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ABSTRACT
Despite the progress within the last decades, weather forecasting
is still a challenging and computationally expensive task. Current
satellite-based approaches to predict thunderstorms are usually
based on the analysis of the observed brightness temperatures in
different spectral channels and emit a warning if a critical threshold
is reached. Recent progress in data science however demonstrates
that machine learning can be successfully applied to many research
fields in science, especially in areas dealing with large datasets.
We therefore present a new approach to the problem of predicting
thunderstorms based on machine learning. The core idea of our
work is to use the error of two-dimensional optical flow algorithms
applied to images of meteorological satellites as a feature for ma-
chine learning models. We interpret that optical flow error as an
indication of convection potentially leading to thunderstorms and
lightning. To factor in spatial proximity we use various manual
convolution steps. We also consider effects such as the time of day
or the geographic location. We train different tree classifier models
as well as a neural network to predict lightning within the next
few hours (called nowcasting in meteorology) based on these fea-
tures. In our evaluation section we compare the predictive power
of the different models and the impact of different features on the
classification result. Our results show a high accuracy of 96% for
predictions over the next 15 minutes which slightly decreases with
increasing forecast period but still remains above 83% for forecasts
of up to five hours. The high false positive rate of nearly 6% how-
ever needs further investigation to allow for an operational use of
our approach.
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•Computingmethodologies→Classification and regression trees;
Neural networks; • Applied computing→ Earth and atmospheric
sciences.
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1 INTRODUCTION
Weather forecasting is a very complex and challenging task requir-
ing extremely complex models running on large supercomputers.
Besides delivering forecasts for variables such as the temperature,
one key task for meteorological services is the detection and pre-
diction of severe weather conditions. Thunderstorms are one such
phenomenon often accompanied by heavy rain fall, hail, and strong
wind. However, predicting them and giving precise information
about their severity and moving direction is a hard task.

Current state-of-the-art systems such as NowCastMIX [15], a
system operated by the Deutscher Wetterdienst, combine a multi-
tude of data sources to generate warnings with a spatial resolution
of 1×1 km and a temporal resolution of five minutes for severe
weather conditions such as thunderstorms. Brightness tempera-
tures of spectral satellite channels and their differences exceeding a
certain threshold are interpreted as a sign for critical conditions po-
tentially leading to thunderstorms. Radar systems are used to detect
water particles in the atmosphere and clouds potentially develop-
ing towards thunderstorms whereas numerical weather prediction
(NWP) models offer estimations of the near storm environment.
Lightning detection systems allow us to localize thunderstorms by
measuring electric waves. Even using such advanced models, the
prediction of thunderstorms remains very challenging, especially
for forecast periods larger than one hour when the false alarm ratio
increases to more than 80%. The key to thunderstorm forecasting
is the early and precise detection of convection.

Satellite data, which is nowadays part of many weather forecast-
ing products and offered a significant performance boost for larger
forecast periods, however is not yet established for the operational
prediction of developing thunderstorms even though it offers a com-
bination of high spatial and temporal resolution, two key elements
for a successful forecast. Our approach therefore investigates a new
way to predict thunderstorm clouds based on satellite data. The core
idea of our work is to use the prediction error of a first prediction
model as a feature. That error-feature is then used for the actual,
second, different prediction model. In more detail, we compute the
error of two-dimensional optical flow algorithms applied to im-
ages of meteorological satellites and interpret it as an indication of
possible movement in the third dimension (convection) potentially
leading to thunderstorms and lightning.

Our main contributions to the problem of forecasting thunder-
storms are the following:
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(1) We present a prediction model to forecast lightning using
satellite images. The core idea of our work is to use the pre-
diction error of a first prediction model as a feature for a
second (different) prediction model. Although learning from
the error of a prediction model reminds of boosting, our
approach differs from such methods as described in Subsec-
tion 4.1.

(2) We present a new set of features based on the error of op-
tical flow algorithms applied to satellite images in different
channels which can be used to predict thunderstorms. These
features differ from previously used approachesmainly based
on temperature differences as presented in Section 2. Based
on this feature set, we then apply different machine learning
algorithms in order to automatically predict the occurrence
of lightning. This process is described in more detail in Sec-
tion 4.

(3) An evaluation of these error-based features used to predict
the immediate future, i.e. the next 15 minutes, show the
importance of convolution, especially with large kernel sizes.
This evaluation also motivates the use of a broad range of
channels. A more detailed description of the results can be
found in Section 7.

(4) We present experiments showing the capability of machine
learning models to predict lightning based on features de-
rived from the error of optical flow algorithms as well as
additional, satellite-based features on a balanced test set con-
taining lightning with a forecast period of 15 minutes up to
5 hours. The results show an accuracy of more than 96% for
the best model on the smallest period, decreasing to 83% for
the largest period.

This paper is structured as follows: Section 2 gives a quick recap
of the physics of thunderstorms followed by a review of current
forecasting systems in Section 3. We introduce our new approach
in Section 4, followed by the necessary data preparation and feature
generation steps presented in Section 5. Section 6 briefly introduces
the experimental setup beforewe present the first set of experiments
and results in Section 7 based on the approach described before.
Section 8 introduces additional features beyond pure error-based
attributes and evaluates the impact of this enhancement compared
to the original approach. In Section 9, we present the performance
of our approach for larger forecast periods.

