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ABSTRACT
MapReduce is a computing paradigm that has gained a lot of pop-
ularity as it allows non-expert users to easily run complex analyti-
cal tasks at very large-scale. At such scale, task and node failures
are no longer an exception but rather a characteristic of these sys-
tems. This makes fault-tolerance a critical issue for the efficient
operation of any application. MapReduce automatically resched-
ules failed tasks to available nodes, which in turn recompute such
tasks from scratch. However, this policy can significantly decrease
performance of applications. In this paper, we propose a family of
Recovery Algorithms for Fast-Tracking (RAFT) MapReduce. As
ease-of-use is a major feature of MapReduce, RAFT focuses on
simplicity and also non-intrusiveness, in order to be implementa-
tion independent. To efficiently recover from task failures, RAFT
exploits the fact that MapReduce produces and persists interme-
diate results at several points in time. RAFT piggy-backs check-
points on the task progress computation. To deal with multiple
node failures, we propose query metadata checkpointing. There-
fore we keep track of the mapping between input key-value pairs
and intermediate data. Thereby, RAFT does not need to re-execute
completed map tasks entirely. Instead RAFT only recomputes in-
termediate data that were processed by local reducers and hence
not shipped to another node for processing. We also introduce a
scheduling strategy taking full advantage of these recovery algo-
rithms. We implemented RAFT on top of Hadoop and evaluate it
on a 45-node cluster using three common analytical tasks. Over-
all, our experimental results demonstrate that RAFT outperforms
Hadoop runtimes by 23% on average under task and node failures.
The results also show that RAFT has negligible runtime overhead.

1. INTRODUCTION
Data-intensive applications process vast amounts of data with

special-purpose programs, e.g. the ever-popular inverted index and
the PageRank Google applications. Even though the computations
behind these applications are conceptually simple, the size of in-
put datasets requires them to be run over thousands of computing
nodes. For this, Google developed the MapReduce framework [4],
which allows non-expert users to easily run complex tasks over

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2010 Saarland University.

very large datasets on large clusters. A salient feature of MapRe-
duce is that users do not need to worry about issues such as paral-
lelization and failover.

Fault-tolerance is, in fact, an important aspect in large clusters
because the probability of node failures increases with the growing
number of computing nodes. This is confirmed by a 9-year study
of node failures in large computing clusters [19]. Moreover large
datasets are often messy, containing data inconsistencies and miss-
ing values (bad records). This may, in turn, cause a task or even
an entire application to crash. The impact of task and node failures
can be considerable in terms of performance [20, 24, 4].

MapReduce makes task and node failures invisible to users; it
automatically reschedules failed tasks1 to available nodes. How-
ever, recomputing failed tasks from scratch can significantly de-
crease the performance of long-running applications [24] — espe-
cially for those applications composed of several MapReduce jobs
— by propagating and adding up delays. A natural solution is to
checkpoint the state of ongoing computation on stable storage and
resume computation from the last checkpoint in case of failure.
Nevertheless, checkpointing ongoing computation to improve the
performance applications under failures is challenging for several
reasons:

(1) Checkpointing techniques require the system to replicate inter-
mediate results on stable storage. This can significantly de-
crease performance as MapReduce jobs often produce large
amounts of intermediate results.

(2) Persisting checkpoints on stable storage usually requires inten-
sive use of network bandwidth, which is a scarce resource in
MapReduce systems [4].

(3) Recovering tasks from failures requires fetching intermediate
results from stable storage, which in turn utilizes both network
and I/O resources heavily.

As a result, using a straight-forward implementation of tradi-
tional checkpointing techniques [7, 17] would significantly de-
crease the performance of MapReduce jobs. In the remainder of
this section, we describe how MapReduce deals with failures; we
then illustrate the failover problem with a running example, and
finally; we list our major contributions.

1.1 Fault-Tolerance in MapReduce
In the MapReduce framework, one central process acts as the

master and coordinates MapReduce jobs while all other processes

1Failed tasks are tasks that crashed due to bad records or node fail-
ures.
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act as workers on different nodes. Workers execute tasks as as-
signed by the master. For clarity, we denote a worker running a map
task as mapper and running a reduce task as reducer. A worker can
run multiple map and reduce tasks at the same time. Mappers (resp.
reducers) running on the same worker are denoted local mappers
(resp. local reducers), while those running on different workers
are denoted remote mappers (resp. remote reducers). In MapRe-
duce, there exist three kinds of failures: task, worker, and master
failures.

(1.) Task failures. A task failure is an interruption on a running
task, requiring the system to re-execute the interrupted task. There
are several reasons to have a task failure: (i) bad records: MapRe-
duce jobs typically process large messy datasets; (ii) contention:
computing nodes compete for shared resources, which makes tasks
slow-down and thus to be considered as failed; (iii) media corrup-
tion: MapReduce jobs do not account for all possible forms of cor-
rupted media, like disk corruption [20], and; (iv) bugs: this includes
bugs in MapReduce jobs as well as in third-party software.

When one of these reasons occurs, workers mark an interrupted
task as failed and inform the master of the task failure. The master,
in turn, puts the task back in its scheduling queue. If the failed
task is a map task, the master notifies reducers of the re-execution
decision as soon as the task is rescheduled. In case of bad records,
MapReduce executes failing tasks twice before skipping a single
bad record [4].

(2.) Worker failures. We denote a failure that causes a worker to
stop accepting new tasks from the master as worker failure. This
failure often results from hardware failures, e.g. memory errors,
hard disk failures, or overheating CPUs. For example, a 10-node
cluster at Saarland University experienced two network card fail-
ures and three hard disk failures within a couple of months. Ad-
ditionally, network maintenance may also cause a worker to fail as
reported in [4].

In MapReduce, the master relies on periodical communication with
all workers to detect worker failures. If the master does not receive
any response from a given worker during a certain amount of time,
the master marks the worker as failed. Additionally, the master
reschedules running (and some completed) map tasks and reduce
tasks.

(3.) Master failures. In MapReduce, the master is a single point
of failure, but this can be easily solved by having a backup node
maintaining the status of the master node. Thus, the backup node
can take over the master role in case of failure. This is why we
consider the problem as a trivial engineering issue and do not cover
it in this paper.

1.2 Motivating Example
MapReduce has some drawbacks when recovering from task and

worker failures that significantly impact its performance. For clar-
ity, let us illustrate this using a web log analysis example, contain-
ing ranking and user visit information for a large number of web
pages 2. Given the following two relations taken from the bench-
mark proposed in [15]:
Rankings(R)=(pageURL, pageRank, avgDuaration)

UserVisits(UV)=(sourceIP, visitedURL, visitDate).
Suppose that we would like to know the pageURL and pageRank
of those pages that were visited more often than 1000 times during
and between Christmas and New Year holidays. The SQL statement
for this query is illustrated in Figure 1(a). Notice that this query is
2An additional motivating example can be found in [24].

