
Noname manuscript No.
(will be inserted by the editor)

Towards Zero-Overhead Static and Adaptive Indexing in Hadoop

Stefan Richter · Jorge-Arnulfo Quiané-Ruiz · Stefan Schuh · Jens Dittrich

the date of receipt and acceptance should be inserted later

Abstract Hadoop MapReduce has evolved to an important
industry standard for massive parallel data processing and
has become widely adopted for a variety of use cases. Re-
cent works have shown that indexes can improve the per-
formance of selective MapReduce jobs dramatically. How-
ever, one major weakness of existing approaches are high
index creation costs. We present HAIL (Hadoop Aggres-
sive Indexing Library), a novel indexing approach for HDFS
and Hadoop MapReduce. HAIL creates different clustered
indexes over terabytes of data with minimal, often invisi-
ble costs and it dramatically improves runtimes of several
classes of MapReduce jobs. HAIL features two different
indexing pipelines, static indexing and adaptive indexing.
HAIL static indexing efficiently indexes datasets while up-
loading them to HDFS. Thereby, HAIL leverages the default
replication of Hadoop and enhances it with logical replica-
tion. This allows HAIL to create multiple clustered indexes
for a dataset, e.g. one for each physical replica. Still, in terms
of upload time, HAIL matches or even improves over the
performance of standard HDFS. Additionally, HAIL adap-
tive indexing allows for automatic, incremental indexing at
job runtime with minimal runtime overhead. For example,
HAIL adaptive indexing can completely index a dataset as
byproduct of only four MapReduce jobs while incurring an
overhead as low as 11% for the very first of those job only. In
our experiments, we show that HAIL improves job runtimes
by up to 68x over Hadoop. This article is an extended ver-
sion of the VLDB 2012 paper “Only Aggressive Elephants
are Fast Elephants” (PVLDB, 5(11):1591-1602, 2012).

S. Richter, S. Schuh, J. Dittrich
Information Systems Group
Saarland University

J.-A. Quiané-Ruiz
Qatar Computing Research Institute
Qatar Foundation

1 Introduction

MapReduce has become the de facto standard for large scale
data processing in many enterprises. It is used for develop-
ing novel solutions on massive datasets such as web ana-
lytics, relational data analytics, machine learning, data min-
ing, and real-time analytics [23]. In particular, log process-
ing emerges as an important type of data analysis commonly
done with MapReduce [5,36,18].

In fact, Facebook and Twitter use Hadoop MapReduce
(the most popular MapReduce open source implementation)
to analyze the huge amounts of web logs generated every
day by their users [43,22,35]. Over the last years, a lot of
research works have focused on improving the performance
of Hadoop MapReduce [12,26,32,34]. When improving the
performance of MapReduce, it is important to consider that
it was initially developed for large aggregation tasks that
scan through huge amounts of data. However, nowadays
Hadoop is often also used for selective queries that aim to
find only a few relevant records for further consideration1.
For selective queries, Hadoop still scans through the com-
plete dataset. This resembles the search for a needle in a
haystack.

For this reason, several researchers have particularly fo-
cused on supporting efficient index access in Hadoop [45,
15,35,33]. Some of these works have improved the per-
formance of selective MapReduce jobs by orders of mag-
nitude. However, all these indexing approaches have three
main weaknesses. First, they require a high upfront cost for
index creation. This translates to long waiting times for users
until they can actually start to run queries. Second, they can
only support one physical sort order (and hence one clus-
tered index) per dataset. This becomes a serious problem if
the workload demands indexes for several attributes. Third,
they require users to have a good knowledge of the workload

1 A simple example of such a use case would be a distributed grep.

2 Stefan Richter et al.

in order to choose the indexes to create. This is not always
possible, e.g. if the data is analyzed in an exploratory way
or queries are submitted by customers.

1.1 Motivation

Let us see through the eyes of a data analyst, say Bob, who
wants to analyze a large web log. The web log contains
different fields that may serve as filter conditions for Bob
like visitDate, adRevenue, sourceIP and so on. Assume Bob
is interested in all sourceIPs with a visitDate from 2011.
Thus, Bob writes a MapReduce program to filter out exactly
those records and discard all others. Bob is using Hadoop,
which will scan the entire input dataset from disk to filter out
the qualifying records. This takes a while. After inspecting
the result set Bob detects a series of strange requests from
sourceIP 134.96.223.160. Therefore, he decides to modify
his MapReduce job to show all requests from the entire
input dataset having that sourceIP. Bob is using Hadoop.
This takes a while. Eventually, Bob decides to modify his
MapReduce job again to only return log records having a
particular adRevenue. Yes, this again takes a while.

In summary, Bob uses a sequence of different filter con-
ditions, each one triggering a new MapReduce job. He is
not exactly sure what he is looking for. The whole endeavor
feels like going shopping without a shopping list. This ex-
ample illustrates an exploratory usage (and a major use-
case) of Hadoop MapReduce [5,18,38]. But, this use-case
has one major problem: slow query runtimes. The time to
execute a MapReduce job based on a scan may be very high:
it is dominated by the I/O for reading all input data [39,33].
While waiting for his MapReduce job to complete, Bob has
enough time to pick a coffee (or two) and this happens every
time Bob modifies the MapReduce job. This will likely kill
his productivity and make his boss unhappy.

Now, assume the fortunate case that Bob remembers a
sentence from one of his professors saying “full-table-scans
are bad; indexes are good”2. Thus, he reads all the recent
VLDB papers (including [33,12,26,32]) and finds a paper
that shows how to create a so-called trojan index [15]. A
trojan index is an index that may be used with Hadoop
MapReduce and yet does not modify the underlying Hadoop
MapReduce and HDFS engines.
Zero-Overhead indexing. Bob finds the trojan index idea
interesting and hence decides to create a trojan index on
sourceIP before running his MapReduce jobs. However, us-
ing trojan indexes raises two other problems:

(1.) Expensive index creation. The time to create the tro-
jan index on sourceIP (or any other attribute) is even much
longer than running a scan-based MapReduce job. Thus, if
Bob’s MapReduce jobs use that index only a few times, the
index creation costs will never be amortized. So, why would
Bob create such an expensive index in the first place?

2 The professor is aware that for some situations the opposite is true.

(2.) Which attribute to index? Even if Bob amortizes index
creation costs, the trojan index on sourceIP will only help
for that particular attribute. So, which attribute should Bob
use to create the index?

Bob is wondering how to create several indexes at very low
cost to solve those problems.
Per-Replica indexing. One day in autumn 2011, Bob reads
about another idea [34] where some researchers looked at
ways to improve vertical partitioning in Hadoop. The re-
searchers in that work realized that HDFS keeps three (or
more) physical copies of all data for fault-tolerance. There-
fore, they decided to change HDFS to store each physical
copy in a different data layout (row, column, PAX, or any
other column grouping layout). As all data layout transfor-
mation is done per HDFS data block, the failover properties
of HDFS and Hadoop MapReduce were not affected. At the
same time, I/O times improved. Bob thinks that this looks
very promising, because he could possibly exploit this con-
cept to create different clustered indexes almost invisible to
the user. This is because he could create one clustered index
per data block replica when uploading data to HDFS. This
would already help him a lot in several query workloads.

However, Bob quickly figures out that there are cases
where this idea still has some annoying limitations. Even if
Bob could create one clustered index per data replica at low
cost, he would still have to determine which attributes to in-
dex when uploading his data to HDFS. Afterwards, he could
not easily revise his decision or introduce additional indexes
without uploading the dataset again. Unfortunately, it some-
times happens that Bob and his colleagues navigate through
datasets according to the properties and correlations of the
data. In such cases, Bob and his colleagues typically: (1.) do
not know the data access patterns in advance; (2.) have dif-
ferent interests and hence cannot agree upon common selec-
tion criteria at data upload time; (3.) even if they agree which
attributes to index at data upload time, they might end up
filtering records according to values on different attributes.
Therefore, using any traditional indexing technique [19,10,
2,8,11,45,35,15,33] would be problematic, because they
cannot adapt well to unknown or changing query workloads.
Adaptive indexing. When searching for a solution to his
problem with static indexing, Bob stumbles across a new
approach called adaptive indexing [28], where the general
idea is to create indexes as a side-effect of query process-
ing. This is similar to the idea of soft indexes [37], where the
system piggybacks the index creation for a given attribute
on a single incoming query. However, in contrast to soft in-
dexes, adaptive indexing aims at creating indexes incremen-
tally (i.e., piggybacking on several incoming queries) in or-
der to avoid high upfront index creation times. Thus, Bob is
excited about the adaptive indexing idea since this could be
the missing piece to solve his remaining concern. However,
Bob quickly notices that he cannot simply apply existing

Towards Zero-Overhead Static and Adaptive Indexing in Hadoop 3

adaptive indexing works [17,28,29,21,30,24] in MapRe-
duce systems for several reasons:

(1.) Global index convergence. These techniques aim at
converging to a global index for an entire attribute, which
requires sorting the attribute globally. Therefore, these tech-
niques perform many data movements across the entire
dataset. Doing this in MapReduce would hurt fault-tolerance
as well as the performance of MapReduce jobs. This is be-
cause the system would have to move data across data blocks
in sync with all their three physical data block replicas. We
do not plan to create global indexes, but focus on creat-
ing partial indexes that in total cover the whole dataset. A
small back of the envelope calculation shows that the possi-
ble gains of a global index are negligible in comparison to
the overhead of the MapReduce framework. For instance, if
a dataset is uniformly distributed over a cluster and occupies
160 HDFS blocks on each datanode (like the dataset in our
experiments in Section 9) and we do not have a global index,
then we need to perform 160 index accesses on each datan-
ode. Since all datanodes can access their blocks in parallel
to each other, we assume that the overhead is determined
by the highest overhead per datanode. Overall, our approach
requires at most 318 additional random reads in HDFS per
datanode in this scenario, which in turn cost roughly 15ms
each. In total, this amounts to 4.77s overhead compared to a
global index stored in HDFS. However, even empty MapRe-
duce jobs, that do not read any data nor compute a single
map function, run for more than 10s.
(2.) High I/O costs. Even if Bob applied existing adaptive
indexing techniques inside data blocks, these techniques
would end up in many costly I/O operations to move data
on disk. This is because these techniques consider main-
memory systems and thus do not factor in the I/O-cost
for reading/writing data from/to disk. Only one of these
works [21] proposes an adaptive merging technique for disk-
based systems. However, applying this technique inside a
HDFS block would not make sense in MapReduce since
HDFS blocks are typically loaded entirely into main mem-
ory anyways when processing map tasks. One may think
about applying adaptive merging across HDFS blocks, but
this would again hurt fault-tolerance and the performance of
MapReduce jobs as described above.
(3.) Unclustered index. These works focus on creating un-
clustered indexes in the first place and hence it is only ben-
eficial for highly selective queries. One of these works [29]
introduced lazy tuple reorganisation in order to converge
to clustered indexes. However, this technique needs several
thousand queries to converge and its application in a disk-
based system would again introduce a huge number of ex-
pensive I/O operations.
(4.) Centralized approach. Existing adaptive indexing ap-
proaches were mainly designed for single-node DBMSs.
Therefore, applying these works in a distributed parallel sys-

tems, like Hadoop MapReduce, would not fully exploit the
existing parallelism to distribute the indexing effort across
several computing nodes.

Despite all these open problems, Bob is very enthusiastic
to combine the above interesting ideas on indexing into a
new system to revolutionize the way his company can use
Hadoop. And this is where the story begins.

1.2 Research Questions and Challenges

This article addresses the following research questions:
Zero-Overhead indexing. Current indexing approaches in
Hadoop involve a significant upfront cost for index creation.
How can we make indexing in Hadoop so effective that it is
basically invisible for the user? How can we minimize the
I/O costs for indexing or eventually reduce them to zero?
How can we fully utilize the available CPU resources and
parallelism of large clusters for indexing?
Per-Replica indexing. Hadoop uses data replication for
failover. How can we exploit this replication to support dif-
ferent sort orders and indexes? Which changes to the HDFS
upload pipeline need to be done to make this efficient? What
happens to the involved checksum mechanism of HDFS?
How can we teach the HDFS namenode to distinguish the
different replicas and keep track of the different indexes?
Job execution. How can we change Hadoop MapReduce
to utilize different sort orders and indexes at query time?
How can we change Hadoop MapReduce to schedule tasks
to replicas having the appropriate index? How can we sched-
ule map tasks to efficiently process indexed and non-indexed
data blocks without affecting failover? How much do we
need to change existing MapReduce jobs? How will Hadoop
MapReduce change from the user’s perspective?
Zero-Overhead Adaptive indexing. How can we adap-
tively and automatically create additional useful indexes on-
line at minimal costs per job? How to index big data incre-
mentally in a distributed, disk-based system like Hadoop as
byproduct of job execution? How to minimize the impact
of indexing on individual job execution times? How to ef-
ficiently interleave data processing with indexing? How to
distribute the indexing effort efficiently by considering data-
locality and index placement across computing nodes? How
to create several clustered indexes at query time? How to
support a different number of replicas per data block?