2 A QUICK RECAP OF THUNDERSTORMS
In this section, we briefly review the physics of thunderstorms.
Thunderstorms belong to a class of weather phenomena called
convective systems, characterized by an updraft of warm air from
lower levels of the atmosphere towards higher and colder levels,
accompanied by a downdraft allowing the cool air to flow back
towards the ground. Thunderstorms essentially form a special case
of convective systems which are characterized by a strong updraft
of warm, moist air which freezes in the upper atmosphere leading
to electric load inequalities and hence lightning.

A basic understanding of convection and the emergence of thun-
derstorms is crucial to identify potential features that can be used
in machine learning algorithms. Section 2.1 therefore gives a short
introduction to the basic effects associated with thunderstorms.

2.1 The Three Phases of a Thunderstorm
The emergence of thunderstorms is usually divided into three sepa-
rate phases: the developing stage, the mature stage, and finally the
dissipating stage [10, 19].
Developing Stage. In the first stage of a thunderstorm emergence,
warm and moist air is rising to upper levels of the atmosphere. This
so called updraft can be caused by geographic reasons such as air
rising at the slopes of mountains, but also by thermal reasons such
as large temperature differences between the ground and the upper
atmosphere, especially in summer. Given that the convection is
strong enough, the warm and moist air will eventually pass the dew
point where it starts to condensate, forming a so called cumulus
congestus which is characterized by strong updrafts offering a fresh
supply of warm, moist air. During this first phase, the condensed
air might form first precipitation particles which however do not
yet fall to the ground.
Mature Stage. In the second stage of the thunderstorm, air cools
down in the troposphere, one of the upper layers of the atmosphere.
If the system is strong enough, the moist air will eventually pass
the point where it starts to freeze and sinks back to the ground at
the sides of the updraft. This leads to a so called downdraft, a strong
wind formed by falling (and potentially evaporating) precipitation.
The horizontal divergence at the top of the cloud leads to the typical
anvil form called cumulonimbus. This process of rising and finally
freezing moist air is also responsible for the emergence of lightning.
Cold, frozen particles may split into smaller, negatively charged
particles and larger ones with a positive charge. The smaller the
particle, the faster it will rise in the updraft and finally fall down
back to the ground. This potentially leads to a separation of negative
charge in the downdraft and positive charge in the updraft, which
results in an electric load imbalance, which in turn may result in
lightning which decreases this imbalance.
Dissipating Stage. In the last stage of a thunderstorm, the updrafts
loose strength and finally stop. Due to the missing supply of warm,
moist air, the system becomes unstable and eventually breaks down.
Precipitation looses intensity, mainly consisting of the remaining
condensed air at the top of the cloud.

3 RELATEDWORK
Satellite-based thunderstorm forecast is usually based on the analy-
sis of the observed atmospheric brightness temperature in different
spectral channels. If the brightness temperatures or brightness tem-
perature differences reach a critical threshold, the forecast system
emits a thunderstorm warning. The satellite-based methods are
often supported by NWP stability indices, which are used as an
indicator for the potential energy of a system. Common indices
used are the Convective Available Potential Energy (CAPE) [20], the
Lifted Index (LI) [13] or the KO Index [7]. All these indices essen-
tially consider the potential temperature at different levels of the
atmosphere (described by pressure). The greater the differences,
the more likely the atmosphere will become unstable and develop
a convective system potentially leading to a thunderstorm.

Besides using such index-based forecastingmethods, state-of-the-
art systems such as NowCastMIX include additional data sources:
Radar systems are used to detect precipitation and frozen water par-
ticles in the atmosphere. Specialized systems such as KONRAD [17]



and CellMOS [14] try to detect thunderstorm cells and predict their
movement. Lightning detection systems such as LINET [9] measure
electric waves in the atmosphere to identify lightning and their
location. NWP models such as COSMO-DE [8] are used to identify
potentially interesting areas in advance and to model the local near
storm environment. A combination of these systems is then used
to predict storms and follow their movement.

Although machine learning algorithms are not yet widely used
in meteorology, there are first attempts to apply them to weather
prediction and partially also to thunderstorm forecasting. Ruiz and
Villa tried to distinguish convective and non-convective systems
based on logistic regression and Random Forest models [22]. The
dataset consisted of different features derived from satellite images,
in particular exact values and differences for temperatures and
gradients. Similar approaches have been presented by Williams et
al., trying to predict convective initiation with a forecast period of
one hour [25, 26] and Ahijevych et al. [6] for a forecast period of
two hours. They trained Random Forests with datasets consisting
of different kinds of features, covering raw satellite image values,
derived fields such as CAPE or LI and radar data. Veillette et al. [24]
used features based on satellite images, NWP models and environ-
mental information to train various machine learning models on
the prediction of convective initiation.

Although these approaches use similar machine learning algo-
rithms, they differ from our approach in the feature set used for
training. To the best of our knowledge, there has been no approach
so far which is based on using the error of nowcasting algorithms
for satellite images such as optical flow to predict thunderstorms.

4 THE ERROR IS THE FEATURE
In this section we introduce our approach to predict lighting using
a model prediction error as the feature. We describe the core idea
as well as the meteorological background.

4.1 Core Idea
Rather than directly deriving features from satellite images, our
approach is based on the error resulting from forecasting the next
image based on previous images using optical flow algorithms such
as TV-L1 [27]. A high-level overview of our approach is shown in
Figure 1. The core idea can be formulated as follows: The movement
of air within the atmosphere is a three-dimensional phenomenon
with the third dimension depicted as brightness on satellite images.
Optical flow algorithms predicting future images based on past
observations however can only detect and predict two-dimensional
movements. The error resulting from the application of optical flow
might therefore be related to the vertical movement of clouds, a
sign for convection potentially leading to thunderstorms. Machine
Learning algorithms can then be used to learn the relation between
these error values and the occurrence of lightning which is in turn
a sign of thunderstorms.