(b) Query Plan

visitedURL, pageRank

Result

visitedURLpageURL

visitedURL, 
visitDate

visitDate
BETWEEN
‘2009-18-12’ AND
‘2010-01-01’

visitedURL

R

UV
(c) Query Plan in MapReduce

key = pageURL
value = pageRank visitDate BETWEEN

‘2009-18-12’ AND
‘2010-01-01’

key = visitedURL
value = 1

agg
(values) > 1000

visitedURLpageURL

Classify by 
Lineage

R UV’

push

Result

Intermediate 

Results

pull

Local
File System

Classify by 
Lineage

R UV

pull

Distributed 
File System

Input

R
e

d
u

c
e

 p
h

a
se

M
a
p

 p
h

a
se

Select pageURL, pageRank

From Rankings as R, UserVisits as UV

Where R.pageURL = UV.visitedURL

and UV.visitDate between

‘2009-18-12’ and ‘2010-01-01’

Group By pageURL, pageRank

Having COUNT(*) > 1000

(a) SQL Statement

R, UV

UV’’

UV’

HAVING COUNT (*) > 1000

pageURL, pageRank

!

" #

$

%

"

"

!

#

Distributed 
File System

Figure 1: Running example.

similar to the join query used in [15]. A DBMS may perform this
query by executing the query plan depicted in Figure 1(b), while
MapReduce would perform it as shown in Figure 1(c). Based on
the Facebook application that loads 10 TB of compressed data per
day [22], assume that the size of relation R is 100 GB and that the
size of relation UV is 10 TB. Suppose that we want to analyze these
datasets using 100 workers, each being able to perform two map
tasks concurrently. Using input splits of 256 MB — which is a
common configuration in practice — a single worker processes on
average (10.097 TB /100)/256 MB = 414 map tasks. As a worker
runs two tasks concurrently, it requires 207 waves of map tasks.
Based on the results for the join query presented in [15], assume
each map task is processed in ∼17 seconds. Thus, assuming per-
fectly partitioning, 17×207 = 3519 seconds (≈1 hour) on average
are required to perform the complete map phase of our running ex-
ample.

Since in Mapreduce failures are the rule and not the excep-
tion [4], let’s assume that each input split contains one bad record
in the middle, i.e. at offset 128MB. This is realistic as MapReduce
jobs often process large messy datasets and thus can contain miss-
ing fields or incorrect formatting [23] — e.g. the date format might
be incorrect. As a result, any map task will fail just after ∼8.5 sec-
onds of processing time. Recall that MapReduce executes failing
tasks twice before deciding to skip a bad record [4]. Since each
worker performs 207 waves of map tasks, the entire MapReduce
job will be delayed by at least 8.5× 2× 207 = 3519 seconds (≈1
hour) with a single bad record per task. This is a 100% runtime
overhead, which clearly shows the need for more sophisticated al-
gorithms that allow for reducing delays caused by these failures.

1.3 Contributions and Paper Outline
We propose a family of Recovery Algorithms for Fast-Tracking

(RAFT) MapReduce, which allows applications to significantly re-
duce delays caused by task and worker failures. Two salient fea-
tures of RAFT are: inexpensive checkpoints and fast recovery.
RAFT is inexpensive since it exploits the fact that MapReduce per-
sists intermediate results at several points in time. RAFT thus per-
sists only little additional data, such as split and task identifiers.
RAFT is fast since it requires a few milliseconds to collect all the
checkpoint information required, which results in a negligible de-
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lay in MapReduce jobs.
Contributions. In summary, the major contributions of this paper
are as follows:

(1.) Local Checkpointing (RAFT-LC). We exploit that MapReduce
persists intermediate results at several points in time to checkpoint
the computing progress done by tasks (map and reduce tasks). This
enables MapReduce to resume tasks from last checkpoints in case
of task failure and hence to speed up applications under these fail-
ures.

(2.) Remote Checkpointing (RAFT-RC). We invert the way in
which reduce tasks obtain their input from mappers: we push the
intermediate results into all reduce tasks as soon as results are pro-
duced by mappers. This allows MapReduce to avoid rescheduling
completed map tasks in case of worker failures. Additionally, since
some reduce tasks are local to mappers producing data — which
will cause a loss of the data for local reducers in case of worker
failure —, we replicate the intermediate results for local reducers
to remote workers.

(3.) Query Metadata Checkpointing (RAFT-QMC). We identify
two problems when replicating intermediate results required by lo-
cal reducers, which may significantly decrease the performance of
applications. First, MapReduce jobs usually produce large amounts
of intermediate results. Second, RAFT-RC can recover from only
one worker failure. Therefore, instead of replicating intermediate
results, we replicate a file consisting of the offset of all those input
key-value pairs that produce an intermediate result and the identi-
fier of the reducers that consume such results. As a result, we are
able to significantly speed-up the re-computation of completed map
tasks as well as to recover from more than one worker failure.

(4.) Scheduling. We propose a scheduling strategy that takes ad-
vantage of the local and remote checkpoints. To do so, our schedul-
ing strategy differs from current MapReduce schedulers in that (i) it
delegates the responsibility to workers for rescheduling failed tasks
due to task failures (exploiting local checkpoints), and (ii) it pre-
assigns reduce tasks to workers in order to allow mappers to push
intermediate results to reduce tasks (enabling remote checkpoints).

(5.) Exhaustive Validation. We use realistic data to evaluate sev-
eral aspects of the RAFT algorithms: performance under task
and worker failures, overhead, scale-up, and speed-up. The re-
sults demonstrate that RAFT algorithms significantly outperform
Hadoop by up to 27% in runtime performance.

The remainder of this paper is structured as follows. We sur-
vey related work in Section 2 and give a brief description of the
MapReduce workflow in Section 3. We then present in Section 4
our family of algorithms and our scheduling strategy in Section 5.
We demonstrate that RAFT produces the same output as normal
MapReduce in Section 6. We then present our experimental results
in Section 7. Finally, we conclude this paper in Section 8.

2. RELATED WORK
MapReduce was proposed by Google in 2004 [4] as a framework

to facilitate the implementation of massively parallel applications
processing large data sets. By design, MapReduce is already fault-
tolerant. However, the algorithms it implements to recover from
both task and node failures are quite simple and significantly de-
crease the performance of applications under these failures. In par-
ticular, applications whose pipelines consist of several MapReduce
jobs, e.g. Pig [8, 14], Hive [21], and Sawzall [16], would bene-
fit from better algorithms for failure recovery. This is because a

delayed job completion is awkward as it blocks subsequent jobs,
propagating and adding up delays.

A standard way to deal with task and worker failures is check-
pointing, which has been extensively discussed in the database and
distributed systems literature [2, 10, 12, 7, 17]. Generally speaking,
the idea is to checkpoint ongoing computation on stable storage so
that, in case of a failure, the state can be restored and the computa-
tion can resume from the last checkpoint. In MapReduce, however,
network bandwidth typically is a scarce resource [4]. At the same
time, MapReduce jobs produce large amounts of intermediate re-
sults (e.g. this is the case for an inverted index application). There-
fore, replicating intermediate results may significantly decrease the
performance of applications. As a result, straight-forward imple-
mentations of existing distributed checkpointing techniques are not
suitable for MapReduce. A recent work [3] envisions a basic check-
pointing mechanism, but the authors neither discuss it nor imple-
ment it in their prototype as of July 2010. One can then easily
integrate our algorithms into [3] to increase performance in case of
failures.

Some other research efforts have been made with the aim of
combining traditional DBMSs with MapReduce concepts, where
fault tolerance in distributed settings plays a key role. For example,
HadoopDB [1] aims at increasing DBMSs fault-tolerance and scal-
ability by using MapReduce as communication layer among several
nodes hosting local DBMSs. Hadoop++ [5] makes usage of index
and co-partitioned join techniques to significantly improve the per-
formance of MapReduce jobs. However, these approaches have the
same recovery limitations as the original MapReduce.

