,548
person-movie connections. We have created the following
(self-explanatory) association trails: sameLastName, same-
Birthdate, samePlaceOfBirth, sameHeight, and moviesIn-
Common. The association trail moviesInCommon generates
one intensional edge for each movie connecting two persons,
following the extension for multi-valued attributes discussed in
Section III-A. The association trails create an intensional graph
of person nodes over a dataset in which these connections are
not explicit.
Setup. All experiments have been run on a dual AMD Opteron
280 2.4 Ghz dual-core server, with 6 GB of RAM, and
a 400 GB ATA 7200 rpm hard disk with 16 MB cache.
Association trails have been implemented in the open-source
iMeMex Dataspace Management System [13].

Dataset
Orig Data Total Index Rowstore Inv Index Indexing

Size [MB] Size [MB] Size [MB] Size [MB] Time [min]

IMDb 564 924 676 248 48

TABLE 1
Sɪ�� �ɴ� �ʀ���ɪ�ɴ �ɪ�� ��ʀ ʙ��ɪ� ɪɴ����� (S���ɪ�ɴ II)

We report in Table 1 the indexing time and index sizes taken
by the index structures of Section II for the IMDb dataset.

Metric
Strategy

Naive GCI
Indexing Time (min) 194 7

Index Size (MB) 4769 170

Results. We report in this
section the sensitivity of
the methods to the selec-
tivity of the original query
Q. First, we show the indexing performance for all methods
in the table on the right. In short, Naive’s indexing time and
index sizes are, respectively, 27 and 28 times larger than GCI,
a difference of over an order of magnitude. Figure 3 shows the
corresponding query performance of the methods. The query
processing times for Naive were highly dependent on query
selectivity, increasing sharply as selectivity is lowered. At 10%
selectivity, Naive took 2.4 min, a factor 8.8 worse than the
16.2 sec taken by GCI. That behavior is consistent with the
fact that lower selectivities imply that a proportionally larger
fraction of the fully materialized intensional graph must be
processed in order to answer a neighborhood query.

VI. R�ʟ����W�ʀ�
Expanding query results by adding context from a neighbor-

hood in the database has been explored in work such as key-
word search over relational databases [8] and dataspaces [7].
In contrast to our work, all of this previous work is concerned
with extensional graphs and their techniques would have to be
revisited when the graph is defined intensionally. The same can
be said about recent work on graph indexing [5], [6].

Declarative Networking has been proposed to process multi-
hop, recursive queries over a single intensional graph, de-
fined via datalog rules [14]. In contrast, we process single-
hop, neighborhood queries over multiple intensional overlay
graphs, defined by association trails. Metadata management
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techniques, such as [15], are also related to our approach,
though they focus on schema-first relational settings while our
techniques target schema-later dataspace scenarios.

VII. C�ɴ�ʟ��ɪ�ɴ�
In this paper, we have presented association trails, a

declarative technique to define a logical, intensional graph of
associations among instances in a dataspace. Our technique
is general and may be applied to a variety of scenarios,
such as social networks and personal dataspaces [11]. In
addition, we have shown a new neighborhood query processing
strategy over intensional association graphs. Our strategy, the
grouping-compressed index (GCI), may provide over an order
of magnitude gain in indexing time over the naive approach
while remaining competitive in query processing time.
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