Although learning from the error of a model might remind of
boosting in the first place, our approach differs from such methods:
Boosting algorithms iteratively train a weak classifier on a given
data set and then apply a re-weighting of the samples in order to
minimize the prediction error of the next weak classifier trained
on the same data set. Our approach in contrast does not try to

T-30 T-15 

TV-L1 

T̂0 T0 

error 

Classifier 

Figure 1: Overview of our approach: Two consecutive satel-
lite images atT−30 andT−15 are read to predict the next image
T̂0 using TV-L1. The error is then computed as the absolute
difference between T̂0 and the original imageT0. We use that
error to predict lightning based on different classifier.

improve the optical flow model used to predict satellite images as
it would be done in boosting. Instead, we interpret the error of
this first model as a feature to train a second, different model to
predict lightning. The two models differ significantly in their input
and output. Although both methods, boosting and our approach,
learn from the error of a prediction model, we would not call our
approach a boosting method, but a two stage approach instead.

4.2 Meteorological Background
The SEVIRI instrument [23] on-board of the second generation of
Meteosat satellites (MSG) generates multichannel images of Eu-
rope, Africa, and the surrounding seas every 15 minutes with a
sub-satellite resolution of 3×3 km for most channels. The different
channels of the SEVIRI instrument are designed tomeasure different
wave lengths. The first three channels as well as the high resolution
channel essentially measure the reflection of solar light at clouds
or the Earth’s surface, which is closely related to the albedo of the
repective objects. The higher the intensity of the reflected light, the
brighter the tile appears on the image. As clouds have a high albedo,
they appear bright in these channels. The remaining channels of
the SEVIRI instrument differ from these first channels mainly in
the fact that they measure primarily infrared, i.e. thermal radiation.
According to Kirchhoff’s law of thermal radiation, the emissivity is
equal to the absorptivity for every body which absorbs and emits
thermal radiation [16]. Planck’s law postulates that the intensity of
the emission depends on the temperature of the body: The warmer
the body, the higher the intensity [21]. This relation can be used to
estimate the (brightness) temperature of the surface of objects, e.g.
of cloud tops, allowing us to observe changes in the (brightness)
temperature using infrared satellite channels. A central feature of
cloud convection is the vertical updraft of moist air which leads
to an increase of the cloud albedo and cooling of the cloud, thus,
to changes in the intensities. However, convective clouds move
also horizontally which makes it difficult to relate changes of the
observed intensities to the vertical updraft: Changes could result
from real vertical updraft or from artefacts induced by differences
in intensities between the Earth’s surface and clouds. The central
problem is the lack of three-dimensional cloud movement data as
SEVIRI provides only two-dimensional images. Thus the vertical
updraft can not be simply derived by the calculation of the differ-
ence in intensities between subsequent satellite images in time,
preventing the detection of convection.



Optical flow algorithms such as TV-L1 however assume that the
intensity of objects does not change between consecutive images.
Errors resulting from the application of optical flow on satellite
images can therefore result from two reasons: The first reason is an
inaccurate forecast of the movement of clouds, meaning that the
actual position of a cloud object on an image was different from the
predicted position. This error essentially results from weaknesses
of the optical flow algorithm. Errors might however also result from
cloud objects whose position was predicted correctly, but whose
brightness changed between two consecutive images. As explained
above, these brightness changes directly relate to the temperature
of the clouds which in turn relates to their height as clouds become
colder the higher they are. These (rapidly) rising clouds are however
exactly the result of convection leading to thunderstorms. Detecting
them would allow us to predict thunderstorms in advance, earlier
than lightning detection systems or radar systems searching for
precipitation particles.

5 DATA PREPROCESSING PIPELINE
As machine learning models rely on carefully engineered features
in order to learn relations to some target variables, we present in
this section the steps which are necessary to transform the raw
data to the features used in our models.

5.1 Basic Feature Generation & Target Values
The raw input used for our approach essentially consists of two
data sources: binary files containing MSG images for the different
channels and CSV files containing lightning detected by the LINET
system. As LINET only covers Europe, satellite data representing
surrounding areas can be ignored. The first step in our pipeline was
therefore a projection of the satellite images to the area covered by
LINET using the Satpy library [3]. We decided to use the first nine
channels of the satellite, covering a spectrum from the visible light
at 0.6µm wavelength up to the infra red light at 10.8µm [23].

In the second step, the error values are computed in the following
way: Two consecutive satellite images at T−30 and T−15 minutes
were fed into the TV-L1 algorithm to compute the next image of
this sequence T̂0. The implementation was based on the OpenCV
python library [2], the parameters used are given in Table 7 in
the appendix. In addition, we read the original image at T0 and
compute the absolute difference between these two images which
we consider the error of our nowcasting. Using a classifier, we
compute a target variable Ŷ15 predicting the occurence of lightning
within the next 15 minutes.

error0 = |T0 − T̂0 | = |T0 − TV-L1(T−30,T−15)|.

Ŷ15 = classifier(error0).

The lightning data obtained from the LINET network was sup-
plied as CSV files containing as attributes the time lightning oc-
curred as well as its location, charge, and height. We transformed
it to geographically tiled (or rastered) maps where each tile stores
the number of lightning occurring at this location in time interval
[T ;T+15) (“within the next 15 minutes”). Each tile now represents
data with a temporal extension of 15 minutes and a spatial resolu-
tion equal to the one of MSG.