Recently, Yang et al. [24] propose Osprey, a distributed SQL
database that implements MapReduce-style fault-tolerance tech-
niques. However, they have done no improvement on recovery. As
RAFT algorithms are quite general, one could apply them to Os-
prey [24] as well as to HadoopDB [1] and Hadoop++ [5] to speed
up these systems failures.

Finally, ARIES [13] uses fuzzy checkpoints to speed-up both the
checkpointing process and the analysis phase. ARIES, instead of
checkpointing the contents of dirty pages, checkpoints the identifier
of dirty pages (Dirty Pages Table). In contrast to RAFT, the meta-
data information used by ARIES is at the physical level. RAFT op-
erates at a logical level; it keeps track of input records that produce
intermediate results, instead of checkpointing the actual intermedi-
ate results themselves.

To the best of our knowledge, our research is the first to provide
algorithms to recover from task and worker failures with perfor-
mance improvement as the main goal.

3. PRELIMINARIES
MapReduce has gained a lot of popularity, from both research

community and academia, because of its ease-of-use and robust-
ness. While users simply need to describe their analytical tasks
using two functions map and reduce, the MapReduce frame-
work handles everything else including parallelization, replication,
and failover. The MapReduce implementation of Google is not
freely available, but an open source implementation exists, coined
Hadoop [9].

MapReduce operates in three phases. In the first phase (map
phase), the framework runs a set of M mappers in parallel on sev-
eral nodes. Each mapper is assigned a disjoint subset of the input
files. A mapper then executes a map-call for each input “record”
and stores the output into main memory; from time to time workers
spill buffered intermediate results to disk, which usually happens
whenever the buffer is on the verge to overflow. When spilling in-
termediate results to disk, they are logically partitioned into R parts
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based on an intermediate key. Thus, R×M files will be generated
in this phase. In the second phase (shuffle phase), the output of each
mapper is grouped by intermediate key and redistributed across re-
ducers. In the third phase (reduce phase), each reducer executes a
reduce-call for each distinct intermediate key in its input and the set
of associated intermediate values. A reducer stores the output for
each group into a single file. Thus, the output of the MapReduce
job will be distributed over R files.

For clarity, let us illustrate the MapReduce model via the Web
log analysis example we presented in Section 1.2. In the exam-
ple we would like to know the pageURL and pageRank of those
pages that were visited more often than 1000 times during and be-
tween Christmas and New Year holidays. MapReduce performs
this query as described below — see [5] for more details on the
Hadoop plan.

First, mappers pull relations Rankings (R) and UserVisits
(UV) from the distributed file system and feed the map function
with records of both relations. Second, since a map function can-
not know the origin of records, it has to classify such input (e.g.
by counting attributes) by its lineage. Third, for R, a mapper takes
the attribute pageURL as key and pageRank as value, and for
UV, it first applies the date filter over visitDate and issues
visitedURL as key assigned with a constant value of 1 (for those
tuples having passed the filter, UV′). Fourth, MapReduce groups
this intermediate output by the key pageURL and store it on local
disk. Fifth, reducers pull the intermediate data required to run their
reduce tasks and eventually merge partial groups originating from
different mappers into one group per intermediate key. Sixth, the
reduce function can then be called once per group. A reducer di-
vides each group based on their lineage (by inspecting if the value
is 1). It then aggregates values from UV′ and only keeps those hav-
ing an aggregated value higher than T (UV′′). Finally, the reducer
joins R with UV′′ and writes the output back to the distributed file
system.

4. RAFT: A FAMILY OF FAST RECOVERY
ALGORITHMS

We propose a family of fast and inexpensive Recovery Algo-
rithms for Fast-Tracking (RAFT) MapReduce. The beauty of
RAFT is that: (i) it requires only a few milliseconds to collect all
the required checkpoint information (fast) and (ii) it piggy-backs
checkpoints on the materialization of intermediate results (inexpen-
sive). In the following, we first give an overview of our solution and
then provide details on how RAFT recovers from task and worker
failures.

4.1 Overview
A natural solution for recovering from task and worker failures

is to checkpoint ongoing computation on stable storage. Such a
solution, however, can decrease performance of MapReduce jobs
because intermediate results are usually quite large. Nonetheless,
MapReduce already produces and persists intermediate results at
several points in time and even copies such results over the net-
work anyway. We exploit this by introducing three types of check-
points: local, remote, and query metadata checkpoints. Our check-
pointing algorithms write checkpoints when intermediate results
are persisted by workers. Piggy-backed checkpoints cause mini-
mal overhead and are still highly effective. Figure 2 illustrates the
key differences (green parts) between the original MapReduce and
RAFT, which we briefly describe below and detail in the following
sections.

• Local Checkpointing. As MapReduce does not keep tasks
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Figure 2: MapReduce vs RAFT (all three checkpointing algo-
rithms).

Algorithm 1: Spill & Create Local Checkpoint
// Called by workers when spilling
Input : DataObject spill, InputBuffer inputBuffer, Task taskID
begin1

String spillID = spill.getSpillID();2
int offset = inputBuffer.getLastProcessedByte();3
fork4

boolean success = spill.flushToDisk();5
if success then6

LocalCheckpoint lcp =7
new LocalCheckpoint(taskID, spillID, offset);
boolean ok = lcp.checkConsistency();8
if ok then9

lcp.flushToDisk();10

end11

progress computation after task failures, it must perform
failed tasks from the beginning. In contrary, we propose
to perform Local Checkpointing (RAFT-LC) to deal with
this. RAFT-LC stores tasks progress computation on the lo-
cal disk of workers without sending replicas through the net-
work so as to not increase network contention (“RAFT-LC”
part in Figure 2(b)). One may think that RAFT-LC may con-
siderable slow down tasks, since it has to repeatedly write
all checkpoint information to disk, including the output pro-
duced so far. In our proposal, however, workers only per-
form RAFT-LC when they spill intermediate results of tasks
to disk anyway. Hence, RAFT-LC comes almost for free.

• Remote Checkpointing. In case of worker failures, MapRe-
duce must reschedule completed map tasks in order to re-
produce the intermediate results required by failed reducers
or non-scheduled reduce tasks. To avoid this, we propose
a Remote Checkpointing (RAFT-RC) algorithm that inverts
the way in which reduce tasks obtain their input from work-
ers. Rather than reduce tasks pulling their required inter-
mediate results, mappers push their produced intermediate
results into all reduce tasks (scheduled or not) as soon as
they spill them to local disk (“RAFT-RC (0)” part in Fig-
ure 2(b)). Notice that this algorithm involves no additional
network or disk I/O overhead, as each reduce task still re-
ceives only that data it needs to process anyway. Obviously,
RAFT-RC does not push intermediate results to the reduce
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tasks that are local to the mapper producing the data (local
reducers), because such results are already locally available.
However, these intermediate results will be lost in case of
worker failure. For this reason, RAFT-RC replicates inter-
mediate results required by local reducers to remote workers
(“RAFT-RC (1)” part in Figure 2(b)).