1.3 Contributions

We propose HAIL (Hadoop Aggressive Indexing Library), a
static and adaptive indexing approach for MapReduce sys-
tems. The main goal of HAIL is to minimize both (i) the
index creation time when uploading data and (ii) the impact
of concurrent index creation on job execution times. In sum-
mary, we make the following main contributions to tackle
the questions and challenges mentioned above:

4 Stefan Richter et al.

(1.) Zero-Overhead indexing. We show how to effectively
piggy-back sorting and index creation on the existing HDFS
upload pipeline. This way no additional MapReduce job
is required to create those indexes and also no additional
read of the data is required at all. In fact, the HAIL up-
load pipeline is so effective when compared to HDFS that
the additional overhead for sorting and index creation is
hardly noticeable in the overall process. Therefore, we of-
fer a win-win situation over Hadoop MapReduce and even
over Hadoop++ [15]. We give an overview of HAIL and its
benefits in Section 2.

(2.) Per-Replica indexing. We show how to exploit the de-
fault replication of Hadoop to support different sort orders
and indexes for each block replica (Section 3). Hence, for
a default replication factor of three, up to three different
sort orders and clustered indexes are available for process-
ing MapReduce jobs. Thus, the likelihood to find a suitable
index increases and hence the runtime for a workload im-
proves. Our approach benefits from the fact that Hadoop is
only used for appends: there are no updates. Thus, once a
block is full, it will never be changed again.

(3.) Job Execution. We show how to effectively change
the Hadoop MapReduce pipeline to exploit existing indexes
(Section 4). Our goal is to do this without changing the
code of the MapReduce framework. Therefore, we introduce
optional annotations for MapReduce jobs that allow users
to enrich their queries with explicit specifications of their
selections and projections. HAIL takes care of performing
MapReduce jobs using normal data block replicas or pseudo
data block replicas (or even both). In addition, we propose
a new task scheduling, called HAIL Scheduling, to fully ex-
ploit statically and adaptively indexed data blocks (Section
7). The goal of HAIL Scheduling is twofold: (i) to reduce the
scheduling overhead when executing a MapReduce job, and
(ii) to balance the indexing effort across computing nodes to
limit the impact of adaptive indexing.

(4.) Zero-Overhead Adaptive indexing. We show how to
effectively piggyback adaptive index creation on the exist-
ing MapReduce job execution pipeline (Section 5). The idea
is to combine adaptive indexing and zero-overhead indexing
to solve the problem of missing indexes for evolving or un-
predictable workloads. In other words, when HAIL executes
a map reduce job with a filter condition on an unindexed at-
tribute, HAIL creates that missing index for a certain frac-
tion of the HDFS blocks in parallel. We additionally pro-
pose a set of adaptive indexing strategies that makes HAIL
aware of the performance and the selectivity of MapReduce
jobs (Section 6). We present lazy and eager adaptive index-
ing, two techniques that allow HAIL to quickly adapt to
changes in users’ workloads at a low indexing overhead. We
then show how HAIL can decide which data blocks to index
based on the selectivities of MapReduce jobs.

(5.) Exhaustive validation. We present an extensive
experimental comparison of HAIL with Hadoop and
Hadoop++ [15] (Section 9). We use seven different clus-
ters including physical and virtual EC2 clusters of up to
100 nodes. A series of experiments shows the superiority
of HAIL over both Hadoop and Hadoop++. Another se-
ries of scalability experiments with different datasets also
demonstrates the superiority of using adaptive indexing in
HAIL. In particular, our experimental results demonstrate
that HAIL: (i) creates clustered indexes at upload time al-
most for free; (ii) quickly adapts to query workloads with a
negligible indexing overhead; and (iii) only for the very first
job HAIL has a small overhead over Hadoop when creating
indexes adaptively: all the following jobs are faster in HAIL.

Notice that, this article presents an extended version of
the initial HAIL system [16] with the following significant
added value: we enrich HAIL with the adaptive indexing
pipeline, that allows HAIL to adapt to changes in query
workloads in an automatic, incremental, and dynamic way
(all of contribution Zero-Overhead Adaptive indexing.);
we extend the HAIL task scheduling in order to balance the
index effort at job execution time and exploit pseudo data
blocks (half of contribution Job execution.); we run a large
number of new experiments to validate our adaptive index-
ing techniques as well as the extended HAIL task scheduling
(one third of contribution Exhaustive validation.).

2 Overview

In the following, we give an overview of HAIL by contrast-
ing it with normal HDFS and Hadoop MapReduce. Thereby,
we introduce the two indexing pipelines of HAIL. First,
static indexing allows us to create several clustered indexes
at upload time. Second, HAIL adaptive indexing creates
additional indexes as a byproduct of actual job execution,
which enables HAIL to adapt to unexpected workloads. For
a more detailed contrast to related work see Section 8.

For now, let’s consider again our motivating example:
How can Bob analyze his log file with Hadoop and HAIL?

2.1 Hadoop and HDFS

In HDFS and Hadoop MapReduce, Bob starts by upload-
ing his log file to HDFS using the HDFS client. HDFS then
partitions the file into logical HDFS blocks using a con-
stant block size (the HDFS default is 64MB). Each HDFS
block is then physically stored three times (assuming the
default replication factor). Each physical copy of a block is
called a replica. Each replica will sit on a different datanode.
Therefore, at least two datanode failures may be survived by
HDFS. Note that HDFS keeps information on the different
replicas for an HDFS block in a central namenode directory.

After uploading his log file to HDFS, Bob may run an
actual MapReduce job. Bob invokes Hadoop MapReduce
through a Hadoop MapReduce JobClient, which sends his

Towards Zero-Overhead Static and Adaptive Indexing in Hadoop 5

MapReduce job to a central node termed JobTracker. The
MapReduce job consists of several tasks. A task is executed
on a subset of the input file, typically an HDFS block3.
The JobTracker assigns each task to a different TaskTracker,
which typically runs on the same machine as an HDFS
datanode. Each datanode will then read its subset of the in-
put file, i.e., a set of HDFS blocks, and feed that data into
the MapReduce processing pipeline which usually consists
of a Map, Shuffle, and a Reduce Phase (see [13,15,14] for a
detailed description). As soon as all results have been writ-
ten to HDFS, the JobClient informs Bob that the results are
available. Notice that, the execution time of the MapReduce
job is heavily influenced by the size of the input dataset, be-
cause Hadoop MapReduce reads the input dataset entirely in
order to perform any incoming MapReduce job.

2.2 HAIL

In HAIL, Bob analyzes his log file as follows. He starts by
uploading his log file to HAIL using the HAIL client. In con-
trast to the HDFS client, the HAIL client analyzes the input
data for each HDFS block, converts each HDFS block di-
rectly to a binary columnar layout, that resembles PAX [3]
and sends it to three datanodes. Then, all datanodes sort the
data contained in that HDFS block in parallel using a dif-
ferent sort order. The required sort orders can be manually
specified by Bob in a configuration file or computed by a
physical design algorithm. For each HDFS block, all sorting
and index creation happens in main memory. This is feasible
as the HDFS block size is typically between 64MB (default)
and 1GB. This easily fits in the main memory of most ma-
chines. In addition, in HAIL, each datanode creates a differ-
ent clustered index for each HDFS block replica and stores
it with the sorted data. This process is called the HAIL static
indexing pipeline.

After uploading his log file to HAIL, Bob runs his
MapReduce jobs, that can now immediately exploit the in-
dexes that were created by HAIL statically (i.e., at upload
time). As before, Bob invokes Hadoop MapReduce through
a JobClient which sends his MapReduce jobs to the Job-
Tracker. However, his MapReduce jobs are slightly modi-
fied so that the system can decide to eventually use avail-
able indexes on the data block replicas. For example, assume
that a data block has three replicas with clustered indexes on
visitDate, adRevenue, and sourceIP. In case that Bob has a
MapReduce job filtering on visitDate, HAIL uses the repli-
cas having the clustered index on visitDate. If Bob is filter-
ing on sourceIP, HAIL uses the replicas having the clustered
index on sourceIP and so on. To provide failover and load
balancing, HAIL may fall back to standard Hadoop scan-
ning for some of the blocks. However, even factoring this

3 Actually it is a split. The difference does not matter here. We will
get back to this in Section 4.2.

in, Bob’s queries run much faster on average, if indexes on
the right attributes exist.

In case that Bob submits jobs that filter on unindexed at-
tributes (e.g., on duration), HAIL again falls back to a stan-
dard full scan by choosing any arbitrary replica, just like
Hadoop. However, in contrast to Hadoop, HAIL can index
HDFS blocks in parallel to job execution. If another job fil-
ters again on the duration field, the new job can already ben-
efit from the previously indexed blocks. So, HAIL takes in-
coming jobs, which have a selection predicate on currently
unindexed attributes, as hints for valuable additional clus-
tered indexes. Consequently, the set of available indexes in
HAIL evolves with changing workloads. We call this pro-
cess the HAIL adaptive indexing pipeline.

2.3 HAIL Benefits

(1.) HAIL often improves both upload and query times.
The upload is dramatically faster than Hadoop++ and of-
ten faster (or only slightly slower) than with the standard
Hadoop even though we (i) convert the input file into binary
PAX, (ii) create a series of different sort orders, and (iii) cre-
ate multiple clustered indexes. From the user-side, this pro-
vides a win-win situation: there is no noticeable punishment
for upload. For querying, users can only win: if our indexes
cannot help, we will fall back to standard Hadoop scanning;
if the indexes can help, query runtimes will improve.
Why do we not have high costs at upload time? We basically
exploit the unused CPU ticks that are not used by standard
HDFS. As the standard HDFS upload pipeline is I/O-bound,
the effort for our sorting and index creation in the HAIL
upload pipeline is hardly noticeable. In addition, since we
parse data to binary while uploading, we often benefit from
smaller datasets triggering less network and disk I/O.
(2.) Even if we did not create the right indexes at upload
time, HAIL can create indexes adaptively at job execution
time without incurring high overhead.
Why don’t we see a high overhead? We do not need to ad-
ditionally load the block data to main memory, since we
piggyback on the reading of the map tasks. Furthermore,
HAIL creates indexes incrementally over several job exe-
cutions using different adaptive indexing strategies.
(3.) We do not change the failover properties of Hadoop.
Why is failover not affected? All data stays on the same log-
ical HDFS block. We just change the physical representa-
tion of each replica of an HDFS block. Therefore, from each
physical replica we may recover the logical HDFS block.
(4.) HAIL works with existing MapReduce jobs incurring
only minimal changes to those jobs.
Why does this work? We allow Bob to annotate his existing
jobs with selections and projections. Those annotations are
then considered by HAIL to pick the right index. Like that,
for Bob the changes to his MapReduce jobs are minimal.

6 Stefan Richter et al.

Network

Network

0110100010111
0101000110110

0101010101010
0011010001100

Block Metadata
0101001010111
0110010111010

c

b

a

PAX Block

0110100010111
0101000110110

0101010101010
0011010001100

Block Metadata
0101001010111
0110010111010

c

b

a

PAX Block

Network

...

forward
PCK

2

0110100010111
0101000110110

0101010101010
0011010001100

Block Metadata
0101001010111
0110010111010

c

b

a

PAX Block

PCK
1

PCK
2

PCK
1

append

HAILClient CL DataNode DN1
upload

2

4
5

6

7

check

acknowledge

reassemble

PCK
2

PCK
1

reassemble

8

HAIL Block
0010
1110

HAIL Block

0001001100011
0111100111111

1001110111011
1010101101010

Block Metadata

0010011101101
1101001101101

c

b

a

ACK 1
3 2 1

ACK 2
3 2 1

ACK 1
3

ACK 1
3 2 1

ACK 2
3 2forward

1

Bob

10
15

13

9

builda cb

1
preprocess

build

12

HDFS NameNode

Block directory HAIL Replica directory

14
registerregister

ACK 2
3

convert

11

notify

get location

3

OK

DataNode DN3

Index Metadata
Index

0001001100011
0111100111111

1001110111011
1010101101010

Block Metadata

0010011101101
1101001101101

c

b

a

Index Metadata
Index a c

Fig. 1 The HAIL static indexing pipeline as part of uploading data to HDFS

3 HAIL Zero-Overhead Static Indexing

We create static indexes in HAIL while uploading data. One
of the main challenges is to support different sort orders and
clustered indexes per replica as well as to build those indexes
efficiently without much impact on upload times. Figure 1
shows the data flow when Bob uploads a file to HAIL. Let’s
first explore the details of the static indexing pipeline.

3.1 Data Layout

In HDFS, for each block, the client contacts the namenode
to obtain the list of datanodes that should store the block
replicas. Then, the client sends the original block to the first
datanode, which forwards this to the second datanode and
so on. In the end, each datanode stores a byte-identical copy
of the original block data.
In HAIL, the HAIL client preprocesses the file based on its
content to consider end of lines 1 in Figure 1. We parse
the contents into rows by searching for end of line symbols
and never split a row between two blocks. This is in con-
trast to standard HDFS which splits a file into HDFS blocks
after a constant number of bytes. For each block the HAIL
client parses each row according to the schema specified by
the user4. If HAIL encounters a row that does not match
the given schema (i.e., a bad record), it separates this record
into a special part of the data block. HAIL then converts
all HDFS blocks to a binary columnar layout that resem-
bles PAX 2 . This allows us to index and access individ-
ual attributes more efficiently. The HAIL client also collects
metadata information from each HDFS block (such as the
data schema) and creates a block header (Block Metadata)
for each HDFS block 2 .