Figure 2: Example images after preprocessing: The error in
channel WV6.2 at 2017-06-01 13:15 as heatmap & the light-
ning data for the following 15 minutes as binary mask.

For performance reasons, the images containing the error values
as well as the maps containing the lightning were stored as binary
numpy arrays to avoid the repetition of the costly load/parse and
spatial projection operations before each training step.

5.2 Enhancing Features Using Convolution
Based on our general assumption that high error values indicate
the presence of lightning, we use the absolute error values in each
of the first nine channels of SEVIRI as our basic features. Figure 2
shows an optical comparison between the error in channel WV6.2
and the occurence of lightning, supporting this assumption.

As clouds and thunderstorms move over time, we also include
features covering the spatial influence from nearby tiles. The use
of convolution on the images containing the error values allows us
to identify thunderstorms entering a tile from a neighbouring tile.
We decided to explore kernels of size 3×3 up to 9×9 to cover local
lightning events as well as larger areas.

For each kernel size, we explored four different convolution op-
erations: we decided to use the maximum and minimum operations
over the window specified by the kernel size to identify areas with
extreme values. In addition, we explored the average value over
different kernel sizes to cover information about the overall state
within a certain area. Finally, we added a convolution based on the
gaussian distribution to weight error values near the centre of the
kernel higher than values at the border, i.e. this corresponds to a
weighted average. The intuition behind this approach is that geo-
graphically close locations should influence the result more than
locations at larger distances. The weights are given by the following
formula where x and y denote the coordinates with respect to the
centre of the kernel and σ the standard deviation:

G(x,y,σ ) =
1

2πσ 2 e
−
x2+y2

2σ 2 .

Our implementation was based on the following filters defined
in the ndimage package of the SciPy Python library [5]: maxi-
mum_filter, minimum_filter, uniform_filter and a combination of
gaussian_kernel and convolve for the last operation.

This combination of four convolution kernel sizes times four
convolution operations times nine channels each plus the raw error
values of each channel yields a total of 4 ∗ 4 ∗ 9 + 9 = 153 features.

We decided to train the classifiers on a per tile basis, i.e. the
models were not trained on two-dimensional images, but on single



Table 1: Main characteristics of the cross-validation sets.

# Time Range # samples / class

0 2017-06-01 00:30 to 2017-06-08 23:00 624,877
1 2017-06-09 11:00 to 2017-06-17 09:45 65,261
2 2017-06-17 21:45 to 2017-06-25 20:15 256,456
3 2017-06-26 08:15 to 2017-07-04 06:30 291,956

tiles and their corresponding feature values. The target values were
simple binary values. Each such label indicated the presence or
absence of lightning at this tile given a specific offset compared to
the time stamp of the error values.

6 EXPERIMENTAL SETUP
The experiments conducted in this thesis were based on 4-fold
cross-validation, which allowed us to combine three sets for train-
ing while using the remaining set for testing. Our dataset approxi-
mately covers onemonth, from 2018-06-01 00:00 to 2018-07-04 06:30.
We decided to split this set along the time axis, using a twelve hour
margin between the sets. As training with highly imbalanced data
is very hard, we decided to use downsampling on a per image basis,
meaning that we took all tiles with a lightning event present on
an image and chose the same number of tiles without lightning
event at random from the same image. Due to various data errors
during the extraction of the raw, binary satellite data and the pre-
processing steps, we could not consider all images. The resulting
cross-validation sets and the sizes of the classes are shown in Ta-
ble 1. A more detailed explanation of this setup and the versions of
the different Python libraries used can be found in Appendix A.

7 RESULTS
The main assumption of our approach is the correlation between
high error values and the existence of lightning. A simple statistical
evaluation gives evidence for this assumption: Table 2 shows the
distribution of the error values in channel WV6.2 for the timespan
2018-06-01 00:30 to 2018-06-03 06:15. The first column refers to all
tiles on all images within this time range while the following two
columns represent the two classes, namely the no-lightning and the
lightning class with respect to the next 15 minutes. Comparing these
values, we can state that the mean error for the lightning class is
higher than the one for the no-lightning class. Simply assuming that
a high error value necessarily indicates the presence of lightning is,
however, wrong as the overall maximum belongs to the no-lightning
class. Nevertheless, we can still conclude that high values more
likely indicate the presence of lightning than the absence.

Table 2 also shows the extreme imbalance of the dataset. Only
169,912 samples out of more than 230 million belong to the lightning
class, resulting in a fraction of only 0.074% which decreases to
0.066% if computed over all available data.

7.1 Predicting the Immediate Future
To check whether our assumption is correct and we can indeed train
machine learning models to predict lightning, we first conducted
an experiment to forecast the immediate future: Given the error
resulting from the satellite images at T−30, T−15 and T0, can we

Table 2: Nowcasting error distribution (2018-06-01 00:30 to
2018-06-03 06:15) in channel WV6.2, per class distribution
taken with respect to lightning within the next 15 minutes.

All tiles No-Lightning Lightning

# samples 230,036,544 229,866,632 169,912
mean error 0.5141 0.5128 2.3600

std. deviation 0.7680 0.7627 2.8515
min error 0.0 0.0 0.0
max error 30.8376 30.8376 30.0355

Table 3: The accuracy for each model and test set: Decision
Tree (DT), Random Forest (RF), AdaBoost (AB), Gradient
Boosting (GB). The last row shows the accuracy over all sets.