• Query Metadata Checkpointing. As a result of RAFT-
RC, the scheduler does not need to reallocate completed map
tasks in case of worker failures, because relevant data for all
reducers is already copied remotely. Nevertheless, even if
replicating intermediate results required by local reducers is
a natural solution to avoid losing that information, RAFT-RC
may decrease the performance of applications as they usu-
ally produce large amounts of intermediate results. There-
fore, we propose a Query Metadata Checkpointing (RAFT-
QMC) algorithm to deal with this problem. RAFT-QMC
creates a query metadata checkpoint file per map task, con-
sisting of both: the offsets of all input key-value pairs that
produce intermediate results; and the identifiers of the reduc-
ers that will consume such results (“RAFT-QMC (0)” part
in Figure 2(b)). RAFT-QMC then replicates these files to
remote workers (“RAFT-QMC (2)” part in Figure 2(b)) —
typically 8 bytes per log record, which generates negligible
overhead. Like RAFT-RC, RAFT-QMC also pushes inter-
mediate results to remote reducers (“RAFT-QMC (1)” part
in Figure 2(b)).

4.2 Local Checkpointing (RAFT-LC)
Our local checkpointing algorithm RAFT-LC allows us to deal

with task failures. Algorithm 1 shows the RAFT-LC pseudo-code
for creating the local checkpoints. A mapper executes this algo-
rithm when it spills intermediate results to local disk. RAFT-LC
first retrieves progress information from the buffer containing input
data (lines 2 and 3) before allowing for any further computation on
the input buffer. After that, the mapper writes the spill to local disk
in a parallel thread (lines 4 and 5). If the spill is correctly written,
it proceeds to store the local checkpoint information on disk (lines
6 − 10). A simple triplet of 12 bytes length is sufficient to store
the checkpoint information: taskID, a unique task identifier that re-
mains invariant over several attempts of the same task; spillID, the
local path to the spilled data; offset, specifying the last byte of input
data processed by spilling time. If an earlier checkpoint existed, it
would be simply overwritten. Notice that spilled data is implicitly
chained backwards. Thus, any checkpoint with a reference to the
latest spill is sufficient to locate all earlier spill files as well.

To take advantage of local checkpoints persisted by RAFT-LC
after a task failure, workers initialize tasks as shown in Algorithm 2.
That is, a worker first verifies whether the allocated task is a new
attempt of a previously failed task (line 3). In that case, the worker
checks whether a checkpoint is available on disk, deserializes it,
and verifies whether it is complete and consistent (lines 4 − 7). If
so, it simply resumes the task by updating all relevant state and
progress information to the checkpoint. This simulates a situation
where previous spills appear as if they were just produced by the
current task attempt (lines 8−11). Otherwise, the task is either just
starting its first attempt or no valid checkpoint from the previous
attempts could be retrieved. In that case, a worker simply processes
again the task from the beginning.

Algorithm 2: Recover Task Locally
// Called by workers during task initialization
Input : InputFileSplit inputSplit, int currentTaskAttempt
Output : ControlObject progress
begin1

boolean recovering = false;2
if currentTaskAttempt ≥ 2 then3

Directory taskDir = getLocalFS();4
if taskDir.containsCheckpoint() then5

LocalCheckpoint6
checkpoint = taskDir.getCheckpoint();
if checkpoint.isConsistent() then7

inputSplit.seek(checkpoint.getOffset());8
progress = checkpoint.getProgress();9
checkpoint.getSpillF iles();10
recovering = true;11

if recovering then12
return progress; // proceed from last checkpoint13

else14
return new ControlObject(); // start from scratch15

end16

Algorithm 3: Create Remote Checkpoint
// Called by workers when spilling
Input : DataObject output, ReducerScheduling reducers
begin1

Partitions[] P = spill.getReducerPartitions();2
foreach p in P do fork3

PhysicalNode reducerNode = reducers.getNode(p);4
if reducerNode != LOCAL_NODE then5

replicateData(p, reducerNode);6
else7

PhysicalNode backupNode = getBackupNode();8
if doCreateReplica(p, backupNode) then9

replicateData(p, backupNode);10

end11

4.3 Remote Checkpointing (RAFT-RC)
We, now, present a remote checkpointing (RAFT-RC) algorithm

that allows us to deal with worker failures. The main idea behind
RAFT-RC is to push logical partitions3, from intermediate results
produced by mappers, to the reducers that will consume them. As
opposed to the pull model, the push model significantly increases
the probability of having intermediate results already backed up to
the destination node when a worker fails. Consequently, the push
model reduces the amount of data that need to be recomputed after
such failures.

Algorithm 3 shows the RAFT-RC pseudo-code for creating the
remote checkpoints. A mapper retrieves all the logical partitions
from a spill (line 2) and for each part it gets the identifier of
the reducer that will consume such a part (lines 3 and 4). Then,
the mapper then pushes the partitions to remote reducers (lines 5
and 6). For fault-tolerance issues, the mapper also keeps its lo-
cal copy of intermediate results even after it pushed them to re-
mote workers. Indeed, a mapper does not push the logical par-
titions for local reducers — for clarity reasons we denote these
partitions as local partitions — as they are already copied locally.
Nevertheless, local partitions would be lost in case of worker fail-
ures. Though the number of local partitions is typically very small
(0 ≤ localPartitions ≤ 2), such a loss is severe because all
map tasks completed by a failed worker must be recomputed en-
tirely. To avoid this, RAFT-RC replicates local partitions to pre-
assigned backup nodes (lines 7 − 10). This allows for not allo-

3As explained in Section 3, mappers logically partitions intermedi-
ate results based on an intermediate key and the number of reduc-
ers.
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Algorithm 4: Startup With Remote Checkpoints
// Called by reducers when recovering
Input : File[] checkpoints, MapperNodes mappers
Output : ControlObject progress
begin1

foreach m in mappers do fork2
File[] allF iles = computeExpectedFiles(m) ;3
File[] missing = allF iles\checkpoints;4
foreach x in missing do fork5

backupNode = m.getBackupNode() ;6
File part = backupNode.pullData(x);7
if part 6= null then8

part.store();9

else10
waitFor(x); // wait until pushed11

// join all parallel threads, then...
sortMerge(allF iles);12
return progress;13

end14

cating completed map tasks in case of worker failures, because re-
ducers have their required data locally available and local reduc-
ers can pull local partitions from backup nodes as well. Notice
that deciding when to replicate local partitions depends on several
factors such as the number and size of local partitions as well as
the current network bandwidth. A discussion on all these factors
is out of the scope of this paper. We then assume that function
doCreateReplica (line 9) returns a per-application parameter set
by the user launching the application — based on his knowledge of
the application and the MapReduce cluster.

Algorithm 4 shows the pseudo-code of RAFT-RC for recovering
from worker failures. For this, RAFT-RC initializes reduce tasks
by taking into account remote checkpoints if there are any. Recov-
ery thus happens on the fly. That is, for each mapper, a reducer first
finds out the files — intermediate results previously pushed by a
mapper — that are not available locally (lines 2−4 of Algorithm 4).
If there is any missing file, the reducer pulls each missing file from
the backup node of that mapper (lines 5− 9). In case that a backup
node does not have a missing file, a reducer simply waits until the
mapper producing such a file pushes it (line 11). When all files are
available locally, a reducer finally merges and sorts all files. Ob-
viously, RAFT-RC works better if most of the remote checkpoints
are available locally on the reducer. We achieve this by informing
workers about reducers pre-scheduling decisions early. We discuss
our scheduling strategy in more detail in Section 5.2.

