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• Do different Instance types have different variations 
in performance?

• Do different locations or availability zones impact 
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• Does performance depend on the time of the day, 
weekday, or week?
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In this talk:
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End: January 12, 2010
Duration: 31 days
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CPU Memory Sequential Read Random Read Network

[Ubench score] [Ubench score] [KB/second] [seconds] [MB/second]

Mean x 1,248,629 390,267 70,036 215 924
Min 1,246,265 388,833 69,646 210 919
Max 1,250,602 391,244 70,786 219 925
Range 4,337 2,411 1,140 9 6
COV 0.001 0.003 0.006 0.019 0.002

Table 1: Physical Cluster: Benchmark results obtained as baseline

byte I/O and block I/O. For further details please refer to [4].
In our study, we report results for sequential reads/writes
and random reads block I/O, since they are the most influ-
encing aspects in database applications.
Network Bandwidth. We use the Iperf benchmark [8]
to measure network performance. Iperf is a modern alter-
native for measuring maximum TCP and UDP bandwidth
performance developed by NLANR/DAST. It measures the
maximum TCP bandwidth, allowing users to tune various
parameters and UDP characteristics. Iperf reports results
for bandwidth, delay jitter, and datagram loss. Unlike other
network benchmarks (e.g. Netperf), Iperf consumes less sys-
tem resources, which results in more precise results.
S3 Access. To evaluate S3, we measure the required time
for uploading a 100 MB file from one unused node of our
physical cluster at Saarland University (which has no net-
work contention locally) to a newly created bucket on S3
(either in US or EU location). The bucket creation time
and deletion time are included in the measurement. It is
worth noting that such a measurement also reflects the net-
work congestion between our local cluster and the respective
Amazon datacenter.

4.3 Benchmark Execution
We ran our benchmarks two times every hour during 31

days (from December 14 to January 12) on small and large
instances. The reason for making such a long measurements
is because we expected the performance results to vary con-
siderably over time. This long period of testing also allows
us to do a more meaningful analysis of the system perfor-
mance of Amazon EC2. We have even one month more
of data, but we could not see any additional patterns than
those presented here1. We shut down all instances after 55
minutes, which allowed us to enforce Amazon EC2 to create
new instances just before running again all benchmarks. The
main idea behind this is to better distribute our tests over
different computing nodes and hence to get a real overall
measure for each of our benchmarks. To avoid that bench-
mark results were impacted by each other, we sequentially
ran all benchmarks so as to ensure that only one benchmark
was running at any time. Notice that, as sometimes a single
run can take longer than 30 minutes, we ran all benchmarks
only once in such cases. To run the Iperf benchmark, we
synchronized two instances just before running it, because
Iperf requires two idle instances. Furthermore, since two
instances are not necessarily in the same availability zone,
network bandwidth is very likely to be different. Thus, we
ran different experiments for the case when two instances
are in the same availability zone and when they are not.

4.4 Experimental Setup
We ran our experiments on Amazon EC2 using one small

1The entire dataset is publicly available on the project web-
site [9].

standard instance and one large standard instance in both
locations US and EU (we increased the number of instances
in Section 7.1). Please refer to Section 3 for details on the
hardware of these instances. For both types of instances we
used a Linux Fedora 8 OS. For each instance type we cre-
ated one Amazon Machine Image per location including the
necessary benchmark code. We used standard instances lo-
cal storage and mnt partitions for both types when running
Bonnie++. We stored all benchmark results in a MySQL
database, hosted at our local file server.

To compare EC2 results with a meaningful baseline, we
also ran all benchmarks — except instance startup and S3 —
in our local cluster having physical nodes. It has the follow-
ing configuration: one 2.66 GHz Quad Core Xeon CPU run-
ning 64-bit platform with Linux openSuse 11.1 OS, 16 GB
main memory, 6x750 GB SATA hard disks, and three Giga-
bit network cards in bonding mode. As we had full control
of this cluster, there was no additional workload on the clus-
ter during our experiments. Thus, this represents the best
case scenario, which we consider as baseline.

We used the default settings for Ubench, Bonnie++, and
Iperf in all our experiments. As Ubench performance also
depends on compiler performance, we used gcc-c++ 4.1.2
on all Amazon EC2 instances and all physical nodes of our
cluster. Finally, as Amazon EC2 is used by users from all
over the world, and thus with different time zones, there is
no local time. This is why we decided to use CET as the
coordinated time for presenting results.