Test Set DT RF AB GB

0 87.494% 87.661% 90.203% 90.973%
1 86.549% 87.219% 88.648% 89.090%
2 89.946% 91.724% 90.744% 92.714%
3 84.118% 90.050% 85.483% 90.500%

overall 87.156% 89.042% 89.120% 91.123%

predict whether there will be lightning within the next 15 minutes,
i.e. between T0 and T+15?

We decided to use tree-based classifiers for this first set of ex-
periments as they provide more transparency in understanding
how a prediction was made compared to neural networks. The
models chosen for evaluation are simple Decision Trees as well as
ensemble methods based on them: Random Forests as described by
Breiman [11], Gradient Boosting as introduced by Mason et al. [18]
and AdaBoost as presented by Freund and Schapire [12]. The im-
plementations are based on the Scikit-Learn Python library [4]:
DecisionTreeClassifier, RandomForestClassifier, AdaBoostClassifier
and GradientBoostingClassifier. For most parameters we used their
default values as specified in the documentation. We adopted some
parameters to avoid overfitting and limit the training time. The
most important parameters are depicted in Subsection B.2.

Table 3 shows the resulting accuracy values for the different
models and test sets. As expected, the simple Decision Tree shows
the worst performance in each test set, reaching values between
84% and 89%. Gradient Boosting performed best with accuracy
results between 89% and 92%. The last row of the table shows the
accuracy over all test sets, underlining a strong Gradient Boosting
model, a weak Decision Tree model and the Random Forest as well
as AdaBoost models in between. Considering the computational
effort required to create these models, notice however that the
improvement of about 2% between Random Forests and Gradient
Boosting comes at the cost of a much higher training time: For the
largest training set consisting of the cross-validation sets 0, 2, and 3,
the training phase for Random Forest which could be conducted in
parallel on all CPU cores took about 14 minutes. Gradient Boosting
however which can by nature not run in parallel took about 818
minutes which is more than 54 times the duration of Random Forest.



Table 4: Main characteristics of the models over all test sets:
precision (PR), recall (RE) and false positive rate (FPR).

DT RF AB GB

PR 86.22% 85.73% 89.50% 89.74%
RE 88.46% 93.68% 88.64% 92.86%
FPR 14.14% 15.59% 10.40% 10.62%

As a high overall accuracy does however not necessarily indicate
an equally good performance on both classes., we also present
the main characteristics resulting from the confusion matrices for
all models in Table 4, created by summing up the results on the
individual test sets. Especially Gradient Boosting performs equally
well on both classes, leading to high precision and recall values
while minimizing the false alarm rate. Random Forest does even
slightly outperform Gradient Boosting in terms of recall, but at the
cost of a much worse performance in terms of precision. All models
except AdaBoost tend to achieve better results for the lightning
class, which seems slightly easier to learn.

7.2 Limitations
These results indicate the potential of the method for operational us-
age, however, the false positive rate of 10% for the best model needs
further investigation and improvement. In addition, one should
keep in mind that the results shown here are based on a balanced
subset of all tiles. Using the original, highly unbalanced data would
not affect the values for accuracy, recall and false positive rate, but
lead to a much lower precision due to the larger amount of false
positives (given the assumption that the subsample is representa-
tive for the real data). The total amount of samples per class over all
test sets is 1,238,550. Considering the fact that only roughly 0.066%
of all tiles belong to the Lightning class and we chose the same
amount of samples from the No-Lightning class, we can conclude
that the overall amount of tiles in the images considered for this
paper having a negative true condition is roughly in the region of
1,876,590,909. Considering the False Positive Rate of 10.62% for the
Gradient Boosting model, this calculation would lead to a precision
of roughly 0.57% if all tiles were considered. Applying this model
alone in practice to issue warnings would therefore not be feasible.
We can however calculate the false positive rate FPR necessary to
achieve a better precision PR the following way:

PR =
TP

TP + FP
=

TP

TP + FPR ∗ N
⇔ FPR =

(1 − PR) ∗TP

PR ∗ N
.

In the formula above, TP denotes the number of true positives
and N the overall number of tiles with a negative true condition.
However, even assuming a perfect recall, a model which aims at
a precision of 20% (the value currently achieved by NowCastMIX
for a one hour offset) would have to achieve a false positive rate of
roughly 0.26% which seems extremely hard to achieve.

7.3 Feature Evaluation
The models considered so far all belong to the class of tree classifier
algorithms which essentially all work in a very similar way: In each
step, the model chooses a feature and a corresponding threshold and
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Figure 3: The top 15 features and their gini importance for
the Gradient Boosting model trained on the sets 0, 2 and 3.

performs a binary split of the set of samples into two distinct subsets
assigned to the left and right subtree. The decision which feature
and threshold to choose is taken according to the gini impurity
which measures the impurity of a node where lower values indicate
purer nodes. Given the relative frequencies pi of each class i ∈

{1, ..., J }, the gini impurity is defined as:

д(p) = 1 −
J∑

i=1
p2i .

Based on this impurity measure, we can define a feature impor-
tance measure. Given the weights of the individual trees αt in the
ensemble, the total number of samples N , the number of samples
Nk ,NL,NR reaching a parent node k as well as its left and right
child node and the feature s(k) used in the split of node k , we define
the gini importance FI (xi ) of some feature xi as:

FI (xi ) =
∑
t
αt

∑
k ,s(k )=xi

Nk
N

(
д
(
pk

)
−
NL
Nk

д
(
pL

)
−
NR
Nk

д
(
pR

))
.