4.4 Query Metadata Checkpointing (RAFT-
QMC)

In the previous section, we presented our remote checkpointing
algorithm that allows us to deal with worker failures in a more effi-
cient way than the original MapReduce. Nonetheless, with RAFT-
RC, one has to deal with two problems that may decrease perfor-
mance of MapReduce jobs. First, MapReduce jobs typically pro-
duce large amounts of intermediate results and hence RAFT-RC
will cause a significant overhead when replicating local partitions.
Second, RAFT-RC can recover from a single worker failure only.
This is because, in case of many worker failures, a failed reducer
on any of the failed workers will require to pull intermediate results
from the other failed workers. A simple solution to deal with this
second problem is to replicate all the intermediate results produced
by mappers. However, this solution is not suitable as it will only
aggravate the first problem.

Instead, we propose a Query Metadata Checkpointing (RAFT-
QMC) algorithm to tackle these two problems. The idea is to keep
track of input key-value pairs that produce intermediate results in

Algorithm 5: Create Query Metadata Checkpoint
// Called by mappers after producing an output
Input : Task taskID, InputBuffer inputBuffer, IntermediateKey key,

LogBuffer[ ] logBuffer, File[ ] file
begin1

int offset = inputBuffer.getLastProcessedByte();2
int id = Partitioner.getReducer(key);3
if logBuffer[taskID].remaining() == 0 then4

file[taskID].append(logBuffer[taskID]);5
logBuffer[taskID].clear();6

logBuffer[taskID].put(offset + id);7
end8

Algorithm 6: Read Query Metadata Checkpoint
// Called by mappers before setting
// the next key-value pair for the map function
Input : InputFileSplit inputSplit, Set offsets
Variables : int startPos, currentPos; // buffer positions
begin1

if offsets.hasNext() then2
int off = offsets.next();3
int bytesToSkip = off − startPos;4
if bytesToSkip > MIN_BY TES_TO_SKIP then5

inputSplit.seek(off); // random i/o6
startPos, currentPos = off ;7

else8
inputSplit.skip(bytesToSkip); // seq. i/o9
currentPos = off ;10
while currentPos− startPos > BUFFER_SIZE do11

startPos += BUFFER_SIZE;12

else13
inputSplit.moveToEnd();14

end15

addition to push intermediate results to remote reducers. In this
way, mappers can quickly recompute local partitions for failed re-
ducers by processing only those key-value pairs that produce in-
termediate results belonging to such partitions. To achieve this,
RAFT-QMC creates a query metadata checkpoint file per map task
by logging the offset of each key-value pair that produces interme-
diate results (see Algorithm 5). A simple tuple of 8 bytes length
is sufficient to store the query metadata checkpoint information:
offset, specifying the byte of the input key-value pair; reducerID,
the reducer requiring the intermediate results produced by the input
key-value pair. RAFT-QMC pushes intermediate results to remote
reducers similarly as RAFT-RC (lines 2 − 6 of Algorithm 3), but
it does not replicate local partitions. Instead, as soon as a map-
per finishes a map task, RAFT-QMC replicates the query meta-
data checkpoint files to the preassigned backup nodes. Notice that,
query metadata checkpoint files are typically quite small and hence
RAFT-QMC generates much less overhead than RAFT-RC.

When a worker fails, the master simply reschedules the failed
tasks as new tasks. If the failed tasks contain a reduce task, the
master reschedules all map tasks that were completed by the failed
worker — the worker that was running the failed reducer. However,
these completed map tasks only have to recompute the local parti-
tions lost by the failed worker. To do so, a mapper only processes
the key-value pairs that produce a relevant output for missing local
partitions as shown in Algorithm 6. That is, a mapper moves the
pointer in the input buffer to the next offset in the query metadata
checkpoint file (lines 2−12). Notice that, RAFT-QMC performs a
seek (lines 5− 7) on the input split only when this results in better
performance than performing a sequential read (Lines 8 − 12) —
typically one should skip at least 4 MB to perform a seek. As soon
as there is no more offset left in the query metadata checkpoint file,
it moves the pointer to the end of the buffer — which results in the
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Algorithm 7: Master Node: Reallocate Tasks
// Called by the master whenever a failure occurs
Input : Failure fail
begin1

if fail.isNodeFailure() then2
Node node = fail.getNode();3
Task[]4
interruptedTasks = node.getInterruptedTasks();
Task[] reduceTasks;5
foreach t ∈ interruptedTasks do6

// reschedule
schedule(t);7
if t.isReduceTask then8

reduceTasks.add(t);9

// re-compute output for local reducers
Task[] completedMapTasks =10
node.getCompletedMapTasks();
if !reduceTasks.isEmpty then11

foreach t ∈ completedMapTasks do12
schedule(t, reduceTasks.getIdSet());13

else14
// reschedule task on same node as previously
schedule(fail.getTask(), fail.getNode());15

end16

finalization of a map task. As a result of this process, RAFT-QMC
is able to significantly speed-up map tasks computation as mappers
do not perform full scans of their input splits again.

5. SCHEDULING TASKS WITH RAFT
Like in the original MapReduce, our scheduler only assigns new

tasks to available workers. Our scheduler, however, differs signif-
icantly from the original MapReduce when reallocating tasks af-
ter failures. We describe this reallocation behavior in this section
and sketch it in Algorithm 7. For simplicity, we consider a single
MapReduce job in the following.

5.1 Scheduling Map Tasks
We use a data locality optimization as in [4], that is, we aim at

allocating map tasks as close as possible to the data they consume.
Thus, when a mapper is available, the scheduler picks, if possible, a
map task from its queue that requires data stored on the same node.
If not, the scheduler tries to pick one map requiring data located on
the same rack.

To deal with task and worker failures, our scheduler proceeds as
follows.

• Task failures. Our scheduler allocates a failed map task to the
same computing node right after its failure so as to reuse the
existing local checkpoints (line 15 of Algorithm 7). Further-
more, this allows us to significantly reduce the waiting time
for rescheduling failed map tasks. After the reallocation of a
failed map task, a mapper then has to restart the failed task
as discussed in Section 4.2.

• Worker failures. Our scheduler puts failed map tasks into its
queue. Hence, these tasks become again eligible for schedul-
ing to available workers (lines 6 and 7). Furthermore, unlike
schedulers proposed in the literature [4, 11, 25], our sched-
uler reallocates map tasks — completed by failed workers
— to recompute only the local partitions. This results in a
significant speed-up of map tasks (lines 10 − 13). To do
so, mappers process input splits by considering only relevant
key-value pairs as described in Algorithm 6.

5.2 Scheduling Reduce Tasks
So far, we saw that RAFT-RC as well as RAFT-QMC push in-

termediate results to all reducers, even if they are not scheduled
yet, in order to recover from worker failures efficiently. To achieve
this, our scheduler pre-assigns all reduce tasks to workers when
launching a MapReduce job; then, it informs mappers of the pre-
scheduling decision. With this pre-assigment, mappers know in
advance to which workers to push the data. Then, when a worker is
available to perform one reduce task, the scheduler simply allocates
a task from its set of reduce tasks to it by taking into account the
previous pre-assignment. This allows us to guarantee data locality
with the intermediate results pushed by mappers. Some workers,
however, typically complete tasks faster (fast workers) than others
(slow workers). This occurs for two main reasons:

(1.) fast workers simply have more computing resources than slow
worker (heterogenous clusters),

(2.) workers may take unusual long time to perform tasks because
of hardware or software dysfunctions (strugglers).