We could naively piggy-back on this existing HDFS up-
load pipeline by first storing the original block data as done

4 Alternatively, HAIL can also suggest an appropriate schema to
users through schema analysis.

in Hadoop and then converting it to binary PAX layout in
a second step. However, we would have to re-read and then
re-write each block, which would trigger one extra write and
read for each replica, e.g., for an input file of a 100GB we
would have to pay 600GB extra I/O on the cluster. This
would lead to very long upload times. In contrast, HAIL
does not have to pay any of that extra I/O. However, to
achieve this dramatic improvement, we have to make non-
trivial changes in the standard Hadoop upload pipeline.

3.2 Static Indexing in the Upload Pipeline

To understand the implementation of static indexing in the
HAIL upload pipeline, we first have to analyze the normal
HDFS upload pipeline in more detail.
In HDFS, while uploading a block, the data is further par-
titioned into chunks of constant size 512B. Chunks are col-
lected into packets. A packet is a sequence of chunks plus a
checksum for each of the chunks. In addition some metadata
is kept. In total a packet has a size of up to 64KB. Immedi-
ately before sending the data over the network, each HDFS
block is converted to a sequence of packets. On disk, HDFS
keeps, for each replica, a separate file containing checksums
for all of its chunks. Hence, for each replica two files are cre-
ated on local disk: one file with the actual data and one file
with its checksums. These checksums are reused by HDFS
whenever data is send over the network. The HDFS client
(CL) sends the first packet of the block to the first datan-
ode (DN1) in the upload pipeline. DN1 splits the packet into
two parts: the first contains the actual chunk data, the second
contains the checksums for those chunks. Then DN1 flushes
the chunk data to a file on local disk. The checksums are
flushed to an extra file. In parallel DN1 forwards the packet
to DN2 which splits and flushes the data like DN1 and in
turn forwards the packet to DN3 which splits and flushes the
data as well. Yet, only DN3 verifies the checksum for each
chunk. If the recomputed checksums for each chunk of a

Towards Zero-Overhead Static and Adaptive Indexing in Hadoop 7

packet match the received checksums, DN3 acknowledges
the packet back to DN2, which acknowledges back to DN1.
Finally, DN1 acknowledges back to CL. Each datanode also
appends its ID to the ACK. Like that only one of the datan-
odes (the last in the chain, here DN3 as the replication factor
is three) has to verify the checksums. DN2 believes DN3,
DN1 believes DN2, and CL believes DN1. If any CL or DNi

receives ACKs in the wrong order, the upload is considered
failed. The idea of sending multiple packets from CL is to
hide the roundtrip latencies of the individual packets. Cre-
ating this chain of ACKs also has the benefit that CL only
receives a single ACK for each packet and not three. Notice,
that HDFS provides this checksum mechanism on top of the
existing TCP/IP checksum mechanism (which has weaker
correctness guarantees than HDFS).

In HAIL, in order to reuse as much of the existing HDFS
pipeline and yet to make this efficient, we need to perform
the following changes. As before, the HAIL client (CL) gets
the list of datanodes to use for this block from the HDFS
namenode 3 . But rather than sending the original input, CL
creates the PAX block, cuts it into packets 4 , and sends it to
DN1 5 . Whenever a datanode DN1–DN3 receives a packet,
it does neither flush its data nor its checksums to disk. Still,
DN1 and DN2 immediately forward the packet to the next
datanode as before 8 . DN3 will verify the checksum of the
chunks for the received PAX block 9 and acknowledge the
packet back to DN2 10 . This means the semantics of an ACK
for a packet of a block are changed from “packet received,
validated, and flushed” to “packet received and validated”.
We do neither flush the chunks nor its checksums to disk as
we first have to sort the entire block according to the desired
sort key. On each datanode, we assemble the block from all
packets in main memory 6 . This is realistic in practice, since
main memories tend to be >10GB for any modern server.
Typically, the size of a block is between 64MB (default) and
1GB. This means that for the default size we could keep
about 150 blocks in main memory at the same time.

In parallel to forwarding and reassembling packets, each
datanode sorts the data, creates indexes, and forms a HAIL
Block 7 , (see Section 3.4). As part of this process, each
datanode also adds Index Metadata information to each
HAIL block in order to specify the index it created for this
block. Each datanode (e.g., DN1) typically sorts the data
inside a block in a different sort order. It is worth noting
that having different sort orders across replicas does not
impact fault-tolerance as all data is reorganized inside the
same block only, i.e., data is not reorganized across blocks.
Hence, all replicas of the same HDFS block logically con-
tain the same records with just a different order and therefore
can still act as logical replacements for each other. Addition-
ally, this property helps HAIL to preserve the load balanc-
ing capabilities of Hadoop. For example, when a datanode
containing the replica with matching sort order for a cer-

tain job is overloaded, HAIL might choose to read from
a different replica on another datanode, just like normal
Hadoop. To avoid overloading datanodes in the first place,
HAIL employs a round robin strategy for assigning sort or-
ders to physical replicas on top of the replica placement of
HDFS. This means, that while HDFS already cares about
distributing HDFS block replicas across the cluster, HAIL
cares about distributing the sort orders (and hence the in-
dexes) across those replicas.

As soon as a datanode has completed sorting and creat-
ing its index, it will recompute checksums for each chunk of
a block. Notice that, checksums will differ on each replica,
as different sort orders and indexes are used. Hence, each
datanode has to compute its own checksums. Then, each
datanode flushes the chunks and newly computed check-
sums to two separate files on local disk as before. For DN3,
once all chunks and checksums have been flushed to disk,
DN3 will acknowledge the last packet of the block back to
DN2 10 . After that DN3 will inform the HDFS namenode
about its new replica including its HAIL block size, the cre-
ated indexes, and the sort order 11 (see Section 3.3). Datan-
odes DN2 and DN1 append their ID to each ACK 12 . Then
they forward each ACK back in the chain 13 . DN2 and DN1

will forward the last ACK of the block only if all chunks and
checksums have been flushed to their disks. After that DN2

and DN1 individually inform the HDFS namenode 14 . The
HAIL client also verifies that all ACKs arrive in order 15 .

Notice, that it is important to change the HDFS namen-
ode in order to keep track of the different sort orders. We
discuss these changes in Section 3.3.

3.3 HDFS Namenode Extensions

In HDFS, the central namenode keeps a directory Dir block
of blocks, i.e., a mapping blockID 7→ Set Of DataNodes.
This directory is required by any operation retrieving blocks
from HDFS. Hadoop MapReduce exploits Dir block for
scheduling. In Hadoop MapReduce whenever a split needs
to be assigned to a worker in the map phase, the scheduler
looks up Dir block in the HDFS namenode to retrieve the
list of datanodes having a replica of the contained HDFS
block. Then, the Hadoop MapReduce scheduler will try to
schedule map tasks on those datanodes if possible. Unfortu-
nately, the HDFS namenode does not differentiate the repli-
cas w.r.t. their physical layouts. HDFS was simply not de-
signed for this. Thus, from the point of view of the namen-
ode all replicas are byte-equivalent and have the same size.
In HAIL, we need to allow Hadoop MapReduce to change
the scheduling process to schedule map tasks close to repli-
cas having a suitable index — otherwise Hadoop MapRe-
duce would pick indexes randomly. Hence, we have to en-
rich the HDFS namenode to keep additional information
about the available indexes. We do this by keeping an ad-
ditional directory Dir rep mapping (blockID, datanode) 7→

8 Stefan Richter et al.

HAILBlockReplicaInfo. An instance of HAILBlockRepli-
caInfo contains detailed information about the types of
available indexes for a replica, i.e., indexing key, index type,
size, start offsets, etc. As before, Hadoop MapReduce looks
up Dir block to retrieve the list of datanodes having a replica
for a given block. However, in addition, HAIL looks up the
main memory Dir rep to obtain the detailed HAILBlock-
ReplicaInfo for each replica, i.e., one main memory lookup
for each replica. HAILBlockReplicaInfo is then exploited
by HAIL to change the scheduling strategy of Hadoop (we
will discuss this in detail in Section 4).

3.4 An Index Structure for Zero-Overhead Indexing

In this section, we briefly discuss our choice of an appropri-
ate index structure for indexing at minimal costs in HAIL as
give some details on our concrete implementation.
Why Clustered Indexes? An interesting question is why we
focus on clustered indexes. For indexing with minimal over-
head, we require an index structure that is cheap to create
in main memory, cheap to write to disk, and cheap to query
from disk. We tried a number of indexes in the beginning
of the project — including coarse-granular indexes and un-
clustered indexes. After some experimentation we quickly
discovered that sorting and index creation in main memory
is so fast that techniques like partial or coarse-granular sort-
ing do not pay off for HAIL. Whether you pay three or two
seconds for sorting and indexing per block during upload is
hardly noticeable in the overall upload process of HDFS. In
addition, a major problem with unclustered indexes is that
they are only competitive for very selective queries as they
may trigger considerable random I/O for non-selective in-
dex traversals. In contrast, clustered indexes do not have that
problem. Whatever the selectivity, we will read the clustered
index and scan the qualifying blocks. Hence, even for very
low selectivities the only overhead over a scan is the initial
index node traversal, which is negligible. Moreover, as un-
clustered indexes are dense by definition, they require con-
siderably more additional space on disk and require more
write I/O than a sparse clustered index. Thus, using unclus-
tered indexes would severely affect upload times. Yet, an in-
teresting direction for future work would be to extend HAIL
to support additional indexes that might boost performance,
such as bitmap indexes and inverted lists.

4 HAIL Job Execution

We now focus on general job execution in HAIL. First, we
present from Bob’s perspective how he can enhance MapRe-
duce jobs to benefit from HAIL static indexing (Section 4.1).
We will explain how Bob can write his MapReduce jobs (al-
most) as before and run them exactly as when using Hadoop
MapReduce. After that we analyze from the system’s per-
spective the standard Hadoop MapReduce pipeline and then
compare how HAIL executes jobs (Section 4.2). We will

see that HAIL requires only small changes in the Hadoop
MapReduce framework, which makes HAIL easy to inte-
grate into newer Hadoop versions (Section 4.3). Figure 2
shows the query pipeline when Bob runs a MapReduce job
on HAIL. Finally, we briefly discuss the case of selections
on unindexed attributes, i.e., when a job requests a static in-
dex that was not created, as motivation for HAIL adaptive
indexing (Section 4.4).

4.1 Bob’s Perspective

In Hadoop MapReduce, Bob writes a MapReduce job,
which includes a job configuration class, a map function,
and a reduce function.
In HAIL, the MapReduce job remains the same (see 1

and 2 in Figure 2), but with three tiny changes:
(1) Bob specifies the HailInputFormat (which uses a Hail-
RecordReader internally) in the main class of the MapRe-
duce job. By doing this, Bob enables his MapReduce job to
read HAIL Blocks (see Section 3.2).
(2) Bob annotates his map function to specify the selec-
tion predicate and the projected attributes required by his
MapReduce job5. For example, assume that Bob wants to
write a MapReduce job that performs the following SQL
query (example from Introduction):
SELECT sourceIP

FROM UserVisits

WHERE visitDate BETWEEN ‘1999-01-01’ AND ‘2000-01-01’

To execute this query in HAIL, Bob adds to his map function
a HailQuery annotation as follows:
@HailQuery(filter="@3 between(1999-01-01,

2000-01-01)", projection={@1})

void map(Text key, Text v) { ... }

Where the literal @3 in the filter value and the literal
@1 in the projection value denote the attribute position in
the UserVisits records. In this example the third attribute
(i.e., @3) is visitDate and the first attribute (i.e., @1) is sour-
ceIP. By annotating his map function as mentioned above,
Bob indicates that he wants to receive in the map function
only the projected attribute values of those tuples qualifying
the specified selection predicate. In case Bob does not spec-
ify filter predicates, HAIL will perform a full scan as the
standard Hadoop. At query time, if the HailQuery annota-
tion is set, HAIL checks (using the Index Metadata of a data
block) whether an index exists on the filter attribute. Using
such an index allows us to speed up the job execution. HAIL
also uses the Block Metadata to determine the schema of a
data block. This allows HAIL to read the attributes specified
in the filter and projection parameters only.
(3) Bob uses a HailRecord object as input value in the map
function. This allows Bob to directly read the projected
attributes without splitting the record into attributes as he

5 Alternatively, HAIL allows Bob to specify the selection predicate
and the projected attributes in the job configuration class.

Towards Zero-Overhead Static and Adaptive Indexing in Hadoop 9

MapReduce PipelineHadoop MapReduce Pipeline

HDFSHDFS

TaskTrackerJobTrackerJobClient

Split Phase Scheduler Map Phase

for each block block {
 location =
 block .getHostWithIndex(@3);
 createInputSplit(location);
}

for each split split {
 allocate split to closest
 DataNode storing block
}

send
splits[]

allocate
Map Task

chose
computing

Node
read
blocki

DN3 DN4 DN5 DN6 DN7 DNnDN1

...
c ba

blocki blocki blocki

1

2

3

4 6

5

7 store
output

...
@HailQuery(
filter="@3 between(1999-01-01, 2000-01-01)",
projection={@1})
void map(Text k, HailRecord v) {
 output(v.getInt(1), null);
}
...

MapReduce Job
Main Class

map(...)

reduce(...)

write
Job

run
Job

Bob's Perspective System's Perspective

i i
i i

i

HAIL Annotation

Bob
HAILRecordReader

- Index access or full scan
- Post-filtering
- For each record invoke
 map(HailRecord)
- Adaptive indexing?