Figure 3 shows an example plot for the top 15 features of Gradient
Boosting trained on the sets 0, 2, and 3 which together form the
largest training set. Themaximumvaluewithin a 9×9 tile window of
channelWV6.2 is themost important feature with a gini importance
of about 0.14, followed by the maximum convolution with the
largest kernel in channel IR3.9, however reaching just half the
importance of the first feature. The third and following features
keep loosing importance with values between 0.04 and 0.01. The
feature importances for the other three training sets show very
similar results: The maximum values of a 9×9 kernel in channels
WV6.2 and IR3.9 remain the prominent features, with the first
ranked feature reaching twice the gini importance of the second
ranked one, followed by slightly decreasing importances for the
following features. The results of Random Forest and AdaBoost
models look very similar. Decision Trees rely on a much smaller
subset of features: Compared to Gradient Boosting, the top ranked
feature shows twice the gini importance with values of 0.35 to
0.6. The features on the following ranks show a fast drop of the
importance values, indicating that the model relies on a small subset
of features whereas ensemble methods such as Random Forests,
AdaBoost, and Gradient Boosting obviously favour a broader range
of features which potentially explains their improved accuracy.



Table 5: Channel, kernel size and convolution type usage
within the top 35 features of Gradient Boosting depending
on the training sets.

Feature sets 1,2,3 sets 0,2,3 sets 0,1,3 sets 0,1,2

VIS0.6 4 4 4 4
VIS0.8 5 5 5 3
NIR1.6 2 2 2 2
IR3.9 6 8 8 8
WV6.2 4 4 4 4
WV7.3 2 2 4 3
IR8.7 3 2 0 1
IR9.7 5 5 5 7
IR10.8 4 3 3 3

1×1 0 0 0 0
3×3 0 2 3 2
5×5 2 3 4 4
7×7 8 7 8 9
9×9 25 23 20 20

Max 15 18 21 20
Min 12 9 6 8
Avg 8 8 8 7

Gaussian 0 0 0 0

Table 5 shows the number of occurrences for channels, kernel
sizes as well as convolution types within the top 35 features of the
Gradient Boosting model for the different training sets. Considering
the channels, we can clearly state that IR3.9 belongs to the most
prominent channels, appearing six to eight times among the top
features, followed by IR9.7 and VIS0.8. There is however no clear
concentration on a specific subset of channels: Usually all channels
appear in all training sets, except for one set where IR8.7 does not
appear within the top 35 features. Considering the different kernel
sizes, the model clearly favours larger kernels over smaller ones.
The 1×1 column which means taking the exact error value of a
single tile shows no usage at all. The largest kernel size of 9×9
however is always used at least 20 times, i.e. in nearly two third of
all features. A similar observation holds true for the convolution
types where the maximum convolution clearly dominates with 15
to 21 appearances within the top features. In contrast, the gaussian
convolution does not appear at all, indicating that this convolution
type does not help the model to discriminate the samples.

8 ADDING NON-ERROR-BASED FEATURES
The experiments in Section 7 were based only on features derived
from the error of the optical flow algorithm. What happens if we
add other features? That is what this section is about.
Raw Image Values. Error values do not allow for any inference
on the values of the original satellite image, making it hard to dis-
tinguish cloudy and non-cloudy tiles with similar error values. We
therefore added the original values of the different channels as addi-
tional features which indeed allow for such a separation. We again
use the assumption that convolution incorporating information of
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Figure 4: Mean error values for the VIS0.6 channel over time
based on the results of Gradient Boosting.

surrounding tiles might be helpful and therefore apply the same
convolutions as for the error values of the optical flow.
Time Of Day. The first three channels of SEVIRI cover the range of
the visible light. These channels essentially show a black image over
night, giving no useful information for thunderstorms occuring
in the late evening or early morning. Figure 4 shows the mean
values for the VIS0.6 channel over time clearly indicating very low
values over night giving no useful information to distinguish the
two classes. At noon however the values of this channel allow for
a pretty clear distinction of lightning and no-lightning tiles. The
distribution of lightning over time shows that the average number
of lightning per 15 minutes stays below 400 during night and early
morning before it starts to rise at approximately 10:00, reaching a
peak at 15:00 with more than 1700 lightning per 15 minutes. Leaving
out these channels would therefore eliminate a very useful data
source for the distinction in the afternoon when most lightning
occur. We therefore added an additional feature depicting the time
of day as four digit number in the format [hhmm] to allow the
model to take decisions based on time.

Figure 5: Geograph-
ical distribution of
the 10% quantile er-
ror (channel VIS0.6).

Coordinates. During sunrise, the chan-
nels covering the visible light will be-
come brighter from north to south as the
sunlight reaches tiles near the pole ear-
lier than tiles near the equator, given the
same longitude. During sunset, the same
phenomenon occurs in the oppsite di-
rection as the tiles become darker from
south to north. Figure 5 shows the geo-
graphical distribution of the 10% quantile
error clearly indicating that tiles in the
lower half of the image remain black for
a longer period of time.We therefore also
include the x and y coordinate of a tile on
the image as additional features to allow
for a distinction of such cases during sunset or sunrise. Adding such
geographic information might also help to distinguish mountains
and plains, potentially having different triggers for thunderstorms.
Removing Features. To avoid an exploding number of features,
we eliminated the gaussian convolution as it showed no improve-
ment in the previous experiments. Considering the kernel sizes, we
decided to use only two kernels, namely a 7×7 and a 13×13 kernel
to incorporate the result that the previous models preferred larger
kernels over smaller ones. We still keep the values for the single
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Figure 6: Random Forests with error-based features (RF63),
adding raw satellite images (RF126), time of day (RF127), co-
ordinates (RF129) or just non-error-based features (RF 66).

tile to allow the models to learn from differences between the value
of the tile itself and convolution values which include surrounding
tiles. This leads to a total of 129 features: The error values resulting
from nowcasting as well as the raw satellite image values, each
combined with 3 convolution types and two kernel sizes plus the
features for the time of day and the coordinates.