As fast workers usually finish their reduce tasks before slow work-
ers, our scheduler allocates tasks from other sets of reduce tasks
(belonging to slow workers) to fast workers as soon as they finish
with their own reducers set. In these cases, our scheduler falls back
to the standard Hadoop: fast workers have to pull the required in-
termediate results from slow workers. Thus, to reduce the cost of
data shipping in these cases, our scheduler picks reduce tasks from
a large set of remaining reduce tasks — giving priority to those sets
located in the same rack. Our scheduler proceeds as follows to deal
with task and worker failures.

• Task failures. As for map tasks, our scheduler allocates a
failed reduce task to the same computing node right after its
failure in order to take advantage of our RAFT-LC algorithm
(line 15 of Algorithm 7). Reducers then resume failed reduce
tasks as discussed in Section 4.2.

• Worker failures. In these cases, our scheduler falls back to
the standard Hadoop: it first puts failed reduce tasks back
into its queue and reallocates them when one worker be-
comes free to perform one reduce task (lines 6 − 9). When
a reduce task is rescheduled to a new worker, it pulls all
required intermediate results from all mappers containing
part of such results. To reduce the impact on performance
caused by this shuffle phase, our scheduler strives to allo-
cate failed reduce tasks to one of the workers storing a part
of their required data. Notice that, in contrast to map tasks,
the scheduler reallocates running reduce tasks only, because
completed reduce tasks store their output into stable storage
such as GFS or HDFS.

6. CORRECTNESS
In this part, we show the equivalence of output between our re-

covery algorithms and the original MapReduce. As in [4], we as-
sume that MapReduce jobs are deterministic.

Let It = {i0, ..., in} be the set of input records required by a
task t. For any input record i ∈ It, t produces a set Oi of output
results, where Oi might be the empty set — i.e., t produces no
result by processing input record i. Given a set It, t produces a
set Ot =

Sn
i=0 Oi. In other words, a set It maps to a set Ot.

Formally, after task t processes the complete set It of input records,
MapReduce ensures Equation 1.

∀ i ∈ It, ∃Oi ⊆ Ot : i→ Oi (1)
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In case of task or worker failure, MapReduce still ensures above
equation by processing again the entire set I of input records. We
now demonstrate that our set of recovery algorithms ensure the
same output as MapReduce for the same set of input records even
in case of failure. With this in mind, we first demonstrate that any
task (map or reduce task) receives the same input and thus produces
the same output as original MapReduce in case of task failure.

LEMMA 1. Given a task t, RAFT-LC ensures the same sets It

and Ot as the original MapReduce in case of task failure.

PROOF SKETCH. Let Ic = {i0, ..., ic} be the set of input
records read by a task t from set It (i.e. Ic ⊆ It) until the last lo-
cal checkpoint done by the task — where ic is the last input record
whose set Oic =

Sc
i=0 Oi of output results is included in the last

checkpoint. By Equation 1, we have the corresponding set Oc of
output results after processing Ic, i.e. Ic → Oc. By convention, if
task t fails, t is rescheduled to the same worker and RAFT-LC only
processes the set Ic = It\Ic = {ic+1, .., in} of input records, i.e.,
the set of input records whose output was not persisted yet. Again,
we have the corresponding set O′

c of output records after RAFT-LC
processes the set Ic of input records, i.e. Ic → O′

c. By inferring
from Equation 1, we have that O′

c ∪ Oc = Ot as Ic ∪ Ic = It.
Therefore, RAFT-LC ensures the same input It and the same out-
put Ot as the original MapReduce. In case that no local checkpoint
was produced by t, RAFT-LC falls back to the original recovery
process of MapReduce. Hence, it fetches again the entire set It of
input records and trivially produces the same set Ot as the original
MapReduce.

We now demonstrate that any task receives the same input and
produces the same output as MapReduce in case of worker failures.
Due to space constraints, we prove the correct operation of RAFT-
RC only.

LEMMA 2. Given task t, RAFT-RC ensures the same sets It

and Ot as the original MapReduce in case of worker failure.

PROOF SKETCH. Let Iw ⊆ It be the set of intermediate results
stored by remote workers (denoted by set W ) and Ib ⊆ It be the set
of intermediate results required by local reducers and thus stored on
a backup worker (with Iw ∩ Ib = ∅). Then, let Iu = It\(Iw ∪ Ib)
denote the set of intermediate results not yet produced. That is,
Iw ∪ Ib are the intermediate results produced by completed map
tasks, while Iu are the intermediate results to be produced by run-
ning and non-scheduled map tasks. Now, given a worker failure,
RAFT-RC first reschedules a running task t to a different worker.
If t is a reduce task, RAFT-RC pulls both set Iw from W and set Ib

from the backup worker of the failed worker. Then, it waits for set
Iu to be pushed by uncompleted map tasks. Thus, when uncom-
pleted map tasks finish to push set Iu, t will contain the same set
It as the original MapReduce. Hence, by Equation 1, t will pro-
duces the same set Ot of output records as MapReduce. If failed
task t is a map task, RAFT-RC falls back to the original recovery
algorithm of MapReduce by fetching again the entire set It. Thus,
by Equation 1, RAFT-RC ensures the same set Ot as the original
MapReduce.

We can then conclude with the following theorem.

THEOREM 1. Given a task t, RAFT algorithms always ensure
the same sets It and Ot, of input and output records respectively,
as the original MapReduce.

PROOF. Implied by Lemma 1 and Lemma 2.

7. EXPERIMENTS
We measure the performance of the RAFT algorithms with three

main objectives in mind:

(1) to study how they perform under task and worker failures,

(2) to evaluate how well they scale up, and

(3) to measure the overhead they generate over Hadoop.

We first present the systems we consider (Section 7.1), the con-
figuration of the testbed (Section 7.2), the benchmarks for our ex-
periments (Section 7.3), and the methodology for running our ex-
periments (Section 7.4).

7.1 Tested Systems
We take Hadoop as baseline since it is the most popular open-

source implementation of the MapReduce framework [4]. We con-
sider the following configuration settings.

• Hadoop. We use Hadoop 0.20.1 running on Java 1.6 and the
Hadoop Distributed File System (HDFS). We make the fol-
lowing changes to the default configuration settings: (1) we
store data into HDFS using 256 MB data blocks, (2) we use
a sort buffer size of 50 MB, (3) we enable Hadoop to reuse
the task JVM executor instead of restarting a new process per
task, (4) we allow a worker to concurrently run two map tasks
and a single reduce task, and (5) we set HDFS replication to
2.

We implemented all RAFT algorithms in a prototype we built
on top of Hadoop 0.20.1 using the same configuration settings as
above. To better evaluate the RAFT algorithms, we benchmark
each recovery algorithm we proposed in Section 4 separately. In
other words, we evaluate the following systems:

• RAFT-LC, local checkpointing algorithm that allows for
dealing with task failures. For this, RAFT-LC checkpoints
the progress of tasks to local disk at the same time that work-
ers spill intermediate results to local disk.

• RAFT-RC, remote checkpointing algorithm that allows for
recovering from worker failures. For this, RAFT-RC pushes
intermediate results to remote reducers and replicates inter-
mediate results required by local reducers.

• RAFT-QMC, query metadata checkpointing algorithm that,
contrary to RAFT-RC, allows for recovering from more than
one worker failure while replicating less amounts of data.
Like RAFT-RC, RAFT-QMC pushes intermediate results to
remote reducers, but we instead use the pull model in the
RAFT-QMC experiments (Section 7.6). We do this since we
want to measure the real impact in performance of creating
query metadata checkpoints only.

• Hadoop+Push, we use this variant of Hadoop to evaluate the
benefits for MapReduce when using using the push model in
the shuffle phase, instead of the pull model.