Fig. 2 The HAIL query pipeline

would do it in the standard Hadoop MapReduce. For exam-
ple, using standard Hadoop MapReduce Bob would write
the following map function to perform the above SQL query:

Map Function for HadoopMapReduce (pseudo-code):

void map(Text key, Text v) {

String[] attr = v.toString().split(",");

if (DateUtils.isBetween(attr[2],

"1999-01-01", "2000-01-01"))

output(attr[0], null);

}

Using HAIL Bob writes the following map function:

Map Function for HAIL:

void map(Text key, HailRecord v) {

output(v.getInt(1), null);

}

Notice that, Bob now does not have to filter out the incom-
ing records, because this is automatically handled by HAIL
via the HailQuery annotation (as mentioned earlier). This
annotation is illustrated in Figure 2.

4.2 System Perspective

In Hadoop MapReduce, when Bob submits a MapReduce
job a JobClient instance is created. The main goal of the Job-
Client is to copy all the resources needed to run the MapRe-
duce job (e.g. metadata and job class files). But also, the
JobClient fetches all the block metadata (BlockLocation[])
of the input dataset. Then, the JobClient logically breaks the
input into smaller pieces called input splits (split phase in
Figure 2) as defined in the InputFormat. By default, the Job-
Client computes input splits such that each input split maps
to a distinct HDFS block. An input split defines the input
of a map task while an HDFS block is a horizontal parti-
tion of a dataset stored in HDFS (see Section 3.1 for details
on how HDFS stores datasets). For scheduling purposes, the
JobClient retrieves for each input split all datanode locations
having a replica of that HDFS block. This is done by calling

getHosts() of each BlockLocation. For instance, in Figure 2,
datanodes DN3, DN5, and DN7 are the split locations for
split42 since block42 is stored on such datanodes.

After this split phase, the JobClient submits the job to the
JobTracker with the set of input splits to process 3 . Among
other operations, the JobTracker creates a map task for each
input split. Then, for each map task, the JobTracker decides
on which computing node to schedule the map task, using
the split locations 4 . This decision is based on data-locality
and availability [13]. After this, the JobTracker allocates the
map task to the TaskTracker (which performs map and re-
duce tasks) running on that computing node 5 .

Only then, the map task can start processing its in-
put split. The map task uses a RecordReader UDF in or-
der to read its input data blocki from the closest datan-
ode 6 . Interestingly, it is the local HDFS client running
on the node where the map task is running that decides from
which datanode a map task will read its input — and not
the Hadoop MapReduce scheduler. This is done when the
RecordReader asks for the input stream pointing to blocki.
It is worth noticing that the HDFS client chooses a datan-
ode from the set of all datanodes storing a replica of block42

(via the getHosts() method) rather than from the locations
given by the input split. This means that a map task might
eventually end up reading its input data from a remote node
even though it is available locally. Once the input stream is
opened, the RecordReader breaks block42 into records and
makes a call to the map function for each record. Assuming
that the MapReduce job consists of a map phase only, the
map task then writes its output back to HDFS 7 . See [15,44,
14] for more details on the MapReduce execution pipeline.

In HAIL, it is crucial to be non-intrusive to the standard
Hadoop execution pipeline so that users run MapReduce
jobs exactly as before. However, supporting per-replica in-
dexes in an efficient way and without significant changes
to the standard execution pipeline is challenging for sev-

10 Stefan Richter et al.

eral reasons. First, the JobClient cannot simply create input
splits based only on the default block size as each HDFS
block replica has a different size (because of indexes). Sec-
ond, the JobTracker can no longer schedule map tasks based
on data-locality and nodes availability only. The JobTracker
now has to consider the existing indexes for each HDFS
block. Third, the RecordReader has to perform either index
access or full scan of HDFS blocks without any interaction
with users, e.g. depending on the availability of suitable in-
dexes. Fourth, the HDFS client cannot anymore open an in-
put stream to a given HDFS block based on data-locality
and nodes availability only: it has to consider index local-
ity and availability as well. HAIL overcomes these issues
by mainly providing two UDFs: the HailInputFormat and
the HailRecordReader. Notice, that by using UDFs we allow
HAIL to be easy to integrate into newer versions of Hadoop
MapReduce. We discuss these two UDFs in the following.

4.3 HailInputFormat and HailRecordReader

HAILInputFormat implements a different splitting strat-
egy than standard InputFormats. This strategy allows HAIL
to reduce the number of map waves per job, i.e., the maxi-
mum number of map tasks per map slot required to complete
this job. Thereby, the total scheduling overhead of MapRe-
duce jobs is drastically reduced. We discuss the details of
the HAIL Splitting strategy in Section 7.
HAILRecordReader is responsible for retrieving the
records that satisfy the selection predicate of MapReduce
jobs (as illustrated in the MapReduce Pipeline of Figure 2).
Those records are then passed to the map function. For ex-
ample in Bob’s query of Section 4.1, we need to find all
records having a visitDate between 1999-01-01 and 2000-
01-01. To do so, for each data block required by the job,
we first try to open an input stream to a block replica hav-
ing the required index. For this, HAIL instructs the local
HDFS Client to use the newly introduced getHostsWithIn-
dex() method of each BlockLocation so as to choose the
closest datanode with the desired index. Let us first focus on
the case where a suitable, statically created index is available
so that HAIL can open an input stream to an indexed replica.
Once that input stream has been opened, we use the infor-
mation about selection predicates and attribute projections
from the HailQuery annotation or from the job configura-
tion file. When performing an index-scan, we read the index
entirely into main memory (typically a few KB) to perform
an index lookup. This also implies reading the qualifying
block parts from disk into main memory and post-filtering
records (see Section 3.4). Then, we reconstruct the projected
attributes of qualifying tuples from PAX to row layout. In
case that no projection was specified by users, we then re-
construct all attributes. Finally, we make a call to the map
function for each qualifying tuple. For bad records (see Sec-
tion 3.1), HAIL passes them directly to the map function,

which in turn has to deal with them (just like in standard
Hadoop MapReduce). For this, HAIL passes a record to the
map function with a flag to indicate a bad record or not.

4.4 Problem: Missing Static Indexes

Finally, let us now discuss the second case when Bob sub-
mits a job which filters on an unindexed attribute (e.g. on du-
ration). Here, the HailRecordReader must completely scan
the required attributes of unindexed blocks, apply the selec-
tion predicate and perform tuple reconstruction. Notice that,
with static indexing, there is no way for HAIL to overcome
the problem of missing indexes efficiently. This means that
when the attributes used in the selection predicates of the
workload change over time, the only way to adapt the set of
available indexes is to upload the data again. However, this
has the significant overhead of an additional upload, which
goes against the principle of zero-overhead indexing. Thus,
HAIL introduces an adaptive indexing technique that offers
a much more elegant and efficient solution to this problem.
We discuss this technique in the following Section.

5 HAIL Zero-Overhead Adaptive Indexing

We now discuss the adaptive indexing pipeline of HAIL.
The core idea is to create missing but promising indexes as
byproducts of full scans in the map phase of MapReduce
jobs. Similar to the static indexing pipeline, our goal is again
to come closer towards zero overhead indexing. Therefore,
we adopt two important principles from our static indexing
pipeline. First, we piggyback again on a procedure that is
naturally reading data from disk to main memory. This al-
lows HAIL to completely save the data read cost for adap-
tive index creation. Second, as map tasks are usually I/O-
bound, HAIL again exploits unused CPU time when com-
puting clustered indexes in parallel to job execution.

In Section 5.1, we start with a general overview of the
HAIL adaptive indexing pipeline. In Section 5.2, we focus
on the internal components for building and storing clus-
tered indexes incrementally. In Section 5.3, we present how
HAIL accesses the indexes created at job runtime in a way
that is transparent to the MapReduce job execution pipeline.
Finally, in Section 6, we introduce three additional adaptive
indexing techniques that make the indexing overhead over
MapReduce jobs almost invisible to users.

5.1 HAIL Adaptive Indexing in the Execution Pipeline

For our motivating example, let’s assume Bob continues to
analyze his logs and notices some suspicious activities, e.g.
many user visits with very short duration, indicating spam
bot activities. Therefore, Bob suddenly needs different jobs
for his analysis that selects user visits with short durations.
However, recall that unfortunately he did not create a static
index on attribute duration at upload time which would help

Towards Zero-Overhead Static and Adaptive Indexing in Hadoop 11

Detail View of TaskTracker 5

AdaptiveIndexerHAILRecordReader

HAIL
Input
Split

5
m

Mapper

map(K, V)
{...}

3

map block

process

1

NameNode

TaskTracker 3

HDFS

Map
Reduce

...
Pseudo
Block 42
Replica

d

2 6

+

read
TaskTracker 5

pass to indexer

Block 42
Block Metadata
Index Metadata

Index a
0000000101...a
1101001101...b
1010101101...c
0111100111...d 4

7

...DN 3

c

DN 5 DN 7

b

Block 42
Replica

a

Block 42
Replica

Block 42
Replica

write
TaskTracker 7

register

Block 42
Block Metadata
Index Metadata

Index
0111010101...a
0101101000...b
1100101011...c
0000000011...d

d

Fig. 3 HAIL adaptive indexing pipeline.

for these new jobs. In general, as soon as Bob (or one of
his colleagues) sends a new job (say jobd) with a selection
predicate on an unindexed attribute (e.g. on attribute dura-
tion, which we will denote as d in the following.), HAIL
cannot benefit from index scans anymore. However, HAIL
takes these jobs as hints on how to adaptively improve the
repertoire of indexes for future jobs. HAIL piggybacks the
creation of a clustered index over attribute duration on the
execution of jobd. Without any loss of generality, we as-
sume that jobd projects all attributes from its input dataset.

Figure 3 illustrates the general workflow of the HAIL
adaptive indexing pipeline. The figure shows how HAIL
processes map tasks of jobd when no suitable index is
available (i.e., when performing a full scan) in more de-
tail. As soon as HAIL schedules a map task to a specific
TaskTracker6, e.g. TaskTracker 5, the HAILRecordReader
of the map task first reads the metadata from the HAILIn-
putSplit 1 7. With this metadata, the HAILRecordReader
checks whether a suitable index is available for its input
data block (say block42). As no index on attribute d is avail-
able, the HAILRecordReader simply opens an input stream
to the local replica of block42 stored on DataNode 5. Then,
the HAILRecordReader: (i) loads all values of the attributes
required by jobd from disk to main memory 2 ; (ii) recon-
structs records (as our HDFS blocks are in columnar lay-
out); and (iii) feeds the map function with each record 3 .
Here lies the beauty of HAIL: an HDFS block that is a po-
tential candidate for indexing was completely transferred to
main memory as part of the job execution process. In addi-
tion to feeding the entire block42 to the map function, HAIL
can create a clustered index on attribute d to speed up fu-
ture jobs. For this, the HAILRecordReader passes block42

to the AdaptiveIndexer as soon as the map function finished
processing this data block 4 .8 The AdaptiveIndexer, in turn,
sorts the data in block42 according to attribute d, aligns other

6 A Hadoop instance responsible to execute map and reduce tasks.
7 That was obtained from the HAILInputFormat via getSplits().
8 Notice that, all map tasks (even from different MapReduce jobs)

running on the same node interact with the same AdaptiveIndexer in-

attributes through reordering, and creates a sparse clustered
index 5 . Finally, the AdaptiveIndexer stores this index with
a copy of block42 (sorted on attribute d) as a pseudo data
block replica 6 . Additionally, the AdaptiveIndexer registers
the new created index for block42 with the HDFS NameN-
ode 7 . In fact, the implementation of the adaptive indexing
pipeline solves some interesting technical challenges. We
discuss the pipeline in more detail in the remainder of this
section.

5.2 AdaptiveIndexer

Adaptive indexing is an automatic process that is not ex-
plicitly requested by users and therefore should not unex-
pectedly impose significant performance penalties on users’
jobs. Piggybacking adaptive indexing on map tasks allows
us to completely save the read I/O-cost. However, the index-
ing effort is shifted to query time. As a result, any additional
time involved in indexing will potentially add to the total
runtime of MapReduce jobs. Therefore, the first concern of
HAIL is: how to make adaptive index creation efficient?

To overcome this issue, the idea of HAIL is to run the
mapping and indexing processes in parallel. However, in-
terleaving map task execution with indexing bears the risk
of race conditions between map tasks and the AdaptiveIn-
dexer on the data block. In other words, the AdaptiveIndexer
might potentially reorder data inside a data block, while the
map task is still concurrently reading the data block. One
might think about copying data blocks before indexing to
deal with this issue. Nevertheless, this would entail the addi-
tional runtime and memory overhead of copying such mem-
ory chunks. For this reason, HAIL does not interleave the
mapping and indexing processes on the same data block. In-
stead, HAIL interleaves the indexing of a given data block
(e.g. block42) with the mapping phase of the succeeding data
block (e.g. block43), i.e. , HAIL keeps two HDFS blocks in
memory at the same time. For this, HAIL uses a producer-
consumer pattern: a map task acts as producer by offering
a data block to the AdaptiveIndexer, via a bounded block-
ing queue, as soon as it finishes processing the data block;
in turn, the AdaptiveIndexer is constantly consuming data
blocks from this queue. As a result, HAIL can perfectly in-
terleave map tasks with indexing, except for the first and
last data block to process in each node. It is worth noting
that the queue exposed by the AdaptiveIndexer is allowed
to reject data blocks in case a certain limit of enqueued data
blocks is exceeded. This prevents the AdaptiveIndexer to run
out of memory because of overload. Still, future MapReduce
jobs with a selection predicate on the same attribute (i.e., on
attribute d) can at their turn take care of indexing the re-
jected data blocks. Once the AdaptiveIndexer pulls a data
block from its queue, it processes the data block using two

stance. Hence, the AdaptiveIndexer can end up by indexing data blocks
from different MapReduce jobs at the same time.