4.5 Measure of Variation
Let us now introduce the measure we use to evaluate the

variance in performance. There exist a number of measures
to represent this: range, interquartile range, and standard
deviation among others. The standard deviation is a widely
used measure of variance, but it is hard to compare for dif-
ferent measurements. In other words, a given standard devi-
ation value can only indicate how high or low the variance is
in relation to a single mean value. Furthermore, our study
involves the comparison of different scales. For these two
reasons, we consider the Coefficient of Variation (COV),
which is defined as the ratio of the standard deviation to
the mean. Since we compute the COV over a sample of re-
sults, we consider the sample standard deviation. Therefore,
the COV is formally defined as follows,

COV =
1

x
·

vuut 1

N − 1
·

NX

i=1

(xi − x)2

Here N is the number of measurements; x1, .., xN are the
measured results; and x is the mean of those measurements.
Note that we divide by N − 1 and not by N , as only N − 1
of the N differences (xi − x) are independent [18].

In contrast to the standard deviation, the COV allows us
to compare the degree of variation from one data series to
another, even if the means are different from each other.

•Coefficient of Variation (COV): ratio of the standard 
deviation to the mean

•Different ones: range, variance, standard deviation, ...

standard deviation (s)mean (x)
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Observation 2: lower 
band results belong 
only to us-east-1c

“Availability Zones are distinct 
locations that are engineered 
to be insulated from failures in 
other Availability Zones...”

Observation 1 : us-east-1d 
results always in the upper band
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• Application:  a MapReduce aggregation job

• Number of virtual nodes: 50

• Repetitions: once every hour

Observation: upper band results 
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Conclusion

•High variance in performance: COV up to 24%

16

Ah O.K.! So...

•Be careful!

•Hard to interpret results

•Repeatability to limited extent

•Two bands in performance

•Partially due to different physical CPU types

1514

Hadoop++



Runtime Measurements in the Cloud, J. Schad, J. Dittrich, and J. QuianéSeptember 14th, 2010

Information Systems GroupConclusion

24
Conclusion



Runtime Measurements in the Cloud, J. Schad, J. Dittrich, and J. QuianéSeptember 14th, 2010

Information Systems GroupConclusion

24
Conclusion

• Amazon should:

• reveal the physical details
• allow users to specify physical characteristics



Runtime Measurements in the Cloud, J. Schad, J. Dittrich, and J. QuianéSeptember 14th, 2010

Information Systems GroupConclusion

24
Conclusion

•Researchers should

• use equivalent virtual clusters to compare systems
• report underlying system type with the results

• Amazon should:

• reveal the physical details
• allow users to specify physical characteristics



Runtime Measurements in the Cloud, J. Schad, J. Dittrich, and J. QuianéSeptember 14th, 2010

Information Systems GroupConclusion

24
Conclusion

17

By the way...

 Amazon recently introduced the 
cluster-compute Instances

[after VLDB’10 deadline]

•Researchers should

• use equivalent virtual clusters to compare systems
• report underlying system type with the results

• Amazon should:

• reveal the physical details
• allow users to specify physical characteristics



Runtime Measurements in the Cloud, J. Schad, J. Dittrich, and J. QuianéSeptember 14th, 2010

Information Systems GroupConclusion

24
Conclusion

17

By the way...

 Amazon recently introduced the 
cluster-compute Instances

[after VLDB’10 deadline]

•Researchers should

• use equivalent virtual clusters to compare systems
• report underlying system type with the results

• Amazon should:

• reveal the physical details
• allow users to specify physical characteristics

Still significantly higher 
than in a local cluster



Runtime Measurements in the Cloud, J. Schad, J. Dittrich, and J. QuianéSeptember 14th, 2010

Information Systems GroupConclusion

24
Conclusion

17

By the way...

 Amazon recently introduced the 
cluster-compute Instances

[after VLDB’10 deadline]

•Researchers should

• use equivalent virtual clusters to compare systems
• report underlying system type with the results

• Amazon should:

• reveal the physical details
• allow users to specify physical characteristics

Thank you!

Still significantly higher 
than in a local cluster