• RAFT, to evaluate how well our techniques perform to-
gether, we evaluate how well RAFT-LC, RAFT-QMC, and
Hadoop+Push perform together. Notice that we use RAFT-
QMC instead of RAFT-RC, because it recovers from more
than one worker failure.
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7.2 Cluster Setup
We run all our experiments on a 10-node cluster where we ded-

icate one node to run the JobTracker. The remaining nine nodes
ran five virtual nodes each, using Xen virtualization, i.e. resulting
in a total of 45 virtual nodes. Node virtualization is also used by
Amazon to scale up its clusters [6]. However, we recently showed
that Amazon EC2 suffers from high variance in performance [18].
Therefore, running the experiments on our cluster allows us to get
more stable results. Each physical node in our cluster has one
2.66 GHz Quad Core Xeon running 64-bit platform Linux open-
Suse 11.1 OS, 4x4 GB main memory, 6x750 GB SATA hard disks,
and three Gigabit network cards. We set each virtual node to have a
physical 750 GB hard disk and physical 3.2 GB main memory. The
physical nodes are connected with a Cisco Catalyst 3750E-48PD,
which use three Gigabit Ethernet ports for each node in channel
bonding mode. From now on, we refer to virtual nodes as nodes
for clarity.

7.3 Data and Benchmarks
We use the same data generator proposed by Pavlo et al. [15]

to create all datasets for our experiments. Briefly, this benchmark
first generates a set of HTML documents, each of them having
links to other pages following a Zipfian distribution. It then creates
Rankings and UserVisits relations, using the set of HTML
documents and some randomly generated attribute values. We use
a total dataset size of 50 GB for Rankings (∼900 M tuples) and
of 1 TB for UserVisits (∼ 7, 750 M tuples). We consider a
subset of two tasks of the benchmark proposed in [15]: (1) the se-
lection task and (2) the simple aggregation task. Additionally, we
consider a third task that modifies the simple aggregation task by
introducing a selection predicate on visitDate: (3) the selective
aggregation task. In the following , we describe these three tasks in
more detail.

Q1. SELECTION TASK:

SELECT pageURL, pageRank
FROM Rankings
WHERE pageRank > 10;

The MapReduce job for this task consists of a map func-
tion that parses the input key-value pairs and outputs those
pageURLs whose page rank is above a certain threshold. As
in [15], this threshold defaults to 10 in our experiments. Fi-
nally, a single IdentityReducer merges the results and store the
results on HDFS. We consider this task as it is a very common
analytical task in practice, but also because MapReduce jobs
often filter out their input.

Q2. SIMPLE AGGREGATION TASK:

SELECT sourceIP, SUM(adRevenue)
FROM UserVisits
GROUP BY sourceIP;

The MapReduce job for this task consists of a map function
and reduce function. The map function projects the two rel-
evant fields, sourceIP and adRevenue, as intermediate
key-value pairs. The reduce function simply aggregates the
adRevenue for each sourceIP group. We consider this
task because, like in several MapReduce jobs, it produces
large amounts of intermediate results. Hence, this task allows
us to better understand the impact in performance of RAFT
algorithms.

Q3. SELECTIVE AGGREGATION TASK:

SELECT sourceIP, SUM(adRevenue)
FROM UserVisits
WHERE visitDate > 1990-01-01
GROUP BY sourceIP;

The MapReduce job for this task consists of a map func-
tion and reduce function. The map function projects the
fields sourceIP and adRevenue of any input key-value
pair whose visitDate is after January 1st 1990. The
reduce function then aggregates the adRevenue for each
sourceIP group. We consider this task because we can con-
trol the amount of shuffled data — varying the predicate on
visitDate. Thereby, we can represent several MapReduce
jobs used in practice.

7.4 Methodology
We proceed in three phases so as to have a deeper understanding

of performance of the RAFT algorithms. In summary, we evaluate
RAFT algorithms in the following scenarios:

(1.) Dealing with task failures (Section 7.5). In this series of ex-
periments, we focus on evaluating how well RAFT-LC allows ap-
plications to recover from task failures.

(2.) Dealing with worker failures (Section 7.6). In these experi-
ments we evaluate how well RAFT-RC and RAFT-QMC allow ap-
plications to perform under worker failures.

(3.) Putting everything together (Section 7.7). We focus on evalu-
ating RAFT in a mixed failure scenario. In other words, we want to
know how well RAFT performs under task and worker failures at
the same time. Additionally, we measure how much overhead the
RAFT algorithms generate.

Notice that, for all results we present in this paper, we run each
benchmark three times and report the averaged results.

7.5 RAFT-LC: Dealing with Task Failures
To evaluate RAFT-LC in the presence of task failures, we con-

sider a “bad records scenario”. That is, we introduce a varying
number of bad records in input splits, which cause map tasks to
fail. As mappers perform RAFT-LC when they spill to disk, we
evaluate RAFT-LC in two different scenarios: (i) when mappers
rarely spill to disk, and (ii) when mappers frequently spill to disk.
Therefore, we only present results for Q1 and Q2 since they repre-
sent the two extremes in terms of the amount of intermediate results
produced by mappers.

Figure 3(a) shows the runtime results for Q1with a varying num-
ber of bad records. We observe that RAFT-LC slightly outperforms
Hadoop for one bad record per split. but significantly outperforms
Hadoop by up to 27% for a higher number of bad records. RAFT-
LC performs better than Hadoop as RAFT-LC allows failed map
tasks to reuse the materialized results produced so far. Notice that
the high selectivity of this task is not optimal for RAFT-LC, as
mappers rarely spill intermediate results to disk — resulting in few
local checkpoints.

Figure 3(b) shows the runtime results for Q2. In contrast to the
results of Q1, we observe that RAFT-LC outperforms Hadoop by
25% already for one bad record — increasing to 27% for a higher
number of bad records. This is because mappers do not filter any
information from their input. Consequently, mappers spill much
more intermediate results and thus RAFT-LC frequently creates lo-
cal checkpoints. As a result, RAFT-LC can significantly speed-
up map tasks by reusing more intermediate results. These results
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(a) RAFT-LC results for Q1.
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(b) RAFT-LC results for Q2.
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(c) RAFT-QMC results for Q2.
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(d) RAFT-QMC results for Q3.
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(f) RAFT scalability for Q1.

Figure 3: (a)-(b) RAFT-LC results for Q1 and Q2; (c)-(d): RAFT-QMC results for Q2 and Q3; (e) RAFT results for all three tasks;
(f) RAFT scalability results.

Table 1: RAFT-RC and RAFT-QMC results for Q2 (runtime in
seconds).

RAFT-RC RAFT-QMC
No worker failures 4601 4390
One worker failure 4699 4691

show the potential runtime improvement of RAFT-LC, as in prac-
tice MapReduce jobs typically produce large amounts of interme-
diate results. Notice that we do not present results for more than
three bad records per input split, because we had to kill Hadoop
since it was running for more than ten hours without finishing.

7.6 RAFT-RC & RAFT-QMC: Dealing with
Worker Failures

To evaluate RAFT-RC and RAFT-QMC in the presence of
worker failures, we kill a varying number of workers in the middle
of the reduce phase. We present results only for Q2 and Q3, because
the reduce phase for Q1 is too short (∼3 seconds) to kill the worker.
We consider a worker that does not communicate with the master
node during 60 seconds as failed. One of our goals in this section is
to know whether RAFT-RC or RAFT-QMC performs better. Recall
that these techniques differ in the way they recover from failures of
local reducers. With this in mind, we evaluate both algorithms in a
scenario with no worker failures and with one worker failure. No-
tice that we do not consider more than one worker failure in this
experiment, because RAFT-RC cannot recover from more than one
worker failure.