12 Stefan Richter et al.

AdaptiveIndexer

IndexBuilderDaemon

Block 42

Index
0111010101...a
0101101000...b
1100101011...c
0000000011...d

d

IndexWriterDaemon

Block 42
Block Metadata
Index Metadata

Index a
0000000101...a
1101001101...b
1010101101...c
0111100111...d

Blocking Queue

offer take

Blocking Queue

put

1 5 7

8

1100101011...c
0101101000...b
0111010101...a

d 0000000011...
Sort + PV

Reorder

Index d

0111100111...d

1101001101...b
1010101101...c

0010011101...a

0➤23|1➤42|2➤7|…

Sparse Index

process

2

3

4

register

NameNode

Block 42
Block Metadata
Index Metadata

Index
0111010101...a
0101101000...b
1100101011...c
0000000011...d

d
take

9

DataNode 5

Blk 42

a
Blk 42

d
sto

re
Pseudo

BLK 42
DN1 : c
DN5 : a, d
DNn : b

6

Fig. 4 AdaptiveIndexer internals.

internal components: the IndexBuilder and the IndexWriter.
Figure 4 illustrates the pipeline of these two internal compo-
nents, which we discuss in the following.
The IndexBuilder is a daemon thread that is responsible for
creating sparse clustered indexes on data blocks in the data
queue. With this aim, the IndexBuilder is constantly pulling
one data block after another from the data block queue 1 .
Then, for each data block, the IndexBuilder starts with sort-
ing the attribute column to index (attribute d in our exam-
ple) 2 . Additionally, the IndexBuilder builds a mapping
{old position 7→ new position} for all values as a permuta-
tion vector. After that, the IndexBuilder uses the permuta-
tion vector to reorder all other attributes in the offered data
block 3 . Once the IndexBuilder finishes sorting the en-
tire data block on attribute d, it builds a sparse clustered in-
dex on attribute d 4 . Then, the IndexBuilder passes the
newly indexed data block to the IndexWriter 5 . The In-
dexBuilder also communicates with the IndexWriter via a
blocking queue. This allows HAIL to parallelise indexing
with the I/O process for storing newly indexed data blocks.
The IndexWriter is another daemon thread and responsible
for persisting indexes created by the IndexBuilder to disk.
The IndexWriter continuously pulls newly indexed data
blocks from its queue in order to persist them on HDFS 6 .
Once the IndexWriter pulls a newly indexed data block (say
block42), it creates the block metadata and index metadata
for block42 7 . Notice that a newly indexed data block is just
another replica of the logical data block, but with a differ-
ent sort order. For instance, in our example of Section 5.1,
creating an index on attribute d for block42 leads to having
four data block replicas for block42: one replica for each of
the first four attributes. The IndexWriter creates a pseudo
data block replica 8 and registers the new index with the
NameNode 9 . This allows HAIL to consider the newly
created indexes in future jobs. In the following we discuss
pseudo data block replicas in more detail.

5.3 Pseudo Data Block Replicas

The IndexWriter could simply write a new indexed data
block as another replica. However, HDFS supports data

block replication only at the file level, i.e., HDFS replicates
all the data blocks of a given dataset the same number of
times. This goes against the incremental nature of HAIL. A
pseudo data block replica is basically a logical copy of a
data block and allows HAIL to keep a different replication
factor on a block basis rather than on a file basis. There-
fore, we store each pseudo data block replica in a new HDFS
file with replication factor one. Hence, the NameNode does
not recognise it as a normal data block replica and instead
simply sees the pseudo data block replica as another in-
dex available for the HDFS block. To avoid shipping across
nodes, each IndexWriter aims at storing the pseudo data
block replicas locally. The created HDFS files follow a nam-
ing convention, which includes the block id and the index
attribute, to uniquely identify a pseudo data block replica.

As pseudo data block replicas are stored in different
HDFS files than normal data block replicas, three important
questions arise:

How to access pseudo data block replicas in an invisible way
for users? HAIL achieves this transparency via the HAIL-
RecordReader. Users continue annotating their map func-
tions (with selection predicates and projections). Then, the
HAILRecordReader takes care of automatically switching
from normal to pseudo data block replicas. For this, the
HAILRecordReader uses the HAILInputStream, a wrapper
of the Hadoop FSInputStream.

How to manage and limit the storage space consumed by
the pseudo data block replicas? This question is related to
optimization problems from physical database design, i.e.
index selection. Given a certain storage budget, the ques-
tion is which indexes for an HDFS block to drop, to achieve
the highest workload benefit without exceeding the storage
constraint? Solving this problem is beyond the scope of this
article and is subject to ongoing work. A simple implemen-
tation could borrow ideas from buffer replacement strategies
to attack the problem, e.g. LRU or replacing the least bene-
ficial indexes.

How does the amount of relatively small files created for
pseudo data block replicas impact HDFS performance? The
metadata storage overhead for each file entry with one as-
sociated block in the NameNode is about 150 bytes. This
means, that given 6GB of free heap space on the NameN-
ode and an HDFS block size of 256MB, HAIL can support
more than 10PB of data in pseudo block replicas. Addition-
ally, future Hadoop versions will support a federation of Na-
meNodes to increase capacity, availability, and load balanc-
ing. This would alleviate the mentioned problem even fur-
ther. Furthermore, sequential read performance of a file that
is stored in pseudo data block replicas matches the perfor-
mance of normal HDFS files. This is because the involved
amount of seeks and DataNode hops for switching between
pseudo data block replicas is comparable to reading over
block boundaries when scanning normal HDFS files.

Towards Zero-Overhead Static and Adaptive Indexing in Hadoop 13

Job

Selection

Projection
a|b|c|d

d == 23

HAILRecordReader
Open InputStream

Block 42
a

Replica 1

Block 43
a

Replica 1

Block 42
b

Replica 2
c

Replica 3

Block 42

Block 43
b

Replica 2
c

Replica 3

Block 43

/in/data1

Block 42
d

Pseudo
/ai/blk_42/d

Block 43
d

Pseudo
/ai/blk_43/d Ps

eu
do

 B
lo

ck
 R

ep
lic

as

HD
FS

 B
lo

ck
 R

ep
lic

as

HDFS

Index ?

HadoopInputStream

Any HDFS Replica

only Tuples 1024-2048

Matching
HDFS Replica

Matching
Pseudo Replica

No Yes

HAILInputStream

Adaptive?

offset = 0offset = 4711

HAILInputSplit

BID
42

OFF
4711

INDEX
[a,b,c]

/in/data1
PATH

PSEUDO[d]

Index
Metadata

Block
Metadata

 dIndex

Block
Metadata

all Tuples

1

3

4

6

 m
ap

m
Filter

d == 23

8
for each Tuple

01110101...a
01011010...b
11001010...c
00000000...d

0101a
1000b
1010c

d 00112

5

7

Fig. 5 HAILRecordReader internals.

5.4 HAIL RecordReader Internals

Figure 5 illustrates the internal pipeline of the HAILRecor-
dReader when processing a given HAILInputSplit. When a
map task starts, the HAILRecordReader first reads the meta-
data of its HAILInputSplit in order to check if there exists a
suitable index to process the input data block (block42) 1 .
If a suitable index is available, the HAILRecordReader ini-
tialises the HAILInputStream with the selection predicate
of jobd as a parameter 2 . Internally, the HAILInputStream
checks if the index resides in a normal or pseudo data block
replica 3 . This allows the HAILInputStream to open an
input stream to the right HDFS file. This is because normal
and pseudo data block replicas are stored in different HDFS
files. While all normal data block replicas belong to the same
HDFS file, each pseudo data block replica belongs to a dif-
ferent HDFS file 4 . In our example the index on attribute d
for block42 resides in a pseudo data block replica. Therefore,
the HAILInputStream opens an input stream to the HDFS
file /pseudo/blk 42/d 5 . As a result, the HAILRecordReader
does not care from which file it is reading, since normal and
pseudo data block replicas have the same format. Therefore,
switching between a normal and a pseudo data block replica
is not only invisible to users, but also to the HAILRecor-
dReader. The HAILRecordReader just reads the block and
index metadata using the HAILInputStream 6 . After per-
forming an index lookup for the selection predicate of jobd,
the HAILRecordReader loads only the projected attributes
(a, b, c, and d) from the qualifying tuples (e.g. tuples with
rowIDs in 1024 – 2048) 7 . Finally, the HAILRecordReader
forms key/value-pairs and passes only qualifying pairs to the
map function 8 .

In case that no suitable index exists, the HAILRecor-
dReader takes the Hadoop InputStream, which opens an in-
put stream to any normal data block replica, and falls back
to full scan (like standard Hadoop MapReduce).

6 Adaptive Indexing Strategies

In the previous section we discussed the core principles of
the HAIL adaptive indexing pipeline. Now, we introduce
three strategies that allow HAIL to improve the performance
of MapReduce jobs. We first present lazy adaptive index-
ing and eager adaptive indexing, two techniques that allow
HAIL to control its incremental indexing mechanism with
respect to runtime overhead and convergence rate. We then
discuss how HAIL can prioritise data blocks for indexing
based on their selectivity. Finally, we introduce selectivity-
based indexing, a technique to decide which blocks to offer
to the adaptive indexer based on job selectivity.

6.1 Lazy Adaptive Indexing

The blocking queues used by the AdaptiveIndexer allow us
to easily protect HAIL against CPU overloading. However,
writing pseudo data block replicas can also slow down the
parallel read and write processes of MapReduce jobs. In
fact, the negative impact of extra I/O operations can be high,
as MapReduce jobs are typically I/O-bound. As a result,
HAIL as a whole might become slower even if the Adap-
tiveIndexer can computationally keep up with the job exe-
cution. So, the question that arises is: how to write pseudo
data block replicas efficiently?

HAIL solves this problem by making indexing incre-
mental, i.e., HAIL spreads index creation over multiple
MapReduce jobs. The goal is to balance index creation cost
over multiple MapReduce jobs so that users perceive small
(or no) overhead in their jobs. To do so, HAIL uses an of-
fer rate, which is a ratio that limits the maximum number
of pseudo data block replicas (i.e., number of data blocks
to index) to create during a single MapReduce job. For ex-
ample, using an offer rate of 10%, HAIL indexes in a sin-
gle MapReduce job at maximum one data block out of ten
processed data blocks (i.e., HAIL only indexes 10% of the
total data blocks). Notice that, consecutive adaptive index-
ing jobs with selections on the same attribute already bene-
fit from pseudo data block replicas created during previous
jobs. This strategy has two major advantages. First, HAIL
can reduce the additional I/O introduced by indexing to a
level that is acceptable for the user. Second, the indexing
effort done by HAIL for a certain attribute is proportional
to the number of times a selection is performed on that at-
tribute. Another advantage of using an offer rate is that users
can decide how fast they want to converge to a complete in-
dex, i.e., all data blocks are indexed. For instance, using an
offer rate of 10%, HAIL would require 10 MapReduce jobs
with a selection predicate on the same attribute to converge
to a complete index (i.e. until all HDFS blocks are fully in-
dexed). Like that, on the one hand, the investment in terms
of time and space for MapReduce jobs with selection pred-

14 Stefan Richter et al.

icates on unfrequent attributes is minimized. On the other
hand, MapReduce jobs with selection predicates on frequent
attributes quickly converge to a completely indexed copy.

6.2 Eager Adaptive Indexing

Lazy adaptive indexing allows HAIL to easily throttle down
adaptive indexing efforts to an acceptable (or even invisible)
degree for users (see Section 6.1). However, let us make two
important observations that could make a constant offer rate
not desirable for certain users:

(1.) Using a constant offer rate, the job runtime of consec-
utive MapReduce jobs having a filter condition on the same
attribute is not constant. Instead, they have an almost lin-
early decreasing runtime up to the point where all blocks
are indexed. This is because the first MapReduce job is the
only to perform a full scan over all the data blocks of a given
dataset. Consecutive jobs, even when indexing and storing
the same amount of blocks, are likely to run faster as they
benefit from all indexing work of their predecessors.
(2.) HAIL actually delays indexing by using an offer rate.
The tradeoff here is that using a lower offer rate leads to a
lower indexing overhead, but it requires more MapReduce
jobs to index all the data blocks in a given dataset. How-
ever, some users might want to limit the experienced index-
ing overhead and still desire to benefit from complete index-
ing as soon as possible.

Therefore, we propose an eager adaptive indexing strat-
egy to deal with this problem. The basic idea of eager
adaptive indexing is to dynamically adapt the offer rate for
MapReduce jobs according to the indexing work achieved
by previous jobs. In other words, eager adaptive indexing
tries to exploit the saved runtime and reinvest it as much as
possible into further indexing. To do so, HAIL first needs to
estimate the runtime gain (in a given MapReduce job) from
performing an index scan on the already created pseudo data
block replicas. For this, HAIL uses a cost model to estimate
the total runtime, T job, of a given MapReduce job (Equa-
tion 1). Table 1 lists the parameters we use in the cost model.