The new feature set was fed to a Random Forest with slightly
adapted parameters: We conducted a hyperparameter search with
GridSearchCV from the Scikit-Learn library on the largest training
set using three folds. We varied the number of estimators in the
interval [50, 300], the maximum depth in the interval of [14, 26]
and the minimum number of samples per leaf in the interval [3, 81].
A configuration with 300 estimators, a maximum depth of 26 and
at least three samples per leaf yielded the best results, but started
to overfit on the smaller training sets. We therefore decided to use
a configuration with the maximum depth set to 18, the minimum
number of samples per leaf set to nine and the number of estimators
set to 200. This configuration has shown a slightly worse perfor-
mance (96.00 % accuracy compared to 96.24%), but does not tend to
overfit too fast on smaller training sets.

To evaluate the impact of each of the new features, we conducted
several experiments, adding the new features one after the other.
Figure 6 shows the resulting values for accuracy, recall and true
negative rate. RF63 denotes a Random Forest just using the 63
features based on the error of the optical flow as baseline. RF126 is
a Random Forest including the values for the raw satellite images,
resulting in 126 features. RF127 then adds the time of day while
RF129 finally uses all features including the coordinates. We also
show the performance of a model using the 66 non-error-based
features (RF 66) which achieves the same accuracy, however with a
slightly worse detection of lightnings.

This new setup increased the accuracy up to 96.00%, clearly
outperforming the Gradient Boosting model reaching only 91.12%.
Considering the per class performance, this new model reaches a
recall of 97.98% and a false positive rate of 5.97%, showing an equal
boost for both classes compared to the previous results.

9 INCREASING THE FORECAST PERIOD
Forecasting lightning just for the next 15 minutes is probably the
easiest task, but not necessarily the most useful as it gives little to
no time to react. We therefore decided to conduct additional exper-
iments to evaluate if our approach does also offer the possibility
to increase the forecast period up to five hours. The basic setup
remains the same, especially the data preprocessing and feature

Table 6: Comparison of the forecast accuracy for different
models and offsets from 0 to 5 hours on all test sets.

Offset RF 153 RF 66 RF 129 NN 129

+0:00:00 89.04% 96.00% 96.00% 96.42%
+1:00:00 84.61% 92.09% 92.25% 92.19%
+2:00:00 80.29% 87.15% 86.30% 88.03%
+3:00:00 76.67% 82.87% 81.35% 85.48%
+4:00:00 73.68% 82.27% 80.82% 84.43%
+5:00:00 71.39% 79.99% 78.36% 83.87%

generation steps. Instead of taking the maps which include the
lightning for the next 15 minutes, we now used a specific offset to
determine the maps used as target values for our machine learning
models. An offset of +0:00:00 essentially just means the same as in
the previous sections, namely considering the lightning for the next
15 minutes. An offset of +5:00:00 however now indicates that the
model is trained to learn the presence or absence of lightning five
hours in the future, i.e. between +5:00:00 and +5:15:00 compared to
the last available satellite image.

Table 6 shows the results of the corresponding experiments for
different models. RF 153 is the Random Forest model from the first
set of experiments, using the 153 original features only considering
the error values of nowcasting. RF 129 and RF 66 are the Random
Forest models described in the previous section.

All the previous sections only used tree classifiers as prediction
models. We decided to also test a neural network for comparison.
NN 129 is a neural network based on the Keras framework [1]
using 9 hidden, dense layers with sizes [64, 64, 64, 32, 32, 32, 16,
16, 16] and the leaky ReLU activation function. The single output
node uses the sigmoid activation. The model was trained using
the Adam optimizer and binary cross-entropy as loss function. The
training time was limited to 500 epochs with early stopping if the
accuracy on the test set did not improve by at least 0.01% over the
last 50 epochs. The batch size was fixed to 25,000 and the feature
set identical to RF 129, except for the fact that all features were
normalized to the unit interval [0; 1]. We decided to not consider
convolutional networks as the highly imbalanced data would most
likely lead to models just predicting black images indicating no
lightning at all, reaching an accuracy of more than 99.9% this way.
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Figure 7: ROC curve for the
model RF 129, offset +2:00:00.

Considering the perfor-
mance, we must state the the
models lose accuracy with
increasing offset. However,
this result is explainable by
the fact that the weather is
a very chaotic phenomenon
where accurate forecasts be-
come more and more diffi-
cult with increasing forecast
period. But even with the
largest offset tested, the re-
sults clearly remain above the
50%margin one would expect
from random guessing on a



balanced dataset. An accuracy of still more than 83% shows promis-
ing results for future work. However, a larger offset comes at the
cost of an increasing number of false positives further reducing the
precision of the model. This problem still needs to be solved. The
receiver operating characteristic (ROC) curve of model RF 129 for
a two hour offset depicted in Figure 7 however shows the capabil-
ity of our model to learn the problem, reaching an area under the
curve (AUC) value of 0.94. This is clearly better than the results
reported by Ahijevych et al. [6] and Veillette et al. [24]. One should
however keep in mind that their models were trained on predicting
newly initiating convective systems which slightly differs from
our approach covering all appearances of lightning. The increasing
gap between the models RF 129 and NN 129 most likely relates to
overfitting in RF 129 as it is weaker on smaller training sets, but
stronger on larger ones. With more data available, we expect the
Random Forest model to become competitive to the neural network.