Table 1 presents the results for Q2 when comparing RAFT-RC
with RAFT-QMC. The results show that RAFT-QMC runs 5%

faster than RAFT-RC with no worker failures (we study this in de-
tail in Section 7.7). We also observe that RAFT-QMC can still
slightly outperform RAFT-RC with one worker failure. This is an
interesting result as RAFT-QMC needs to locally recompute lost
local partitions, while RAFT-RC only has to fetch such partitions
from backup nodes. Our findings prove that RAFT-QMC can effi-
ciently recover from worker failures with less network traffic and,
at the same time, can deal with more than one worker failure.

Since RAFT-RC is limited to a single worker failure and RAFT-
QMC performs better, we only compare RAFT-QMC with Hadoop
for a larger number of worker failures. In these experiments, we
do not consider more than two worker failures since such situations
are not common in practice. Figure 3(c) shows the runtime results
of these experiments for Q2. We observe that RAFT-QMC outper-
forms Hadoop by ∼7% on average. This is because RAFT-QMC
makes less usage of the network by only replicating small query
metadata checkpoint files, instead of important amounts of inter-
mediate results required by local reducers. Furthermore, RAFT-
QMC recomputes map tasks that were completed by failed workers
for reproducing lost local partitions only. This does not occur in
Hadoop, where map tasks process their whole input split again.
Figure 3(d) shows the runtime results for Q3. These results show
again that RAFT-QMC outperforms Hadoop for both one and two
worker failures. However, we see that the runtime difference be-
tween RAFT-QMC and Hadoop was decreased with respect to Q2,
because Q3 produces less intermediate results than Q2. As a result,
the reduce phase run faster and thus a worker failure has less impact
in performance.

7.7 RAFT: Putting Everything Together
We demonstrated in previous sections that, on average, RAFT

algorithms significantly outperform Hadoop. We now evaluate how
well they perform together, i.e. we evaluate our RAFT prototype.
For this, we introduce two bad records per input split and kill only
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Table 2: Overhead of RAFT algorithms.
RAFT-LC RAFT-RC RAFT-QMC RAFT

Q1 7.0% 13.7% 3.3% 5.7%
Q2 6.3% 9.5% 4.3% 6.6%
Q3 6.5% 9.8% 4.7% 8.7%

one worker as in Section 7.6.
Figure 3(e) illustrates these results for all three tasks. We ob-

serve that RAFT outperforms Hadoop by 23% on average for tasks
Q2 and Q3, which are common tasks in practice. Moreover, we
observe that RAFT outperforms Hadoop by 10% for Q1. As ex-
plained in Section 7.6, this is because Q1 is highly selective and
thus RAFT produces few checkpoints. One can imagine that the
good performance of RAFT is mainly due to the push model that
RAFT uses. The results, however, prove that this is not the case.
We observe that Hadoop+Push has about the same performance as
Hadoop. This clearly demonstrates the high efficiency of RAFT
algorithms.

We then evaluate well RAFT scales in terms of dataset size.
For fairness reasons — regarding Hadoop —, we ran these exper-
iments with no failures as Hadoop suffers from tasks and worker
failures. Figure 3(f) shows these scalability results for Q1 — we
do not present results for Q2 nor Q3, because we did not observe
any different behavior from the results we present here. We ob-
serve that RAFT scales as well as Hadoop, which emphasizes the
scalability of RAFT. Interestingly, we see that RAFT produces neg-
ligible overhead, while providing the same scalability as, and bet-
ter failover performance than, Hadoop. Additionally, we analyzed
how well RAFT reacts when new workers are added to the cluster
(speed-up), but we do not show the results here due to space con-
straints. In those results, we observed that the speed-up of RAFT is
the same as the speed-up of Hadoop and hence close to the optimal
speed-up.

Finally, Table 2 shows the overhead of RAFT algorithms for
tasks Q1, Q2, and Q3. Interestingly, we observe that RAFT-QMC
generates an overhead of only 3.3% for Q1, of 4.3% for Q2, and of
4.7% for Q3, which is four times less than RAFT-RC for Q1 and
two times less for Q2 and Q3. RAFT-QMC significantly outper-
forms RAFT-RC since, instead of replicating intermediate results
(more than 150 MB per map task for Q2), it only replicates query
metadata checkpoint files (less than 6 MB per map task for Q2).
Still, RAFT-QMC recovers from worker failures slightly faster than
RAFT-QMC, as shown in Table 1. On the other side, we observe
that the overhead of RAFT-LC and RAFT is less than 8.8% which
is also quite acceptable – especially for long-running jobs that take
advantage of the recovery properties of using RAFT.

In summary, when compared to Hadoop, our results show that
RAFT algorithms generate on average only ∼3% of runtime over-
head, while they allow MapReduce jobs to run ∼23% faster in the
presence of task and worker failures.

8. CONCLUSION
MapReduce is a popular programming model that allows non-

expert users to easily run complex analytical tasks at an unprece-
dented very large-scale. At such scale, task and worker failures
are no longer an exception, but rather a characteristic of these sys-
tems. In this context, MapReduce has gained a great popularity as
it gracefully and automatically achieves fault-tolerance. In this pa-
per, however, we showed that MapReduce has performance issues
in the presence of task and worker failures.

To deal with this issue, we proposed a family of Recovery
Algorithms for Fast-Tracking (RAFT) MapReduce in the presence
of these failures. The beauty of RAFT algorithms — namely,
RAFT-LC, RAFT-RC, and RAFT-QMC — is that they exploit the
fact that MapReduce persists intermediate results at several points
in time, and even copies them through the network, in order to
piggy-back checkpoints on tasks progress computation. In par-
ticular, besides a local checkpointing algorithm (RAFT-LC), we
proposed a new query metadata checkpointing algorithm (RAFT-
QMC) to deal with several worker failures at very low network cost.
To achieve this, mappers produce query metadata checkpoints of
task progress computation, containing all offsets of input key-value
pairs that produce an intermediate result and the identifier of the
reducers that will consume such results. As a result, failed map
tasks (previously completed) only recompute intermediate results
required by local reducers. This is not case in Hadoop, where these
tasks must process again the whole input split.

To take full advantage of our recovery algorithms, we also in-
troduced a scheduling strategy that differs from current MapRe-
duce schedulers: (i) it delegates the responsibility to workers for
rescheduling tasks failed due to task failures, and (ii) it pre-assigns
reduce tasks to workers in order to allow mappers to push interme-
diate data to reducers.

We implemented RAFT algorithms in a prototype we built on
top of Hadoop — a popular open source MapReduce implementa-
tion. We experimentally evaluated RAFT algorithms and compared
their effectiveness with the original Hadoop. The results demon-
strated that RAFT algorithms incur negligible runtime overhead
and outperform Hadoop runtimes by 23% on average, and up to
27%, under task and worker failures. Another important result is
that RAFT algorithms have the same scalability and speed-up as
Hadoop, while they allow MapReduce jobs to recover faster from
task and worker failures. Last but not least, we showed that RAFT-
QMC produces much less runtime overhead than a straight-forward
implementation of a checkpointing technique (RAFT-RC).
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