T job = Tis + t f sw · n f sw + TidxOverhead. (1)

We define the number of map waves performing a full scan,
n f sw, as d nblocks−nidxBlocks

nslots
e. Intuitively, the total runtime T job of a

job consists of three parts. First, the time required by HAIL
to process the existing pseudo data block replicas, i.e., all
data blocks having a relevant index, Tis. Second, the time
required by HAIL to process the data blocks without a rel-
evant index, t f sw · n f sw. Third, the time overhead caused by
adaptive indexing, TidxOverhead.9 This overhead depends on
the number of data blocks that are offered to the AdaptiveIn-
dexer and the average time overhead observed for indexing

9 It is worth noting that TidxOverhead denotes only the additional run-
time that a MapReduce job has due to adaptive indexing.

Table 1 Cost model parameters.

Notation Description
nslots The number of map tasks that can run in parallel

in a given Hadoop cluster
nblocks The number of data blocks of a given dataset
nidxBlocks The number of blocks with a relevant index
n f sw The number of map waves performing a full scan
t f sw The average runtime of a map wave performing a

full scan (without adaptive indexing overhead)
tidxOverhead The average time overhead of adaptive indexing in

a map wave
TidxOverhead The total time overhead of adaptive indexing
Tis The total runtime of the map waves performing an

index scan
T job The total runtime of a given job
Ttarget The targeted total job runtime
ρ The ratio of data blocks (w.r.t. nblocks) offered to

the AdaptiveIndexer

a block. Formally, we define TidxOverhead as follows:

TidxOverhead = tidxOverhead ·min
(
ρ ·

⌈
nblocks
nslots

⌉
, n f sw

)
. (2)

We can use this model to automatically calculate the of-
fer rate ρ in order to keep the adaptive indexing overhead
acceptable for users. Formally, from Equations 1 and 2, we
deduct ρ as follows:

ρ =
Ttarget − Tis − t f sw · n f sw

tidxOverhead · d
nblocks
nslots
e

.

Therefore, given a target job runtime Ttarget, HAIL can
automatically set ρ in order to fully spent its time budget
for creating indexes and use the gained runtime in the next
jobs either to speed up the jobs or to create even more in-
dexes. Usually, we choose Ttarget to be equal to the runtime
of the very first job so that users can observe a stable run-
time till almost everything is indexed. However, users can
set Ttarget to any time budget in order to adapt the index-
ing effort to their needs. Notice that, since already indexed
pseudo data block replicas are not offered again to the Adap-
tiveIndexer, HAIL first processes pseudo data block replicas
and measures Tis, before deciding what offer rate to use for
the unindexed blocks. The times t f sw (from Equation 1) and
tidxOverhead (from Equation 2) can be measured in a calibra-
tion job or given by users.

On the one hand, HAIL can now adapt the offer rates
to the performance gains obtained from performing index
scans over the already indexed data blocks. On the other
hand, by gradually increasing the offer rate, eager adap-
tive indexing prioritises complete index convergence over
early runtime improvements for users. Thus, users no longer
experience an incremental and linear speed up in job per-
formance until the index is eventually complete, but in-
stead they experience a sharp improvement when HAIL ap-
proaches to a complete index. In summary, besides limiting
the overhead of adaptive indexing, the offer rate can also be
considered as a tuning knob to trade early runtime improve-
ments with faster indexing.

Towards Zero-Overhead Static and Adaptive Indexing in Hadoop 15

6.3 Selectivity-based Adaptive Indexing

Earlier, we saw that HAIL uses an offer rate to limit the num-
ber of data blocks to index in a single MapReduce job. For
this, HAIL uses a round robin policy to select the data blocks
to pass to the AdaptiveIndexer. This sounds reasonable un-
der the assumption that data is uniformly distributed. How-
ever, datasets are typically skewed in practice and hence
some data blocks might contains more qualifying tuples than
others under a given query workload. Consequently, index-
ing highly selective data blocks before other data blocks
promises higher performance benefits.

Therefore, HAIL can also use a selectivity-based data
block selection approach for deciding which data blocks to
use. The overall goal is to optimize the use of available com-
puting resources. In order to maximize the expected perfor-
mance improvement for future MapReduce jobs running on
partially indexed datasets, we prioritize HDFS blocks with a
higher selectivity. The big advantage of this approach is that
users can perceive higher improvements in performance for
their MapReduce jobs from the very first runs. Additionally,
as a side-effect of using this approach, HAIL can adapt faster
to the selection predicates of MapReduce jobs.

However, how can HAIL efficiently obtain the selectiv-
ities of data blocks? For this, HAIL exploits the natural
process of map tasks to propose data blocks to the Adap-
tiveIndexer. Recall that a map task passes a data block to the
AdaptiveIndexer once the map task finished processing the
block. Thus, HAIL can obtain the accurate selectivity of a
data block by piggybacking on the map phase: when the data
block is filtered according to the provided selection pred-
icate. This allows HAIL to have perfect knowledge about
selectivities for free. Given the selectivity of a data block,
HAIL can decide if it is worth to index the data block or not.
In our current HAIL prototype, a map task proposes a data
block to the AdaptiveIndexer if the percentage of qualifying
tuples in the data block is at most 80%. However, users can
adapt this threshold to their applications. Notice that with
the statistics on data block selectivities, HAIL can also de-
cide which indexes to drop in case of storage limitations.
However, a discussion on an index eviction strategy is out
of the scope of this article.

7 HAIL Splitting and Scheduling

We now discuss how HAIL creates and schedules map tasks
for any incoming MapReduce job.

In contrast to the Hadoop MapReduce InputFormat,
the HailInputFormat uses a more elaborate splitting pol-
icy, called HailSplitting. The overall idea of HailSplitting
is to map one input split to several data blocks whenever a
MapReduce job performs an index scan over its input. In the
beginning, HailSplitting divides all input data blocks into
two groups Bi and Bn. Where Bi contains blocks that have at

least one replica with a matching index (i.e., having a rele-
vant replica) and Bn contains blocks with no relevant replica.
Then, the main goal of the HailSplitting is to combine sev-
eral data blocks from Bi into one input split. For this, Hail-
Splitting first partitions data blocks from Bi according to the
locations of their relevant replica in order to improve data
locality. As a result of this process, HailSplitting produces
as many partitions of blocks as there are datanodes storing
at least one indexed block of the given input. Then, for each
partition of data blocks, HailSplitting creates as many input
splits as there exists map slots per TaskTracker. Thus, HAIL
reduces the number of map tasks and hence reduces the ag-
gregated costs of initializing and finalizing map tasks.

The reader might think that using several blocks per in-
put split may significantly impact failover. However, this
is not true since tasks performing an index scan are rela-
tively short running. Therefore, the probability that one node
fails in this period of time is very low [40]. Still, in case
a node fails in this period of time, HAIL simply resched-
ules the failed map tasks, which results only in a few sec-
onds overhead anyways. Optionally, HAIL could apply the
checkpointing techniques proposed in [40] in order to im-
prove failover. We will study these interesting aspects in a
future work. The reader might also think that performance
could be negatively impacted in case that data locality is
not achieved for several map tasks. However, fetching small
parts of blocks through the network (which is the case when
using index scan) is negligible [34]. Moreover, one can sig-
nificantly improve data locality by simply using an adequate
scheduling policy (e.g. the Delay Scheduler [46]). If no rel-
evant index exists, HAIL scheduling falls back to standard
Hadoop scheduling by optimizing data locality only.

For all data blocks in Bn, HAIL creates one map task
per unindexed data block just like standard Hadoop. Then,
for each map task, HAIL considers r different computing
nodes as possible locations to schedule a map task, where r
is the replication factor of the input dataset. However, in con-
trast to original Hadoop, HAIL prefers to assign map tasks
to those nodes that currently store less indexes than the av-
erage. Since HAIL stores pseudo data block replicas local
to the map tasks that created them, this scheduling strategy
results in a balanced index placement and allows HAIL to
better parallelize index access for future MapReduce jobs.

8 Related Work

HAIL uses PAX [3] as data layout for HDFS block, i.e.,
a columnar layout inside the HDFS block. PAX was orig-
inally invented for cache-conscious processing, but it has
been adapted in the context of MapReduce [12]. In our pre-
vious work [34], we showed how to improve over PAX by
computing different layouts on the different replicas, but we
did not consider indexing. This article fills this gap.

16 Stefan Richter et al.

Static Indexing. Indexing is a crucial step in all major
DBMSs [19,10,2,8,11]. The overall idea behind all these
approaches is to analyze a query workload and to statically
decide which attributes to index based on these observations.
Several research works have focused on supporting index
access in MapReduce workflows [45,35,15,33]. However,
all these offline approaches have three big disadvantages.
First, they incur a high upfront indexing cost that several
applications cannot afford (such as scientific applications).
Second, they only create a single clustered index per dataset,
which is not suitable for query workloads having selection
predicates on different attributes. Third, they cannot adapt to
changes in workloads without the intervention of a DBA.

Online Indexing. Tuning a database at upload time has be-
come harder as query workloads become more dynamic and
complex. Thus, different DBMSs started to use online tuning
tools to attack the problem of dynamic workloads [42,6,7,
37]. The idea is to continuously monitor the performance of
the system and create (or drop) indexes as soon as it is con-
sidered beneficial. Manimal [9,32] can be used as an online
indexing approach for automatically optimizing MapReduce
jobs. The idea of Manimal is to generate a MapReduce job
for index creation as soon as an incoming MapReduce job
has a selection predicate on an unindexed attribute. Online
indexing can then adapt to query workloads. However, on-
line indexing techniques, require us to index a dataset com-
pletely in one pass. Therefore, online indexing techniques
simply transfer the high cost of index creation from upload
time to query processing time.

Adaptive Indexing. HAIL is inspired by database crack-
ing [28] which aims at removing the high upfront cost bar-
rier of index creation. The main idea of database cracking is
to start organising a given attribute (i.e., to create an adap-
tive index on an attribute) when it receives for the first time
a query with a selection predicate on that attribute. Thus,
future incoming queries having predicates on the same at-
tribute continue refining the adaptive index as long as finer
granularity of key ranges is advantageous. Key ranges in an
adaptive index are disjoint, where keys in each key range
are unsorted. Basically, adaptive indexing performs for each
query one step of quicksort using the selection predicates
as pivot for partitioning attributes. HAIL differs from adap-
tive indexing in four aspects. First, HAIL creates a clus-
tered index for each data block and hence avoids any data
shuffling across data blocks. This allows HAIL to preserve
Hadoop fault-tolerance. Second, HAIL considers disk-based
systems and thus it factors in the cost of reorganising data in-
side data blocks. Third, HAIL parallelises the indexing effort
across several computing nodes to minimise the indexing
overhead. Fourth, HAIL focuses on creating clustered in-
dexes instead of unclustered indexes. A follow-up work [29]
focuses on lazily aligning attributes to converge into a clus-
tered index after a certain number of queries. However, it

considers a main memory system and hence does not factor
in the I/O-cost for moving data many times on disk. Other
works on adaptive indexing in main memory databases have
focused on updates [31], concurrency control [20], and ro-
bustness [25], but these works are orthogonal to the problem
we address in this paper.

Adaptive Merging. Another related work to HAIL is the
adaptive merging [21]. This approach uses standard B-
trees to persist intermediate results during an external sort.
Then, it only merges those key ranges that are relevant to
queries. In other words, adaptive merging incrementally per-
forms external sort steps as a side effect of query process-
ing. However, this approach cannot be applied directly for
MapReduce workflows for three reasons. First, like adaptive
indexing, this approach creates unclustered indexes. Sec-
ond, merging data in MapReduce destroys Hadoop fault-
tolerance and hurts the performance of MapReduce jobs.
This is because adaptive merging would require us to merge
data from several data blocks into one. Notice that, merg-
ing data inside a data block would not make sense as a data
block is typically loaded entirely into main memory by map
tasks anyways. Third, it has an expensive initial step to cre-
ate the first sorted runs. A follow-up work uses adaptive in-
dexing to reduce the cost of the initial step of adaptive merg-
ing in main memory [30]. However, it considers main mem-
ory systems and hence it has the first two problems.

Adaptive Loading. Some other works focus on loading data
into a database in an incremental [1] or in a lazy [27] man-
ner with the goal of reducing the upfront cost for parsing
and storing data inside a database. These approaches al-
low for reducing the delay until users can execute their first
queries dramatically. In the context of Hadoop, [1] proposes
to load those parts of a dataset that were parsed as input
to MapReduce Jobs into a database at job runtime. Hence,
consecutive MapReduce Jobs that require the same data can
benefit, e.g. from the binary representation or indexes in-
side the database store. However, this scenario already in-
volves an additional roundtrip of first writing the data to
HDFS, reading it from HDFS to then again store the data
inside a database plus some overhead for index creation. In
contrast to these works, HAIL aims at reducing the upfront
cost of data parsing and index creation already when load-
ing data into HDFS. In other words, while these approaches
aim at adaptively uploading raw datasets from HDFS into
a database to improve performance, HAIL aims at index-
ing raw datasets directly in HDFS to improve performance,
without additional read/write cycles. NoDB, another recent
work, proposes to run queries directly on raw datasets [4].
Additionally, this approach (i) remembers the offsets of in-
dividual attribute values, and (ii) caches binary values from
the dataset which are both extracted as byproducts of query
execution. Those optimizations allow for reducing the tok-
enizing and parsing costs for consecutive queries that touch

Towards Zero-Overhead Static and Adaptive Indexing in Hadoop 17

previously processed parts of the dataset. However, NoDB
considers a single node scenario using a local file system,
while HAIL considers a distributed environment and a dis-
tributed file system. As shown in our experiments, writing
to HDFS is I/O bound and parsing the attributes of a dataset
entirely can be performed in parallel to storing the data in
HDFS. Since data parsing does not cause noticeable runtime
overhead in our scenario, incremental loading techniques as
presented in [4] are not required for HAIL. Furthermore,
NoDB does not consider different sort orders or indexes to
improve data access.