10 CONCLUSION
The results of our approach seem very promising. Using just er-
ror values resulting from the nowcast of satellite images based on
optical flow, different tree classifiers could be trained to predict
lightning in the immediate future with an accuracy of more than
91%. Features using convolution with larger kernel sizes show the
greatest impact on the accuracy of the models. The results of our
models are based on a broad range of channels which are all present
within the top 35 features. Adding non-error-based features im-
proved the accuracy further, now reaching values of up to 96%.
Even for the largest forecast period of five hours considered in this
paper, the accuracy of the models still remain above 83% which is
clearly better than the 50% which one would expect from random
guessing. Comparing the results to those of Ahijevych et al. [6]
or Veillette et al. [24], our approach clearly demonstrates lower
false positive rates given the same recall, leading to a superior over-
all performance. However, the high false positive rate still needs
further investigation to prepare the approach for potential future
operational use.

Neural Networks as presented in the last section could offer an
alternative to the tree-based models mostly used in this paper. Con-
sidering the data used as basis, we currently limit our approach to
features directly related to satellite images. Including other data
sources as it is done in NowCastMIX will most likely increase the
performance and reduce the high false positive rate. Especially our
boosted models might also benefit from a dimensionality reduc-
tion of the feature set by elimination of less important features
which would allow us to grow deeper models in reasonable time,
potentially yielding better results.
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A EXPERIMENTAL SETUP DETAILS
All Experiments were conducted on a computer equipped with
two Intel Xeon E5-2600 v4 processors, 32 GB of RAM and two
Nvidia GTX 1080 Ti graphics cards. The implementation was based
on Python 2.7.141 using Satpy 0.9.2 to read and project the raw
satellite data. The optical flow computation was based on OpenCV
3.4.0.12 and the models on Scikit-Learn 0.19.1.

Our training was based on a 4-fold cross-validation, meaning
that the complete set of available data points was divided into four
sets (folds) where three sets were combined to form the training
data and the remaining set was used to test the performance of
the trained model. Splitting could have been done along the ge-
ographic coordinates (meaning that we reserve a specific part of
each image for testing) or along the time axis (meaning that we
reserve images at a specific timestamp for testing). Splitting along
the geographic coordinates would however carry the risk of over-
lapping training and testing sets due to the convolution operations
applied during feature generation. We therefore decided to use
the second approach, namely a splitting along the time axis. Our
dataset approximately covers one month, from 2018-06-01 00:30 to
2018-07-04 06:30. Simply splitting this time range into training and
test set at some point in time called TS would lead to the problem
that data points taken from the last image beforeTS and data points
taken from the first image afterTS could be highly correlated as the
weather conditions did not change much during these 15 minutes.
To avoid such problems, the cross-validation sets were designed
such that the start and end points of the different sets are separated
by a twelve hour margin. Taking into account all available tiles
would have led to highly imbalanced sets as more than 99.9% of
all tiles belong to the no-lightning class (compare Table 2). Models
trained with such imbalanced data would tend to always predict
the absence of lightning, achieving a trivial (and useless) accuracy
of more than 99.9% this way. To avoid this problem, we decided to
balance the training and test sets in the following way: Balancing
through downsampling was done on a per image basis, meaning
that we took all tiles with a lightning event present on an image and
chose the same number of tiles without lightning event at random
from the same image.

Due to various data errors during the extraction of the raw,
binary satellite data and the preprocessing steps, we could not
consider all images. The resulting cross-validation sets and the
sizes of the classes are shown in Table 1.

B MODEL PARAMETERS
For the sake of reproducibility , we denote in this section the most
relevant parameters of the different models especially if they differ
from the default settings described in the documentation of the
frameworks used. All parameters not mentioned in this section
where left on their default values.

B.1 TV-L1

The implementation of TV-L1 used in this paper was based on
the DualTVL1OpticalFlow class contained in the OpenCV library.
The parameters used are given in Table 7. We have not conducted
a hyperparameter search for the optical flow ourselves, but used
1As the OpenCV implementation provided by DWD was based on Python 2.

Table 7: Parameters for the TV-L1 algorithm used for optical
flow computation.

Parameter Value

tau 0.1
lambda 0.0005
theta 0.3
epsilon 0.001

outerIterations 10
innerIterations 30

gamma 0.0
nscales 7
scaleStep 0.5
warps 5

medianFiltering 1

Table 8: Parameters of the different tree classifiers. A dash
means this parameter is not present for the specific model.

Parameter DT RF AB GB

Max depth 12 12 6 7
Criterion gini gini gini gini

Min # samples / leaf 0.01% 0.01% 0.01% 0.01%
# estimators - 200 50 100

# jobs - 16 - -
Learning rate - - 1.0 0.1

Boosting criterion - - - Friedman MSE

parameters proposed by the German Meteorological Service which
tested several configurations.

B.2 Tree Classifier
The tree classifier implementations were all based on the scikit-
learn library using the classes DecisionTreeClassifier, RandomForest-
Classifier, AdaBoostClassifier and GradientBoostingClassifier. The
most important parameters used for the first set of experiments
with 153 features based on the error of the optical flow are depicted
in Table 8. Parameters not mentioned here were left on their default
values. A dash indicates that this parameter is not present for this
model. For the Random Forest models described in later sections of
this paper, some parameters have been adapted: The max_depth
parameter was increased to 18 and the minimum samples per leaf
was fixed to an absolute value of nine instead of using a percentage
of the training set size.
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