To the best of our knowledge, this work is the first work
that aims at pushing indexing to the extreme at low index
creation cost and to propose an adaptive indexing solution
suitable for MapReduce systems.

9 Experiments

Let’s get back to Bob again and his initial question: will
HAIL solve his indexing problem efficiently? To answer this
question, we need to run a first wave of experiments in order
to answer the following questions as well:
(1.) What is the performance of HAIL at upload time? What
is the impact of static indexing in the upload pipeline? How
many indexes can we create in the time the standard HDFS
uploads the data? How does hardware performance affect
HAIL upload? How well does HAIL scale-out on large clus-
ters? (We answer these questions in Section 9.3).
(2.) What is the performance of HAIL at query time? How
much does HAIL benefit from statically created indexes?
How does query selectivity affect HAIL? How do failing
nodes affect performance? (We answer these questions in
Section 9.4). How does HailSplitting improve end-to-end
job runtimes? (We answer this question in Section 9.5).

But, what happens if Bob did not create the right indexes
upfront? How can Bob adapt his indexes to a new workload
that he did not predict at upload time? For this, we need
to evaluate the efficiency of HAIL to adapt to query work-
loads and compare it with Hadoop and a version of HAIL,
that only uses static indexing. We present a second wave of
experiments to answer the following main questions:
(3.) What is the overhead of running the adaptive indexing
techniques in HAIL? How fast can HAIL adapt to changes in
the query workload? How much can MapReduce jobs ben-
efit from the adaptivity of HAIL? How well does each of
the adaptive indexing technique of HAIL allow MapReduce
jobs to improve their runtime? (We answer these questions
in Section 9.6)

9.1 Hardware and Systems

Hardware. We use six different clusters. One is a physi-
cal 10-node cluster. Each node has one 2.66GHz Quad Core

Xeon processor running 64-bit platform Linux openSuse
11.1 OS, 4x4GB of main memory, 6x750GB SATA HD, and
three Gigabit network cards. Our physical cluster has the ad-
vantage that the amount of runtime variance is limited [41].
Yet, to fully understand the scale-up properties of HAIL, we
use three different EC2 clusters, each having 10 nodes. For
each of these three clusters, we use different node types (see
Section 9.3.3). Finally, to understand how well HAIL scales-
out, we consider two more EC2 clusters: one with 50 nodes
and one with 100 nodes (see Section 9.3.4).
Systems. We compared the following systems: (1) Hadoop,
(2) Hadoop++ as described in [15], and (3) HAIL as de-
scribed in this article. For HAIL, we disable the HAIL split-
ting in Section 9.4 in order to measure the benefits of using
this policy in Section 9.5. All three systems are based on
Hadoop 0.20.203 and are compiled and run using Java 7.
All systems were configured to use the default HDFS block
size of 64MB if not mentioned otherwise.

9.2 Datasets and Queries

Datasets. For our benchmarks we use two different datasets.
First, we use the UserVisits table as described in [39]. This
dataset nicely matches Bob’s Use Case. We generated 20GB
of UserVisits data per node using the data generator pro-
posed by [39]. Second, we additionally use a Synthetic
dataset consisting of 19 integer attributes in order to under-
stand the effects of selectivity. Notice that, this Synthetic
dataset is similar to scientific datasets, where all or most
of the attributes are integer/float attributes (e.g., the SDSS
dataset). For this dataset, we generated 13GB per node.
Queries. For the UserVisits dataset, we consider the follow-
ing queries as Bob’s workload:

Bob-Q1 (selectivity: 3.1 x 10−2)

SELECT sourceIP FROM UserVisits WHERE visitDate

BETWEEN ‘1999-01-01’ AND ‘2000-01-01’

Bob-Q2 (selectivity: 3.2 x 10−8)

SELECT searchWord, duration, adRevenue

FROM UserVisits WHERE sourceIP=‘172.101.11.46’

Bob-Q3 (selectivity: 6 x 10−9)

SELECT searchWord, duration, adRevenue

FROM UserVisits WHERE sourceIP=‘172.101.11.46’

AND visitDate=‘1992-12-22’

Bob-Q4 (selectivity: 1.7 x 10−2)

SELECT searchWord, duration, adRevenue

FROM UserVisits WHERE adRevenue>=1 AND adRevenue<=10

Additionally, we use a variation of query Bob-Q4 to see how
well HAIL performs on queries with low selectivities:

Bob-Q5 (selectivity: 2.04 x 10−1)

SELECT searchWord, duration, adRevenue

FROM UserVisits WHERE adRevenue>=1 AND adRevenue<=100

18 Stefan Richter et al.

0

3250

6500

9750

13000

0 1 2 3

1600155415291427

11212

7290

1398

U
pl

oa
d

tim
e

[s
ec

]

Number of created indexes

Hadoop Hadoop++ HAIL

(a) Upload time for UserVisits

0

1700

3400

5100

6800

0 1 2 3

717712704671

5766

3472

1132

U
pl

oa
d

tim
e

[s
ec

]

Number of created indexes

Hadoop Hadoop++ HAIL

(b) Upload time for Synthetic

0

1075

2150

3225

4300

3 5 6 7 10

1700
12541089956717

3710

2712
2256

1773

1132

U
pl

oa
d

tim
e

[s
ec

]

Number of created replicas

Hadoop HAIL

(default)

Hadoop upload time with 3 replicas

(c) Varying replication for Synthetic
Fig. 6 Upload times when varying the number of created indexes (a)&(b) and the number of data block replicas (c)

For the Synthetic dataset, we use the queries in Table 2.
Notice that, for Synthetic all queries use the same attribute
for filtering. Hence, for this dataset HAIL cannot benefit
from its different indexes: it creates three different indexes,
yet only one of them will be used by these queries.

Table 2 Synthetic queries.

Query #Projected Attributes Selectivity
Syn-Q1a 19 0.10
Syn-Q1b 9 0.10
Syn-Q1c 1 0.10
Syn-Q2a 19 0.01
Syn-Q2b 9 0.01
Syn-Q2c 1 0.01

For all queries and experiments, we report the average
runtime of three trials.

9.3 Data Loading

We strongly believe that upload time is a crucial aspect for to
adopt a parallel data-intensive system. This is because most
users (such as Bob or scientists) want to start analyzing their
data early. In fact, low startup costs are one of the big advan-
tages of standard Hadoop over RDBMSs. Thus, we exhaus-
tively study the upload performance of HAIL.

9.3.1 Varying the Number of Indexes

We first measure the impact in performance when creating
indexes statically. For this, we scale the number of indexes
to create when uploading the UserVisits and the Synthetic
datasets. For HAIL, we vary the number of indexes from 0 to
3 and for Hadoop++ from 0 to 1 (this is because Hadoop++

cannot create more than one index). For Hadoop, we only
report numbers with 0 indexes as it cannot create any index.

Figure 6(a) shows the results for the UserVisits dataset.
We observe that HAIL has a negligible upload overhead of
∼2% over standard Hadoop. Then, when HAIL creates one
index per replica the overhead still remains very low (at most
∼14%). On the other hand, we observe that HAIL improves
over Hadoop++ by a factor of 5.1 when creating no index
and by a factor of 7.3 when creating one index. This is be-
cause Hadoop++ has to run two expensive MapReduce jobs

for creating one index. For HAIL, we observe that for two
and three indexes the upload costs increase only slightly.

Figure 6(b) illustrates the results for the Synthetic
dataset. We observe that HAIL significantly outperforms
Hadoop++ again by a factor of 5.2 when creating no in-
dex and by a factor of 8.2 when creating one index. On the
other hand, we now observe that HAIL outperforms Hadoop
by a factor of 1.6 even when creating three indexes. This is
because the Synthetic dataset is well suited for binary rep-
resentation, i.e., in contrast to the UserVisits dataset, HAIL
can significantly reduce the initial dataset size. This allows
HAIL to outperform Hadoop even when creating one, two,
or three indexes.

For the remaining upload experiments, we discard
Hadoop++ as we clearly saw in this section that it does not
upload datasets efficiently. Therefore, we focus on HAIL us-
ing Hadoop as baseline.

9.3.2 Varying the Replication Factor

We now analyze how well HAIL performs when increasing
the number of replicas. In particular, we aim at finding out
how many indexes HAIL can create for a given dataset in
the same time standard Hadoop needs to upload the same
dataset with the default replication factor of three and creat-
ing no indexes. To do this, we upload the Synthetic dataset
with different replication factors. In this experiment, HAIL
creates as many clustered indexes as block replicas. In other
words, when HAIL uploads the Synthetic dataset with a
replication factor of five, it creates five different clustered
index for each block.

Figure 6(c) shows the results for this experiment. The
dotted line marks the time Hadoop takes to upload with the
default replication factor of three. We see that HAIL signif-
icantly outperforms Hadoop for any replication factor and
up to a factor of 2.5. More interestingly, we observe that
HAIL stores six replicas (and hence it creates six differ-
ent clustered indexes) in a little less than the same time
Hadoop uploads the same dataset with only three replicas
without creating any index. Still, when increasing the repli-
cation factor even further for HAIL, we see that HAIL has
only a minor overhead over Hadoop with three replicas only.
These results also show that choosing the replication fac-

Towards Zero-Overhead Static and Adaptive Indexing in Hadoop 19

Table 3 Scale-up results

(a) Upload times for UserVisits when scaling-up [sec]

Cluster Node Type Hadoop HAIL System Speedup
Large 1844 3418 0.54
Extra Large 1296 2039 0.64
Cluster Quadruple 1284 1742 0.74
Scale-Up Speedup 1.4 2.0
Physical 1398 1600 0.87

(b) Upload times for Synthetic when scaling-up [sec]

Cluster Node Type Hadoop HAIL System Speedup
Large 1176 1023 1.15
Extra Large 788 640 1.23
Cluster Quadruple 827 600 1.38
Scale-Up Speedup 1.4 1.7
Physical 1132 717 1.58

tor mainly depends on the available disk space. Even in this
respect, HAIL improves over Hadoop. For example, while
Hadoop needs 390GB to upload the Synthetic dataset with 3
block replicas, HAIL needs only 420GB to upload the same
dataset with 6 block replicas! HAIL enables users to stress
indexing to the extreme to speed up their query workloads.

9.3.3 Cluster Scale-Up

In this section, we study how different hardware affects
HAIL upload times. For this, we create three 10-nodes EC2
clusters: the first uses large (m1.large) nodes10, the second
extra large (m1.xlarge) nodes, and the third cluster quadru-
ple (cc1.4xlarge) nodes. We upload the UserVisits and the
Synthetic datasets on each of these clusters.

We report the results of these experiments in Table 3(a)
(for UserVisits) and in Table 3(b) (for Synthetic), where we
display the System Speedup of HAIL over Hadoop as well
as the Scale-Up Speedup for Hadoop and HAIL. Addition-
ally, we show again the results for our local cluster as base-
line. As expected, we observe that both Hadoop and HAIL
benefit from using better hardware. In addition, we also ob-
serve that HAIL always benefits from scaling-up computing
nodes. Especially, using a better CPU makes parsing to bi-
nary faster. As a result, HAIL decreases (in Table 3(a)) or
increases (Table 3(b)) the performance gap with respect to
Hadoop when scaling-up (System Speedup).

We see that Hadoop significantly improves its perfor-
mance when scaling from Large (1844 s) to Extra Large
(1296 s) instances. This is thanks to the better I/O subsys-
tem of the Extra Large instance types. When scaling from
Extra Large to Cluster Quadruple instances we see no real
improvement, since the I/O subsystem stays the same and
only the CPU power increases. In contrast, HAIL benefits
from additional and/or better CPU cores when scaling up.

10 For this cluster type, we allocate an additional large node to run
the namenode and jobtracker.

Finally, we observe that the system speedup of HAIL over
Hadoop is even better when using physical nodes.

9.3.4 Cluster Scale-Out

At this point, the reader might have already started won-
dering how well HAIL performs for larger clusters. To an-
swer this question, we allocate one 50-nodes EC2 cluster
and one 100-nodes EC2 cluster. We use cluster quadru-
ple (cc1.4xlarge) nodes for both clusters, because with this
node type we experienced the lowest performance variabil-
ity. In both clusters, we allocated two additional nodes: one
to serve as Namenode and the other to serve as JobTracker.
While varying the number of nodes per cluster we keep the
amount of data per node constant.

0

550

1100

1650

2200

Syn UV Syn UV Syn UV

1486

633

1530

684

1742

600

1476

1026

1836

918

1284

827

U
pl

oa
d

Ti
m

e
[s

ec
]

Number of Nodes

Hadoop HAIL

10 nodes 50 nodes 100 nodes

Fig. 7 Scale-out results

Figure 7 shows these results. We observe that HAIL
achieves roughly the same upload times for the Synthetic
dataset. For the UserVisits dataset, we see that HAIL im-
proves its upload times for larger clusters. In particular, for
100 nodes, we see that HAIL matches the Hadoop upload
times for the UserVisits dataset and outperforms Hadoop by
a factor up to ∼1.4 for the Synthetic dataset. More interest-
ing, we observe that, in contrast to Hadoop, HAIL does not
suffer from high performance variability [41]. Overall, these
results show the efficiency of HAIL when scaling-out.

9.4 MapReduce Job Execution

We now analyze the performance of HAIL when running
MapReduce jobs. Our main goal for all these experiments
is to understand how well HAIL can perform compared to
the standard Hadoop MapReduce and Hadoop++ systems.
With this in mind, we measure two different execution times.
First, we measure the end-to-end job runtimes, which is the
time a given job takes to run completely. Second, we mea-
sure the record reader runtimes, which is dominated by the
time a given map task spends reading its input data. Recall
that for these experiments, we disable the HailSplitting pol-
icy (presented in Section 7) in order to better evaluate the
benefits of having several clustered indexes per dataset. We
study the benefits of HailSplitting in Section 9.5.

20 Stefan Richter et al.

0

375

750

1125

1500

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5

602598598598601

11451143

651705

1160 10991099
9421006

1094

Jo
b

R
un

tim
e

[s
ec

]

MapReduce Jobs

Hadoop Hadoop++ HAIL

(a) End-to-end job runtimes

0

1000

2000

3000

4000

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5

683
333

527573

28642917

5383

2776
24422470

21122156

3358

R
R

 R
un

tim
e

[m
s]

MapReduce Jobs

Hadoop Hadoop ++ HAIL

(b) Average record reader runtimes

0

375

750

1125

1500

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5

Jo
b

R
un

tim
e

[s
ec

]

MapReduce Jobs

Hadoop Hadoop++ HAIL Overhead

(c) Hadoop scheduling overhead
Fig. 8 Job runtimes, record reader times, and Hadoop MapReduce framework overhead for Bob’s query workload filtering on multiple attributes

0

175

350

525

700

a b c a b c

450446460473
517

572

Jo
b

R
un

tim
e

[s
ec

]

MapReduce Jobs

Hadoop Hadoop++ HAIL

Syn-Q1 Syn-Q2

460
463

433 404 403 403 409
466 433 433 430 433

(a) End-to-end job runtimes

0

750

1500

2250

3000

a b c a b c

6078131139274
495

586074
282331

572

1610161516521708
1885

2116

R
R

 R
un

tim
e

[m
s]

MapReduce Jobs

Hadoop Hadoop++ HAIL

Syn-Q1 Syn-Q2

(b) Average record reader runtimes

0

150

300

450

600

a b c a b c

Jo
b

R
un

tim
e

[s
ec

]

MapReduce Jobs

Hadoop Hadoop++ HAIL Overhead

Syn-Q1 Syn-Q2

(c) Hadoop scheduling overhead
Fig. 9 Job runtimes, record reader times, and Hadoop scheduling overhead overhead for Synthetic query workload filtering on a single attribute

9.4.1 Bob’s Query Workload

For these experiments: Hadoop does not create any index;
since Hadoop++ can only create a single clustered index, it
creates one clustered index on sourceIP for all three replicas,
as two very selective queries will benefit from this; HAIL
creates one clustered index for each replica: one on visit-
Date, one on sourceIP, and one on adRevenue.

Figure 8(a) shows the average end-to-end runtimes for
Bob’s queries. We observe that HAIL outperforms both
Hadoop and Hadoop++ in all queries. For Bob-Q2 and Bob-
Q3, Hadoop++ has similar results as HAIL since both sys-
tems have an index on sourceIP. However, HAIL still out-
performs Hadoop++. This is because HAIL does not have
to read any block header to compute input splits while
Hadoop++ does. Consequently, HAIL starts processing the
input dataset earlier and hence it finishes before.

Figure 8(b) shows the RecordReader times11. Once more
again, we observe that HAIL outperforms both Hadoop and
Hadoop++. HAIL is up to a factor 46 faster than Hadoop
and up to a factor 38 faster than Hadoop++. This is be-
cause Hadoop++ is only competitive if it happens to hit the
right index. As HAIL has additional clustered indexes (one
for each replica), the likelihood to hit an index increases.
Then, query runtimes for Bob-Q1, Bob-Q4, and Bob-Q5 are
sharply improved over Hadoop and Hadoop++.

Yet, if HAIL allows map tasks to read their input data
by more than one order of magnitude faster than Hadoop
and Hadoop++, why do MapReduce jobs not benefit from
this? To understand this we estimate the overhead of the

11 This is the time a map task takes to read and process its input.

Hadoop MapReduce framework. We do this by consider-
ing an ideal execution time, i.e., the time needed to read
all the required input data and execute the map functions
over such data. We estimate the ideal execution time Tideal =

#MapTasks/#ParallelMapTasks×Avg(TRecordReader). Here
#ParallelMapTasks is the maximum number of map tasks
that can be performed at the same time by all computing
nodes. We define the overhead as Toverhead = Tend-to-end −

Tideal. We show the results in Figure 8(c). We see that the
Hadoop framework overhead is in fact dominating the to-
tal job runtime. This has many reasons. A major reason is
that Hadoop was not built to execute very short tasks. To
schedule a single task, Hadoop spends several seconds even
though the actual task just runs in a few ms (as it is the case
for HAIL). Therefore, reducing the number of map tasks of
a job could greatly decrease the end-to-end job runtime. We
tackle this problem in Section 9.5.

9.4.2 Synthetic Query Workload

Our goal in this section is to study how query selectivities
affect the performance of HAIL. Recall that for this exper-
iment HAIL cannot benefit from its different indexes: all
queries filter on the same attribute. We use this setup to iso-
late the effects of selectivity.

We present the end-to-end job runtimes in Figure 9(a)
and the record reader times in Figure 9(b). We observe
in Figure 9(a) that HAIL outperforms both Hadoop and
Hadoop++. We see again that even if Hadoop++ has an in-
dex on the selected attribute, Hadoop++ runs slower than
HAIL. This is because HAIL has a slightly different splitting
phase than Hadoop++. Looking at the results in Figure 9(b),

Towards Zero-Overhead Static and Adaptive Indexing in Hadoop 21

0

375

750

1125

1500

Hadoop HAIL HAIL-1Idx

598598

1099

Jo
b

R
un

tim
e

[s
ec

]

Systems

Hadoop HAIL Slowdown

5.5 % slowdown10.5 % slowdown

10.3 % slowdown

Fig. 10 Fault-tolerance results

the reader might think that HAIL is better than Hadoop++

because of the PAX layout used by HAIL. However, we
clearly see in the results for query Syn-Q1a that this is not
true12. We observe that even in this case HAIL is better than
Hadoop++. The reason is that the index size in HAIL (2KB)
is much smaller than the index size in Hadoop++ (304KB),
which allows HAIL to read the index slightly faster. On
the other hand, we see that Hadoop++ slightly outperforms
HAIL for all three Syn-Q2 queries. This is because these
queries are more selective and then the random I/O cost due
to tuple reconstruction starts to dominate the record reader
times.

Surprisingly, we observe that query selectivity does not
affect end-to-end job runtimes (see Figure 9(a)) even if
query selectivity has a clear impact on the RecordReader
times (see Figure 9(b)). As explained in Section 9.4.1, this is
due to the overhead of the Hadoop MapReduce framework.
We clearly see this overhead in Figure 9(c). In Section 9.5,
we will investigate this in more detail.

9.4.3 Fault-Tolerance

In very large-scale clusters (especially on the Cloud), node
failures are no more an exception but rather the rule. A big
advantage of Hadoop MapReduce is that it can gracefully
recover from these failures. Therefore, it is crucial to pre-
serve this key property to reliably run MapReduce jobs with
minimal performance impact under failures. In this section
we study the effects of node failures in HAIL and compare
it with standard Hadoop MapReduce.

We perform these experiments as follows: (i) we set
the expiry interval to detect that a TaskTracker or a datan-
ode failed to 30 seconds, (ii) we chose a node randomly
and kill all Java processes on that node after 50% of work
progress, and (iii) we measure the slowdown as in [15],
slowdown =

(T f−Tb)
Tb
· 100, where Tb is the job runtime with-

out node failures and T f is the job runtime with a node fail-
ure. We use two configurations for HAIL. First, we config-
ure HAIL to create indexes on three different attributes, one
for each replica. Second, we use a variant of HAIL, coined
HAIL-1Idx, where we create an index on the same attribute
for all three replicas. We do so to measure the performance

12 Recall that this query projects all attributes, which is indeed more
beneficial for Hadoop++ as it uses a row layout.

impact of HAIL falling back to full scan for some blocks
after the node failure. This happens for any map task read-
ing its input from the killed node. Notice that, in the case of
HAIL-1Idx, all map tasks will still perform an index scan as
all blocks have the same index.

Figure 10 shows the fault-tolerance results for Hadoop
and HAIL. Overall, we observe that HAIL preserves the
failover property of Hadoop by having almost the same
slowdown. However, it is worth noting that HAIL can even
improve over Hadoop. This is because HAIL can still per-
form an index scan when having the same index on all repli-
cas (HAIL-1Idx). We clearly see this when HAIL creates the
same index on all replicas (HAIL-1Idx). In this case, HAIL
has a lower slowdown since failed map tasks can still per-
form an index scan even after failure. As a result, HAIL runs
almost as fast as when no failure occurs.

9.5 Impact of the HAIL Splitting Policy

We observed in Figures 8(c) and 9(c) that the Hadoop
MapReduce framework incurs a high overhead in the end-
to-end job runtimes. To evaluate the efficiency of HAIL to
deal with this problem, we now enable the HailSplitting pol-
icy (described in Section 7) and run again the Bob and Syn-
thetic queries on HAIL.

Figure 11 illustrates these results. We clearly observe
that HAIL significantly outperforms both Hadoop and
Hadoop++. We see in Figure 11(a) that HAIL outperforms
Hadoop up to a factor of 68 and Hadoop++ up to a factor of
73 for Bob’s workload. This is mainly because the HailSplit-
ting policy significantly reduces the number of map tasks
from 3, 200 (which is the number of map tasks for Hadoop
and Hadoop++) to only 20. As a result of HAIL Splitting
policy, the scheduling overhead does not impact the end-to-
end workload runtimes in HAIL (see Section 9.4.1). For the
Synthetic workload (Figure 11(b)), we observe that HAIL
outperforms Hadoop up to a factor of 26 and Hadoop++

up to a factor of 25. Overall, we observe in Figure 11(c)
that using HAIL Bob can run all his five queries 39x faster
than Hadoop and 36x faster than Hadoop++. We also ob-
serve that HAIL runs all six Synthetic queries 9x faster than
Hadoop and 8x faster than Hadoop++.

9.6 HAIL Adaptive Indexing

In the previous experiments we focused on the performance
of HAIL with static indexing only, i.e., we deactivated HAIL
adaptive indexing. For the following experiments we now
focus on the evaluation of the HAIL adaptive indexing
pipeline.

In addition to the 10-node cluster (Cluster-A) we used in
previous experiments, we use an additional 4-node cluster
(Cluster-B) in order to measure the influence of more effi-
cient processors. In Cluster-B, each node has: one 3.46 GHz

22 Stefan Richter et al.

0

375

750

1125

1500

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5

6522151516

11451143

651705

1160 10991099
9421006

1094

Jo
b

R
un

tim
e

[s
ec

]

MapReduce Jobs

Hadoop Hadoop++ HAIL

(a) Bob queries

0

175

350

525

700

a b c a b c

1723572863
127

450446460473
517

572

Jo
b

R
un

tim
e

[s
ec

]

MapReduce Jobs

Hadoop Hadoop++ HAIL

Syn-Q1 Syn-Q2

460 466 433 433 430 433

(b) Synthetic queries

0

1500

3000

4500

6000

Bob Synthetic

315133

2655

4804

2918

5240

To
ta

l R
un

tim
e

[s
ec

]

Workload

Hadoop Hadoop++ HAIL

(c) Total Workload
Fig. 11 End-to-end job runtimes for Bob and Synthetic queries using the HailSplitting policy

Hexa Core Xeon X5690 processors; 20GB of main memory;
one 278GB SATA hard disk (for the OS) and one 837GB
SATA hard disk (for HDFS); two one Gigabit network cards.

Since the results from previous experiments clearly
showed the high superiority of HAIL over Hadoop++, we
decide to discard Hadoop++ and keep only Hadoop and
HAIL with no adaptive indexing activated as baselines. For
HAIL using the adaptive indexing techniques, we consider
four different variants according to the offer rate ρ: HAIL
(ρ = 0.1), HAIL (ρ = 0.25), HAIL (ρ = 0.5), and HAIL
(ρ = 1). Notice that HAIL with no adaptive indexing is the
same as HAIL (ρ = 0). Still, as in previous sections, we as-
sume that HAIL creates one index on sourceIP, one on visit-
Date, and one on adRevenue, for the UserVisits dataset. For
the Synthetic dataset, we assume that HAIL does not create
any index at upload time. Notice that, given the high Hadoop
scheduling overhead we observed in previous experiments,
we increase the data block size to 256MB to decrease such
overhead for Hadoop.

Moreover, making use of the lessons learned from the
first wave of experiments, we slightly change our datasets
and queries in order to stress and better evaluate HAIL under
bigger datasets and different query selectivities. We describe
these changes in the following.

Datasets. We again use the web log dataset (UserVisits) but
scaled it to 40GB per node, i.e., 400GB for Cluster-A and
160GB for Cluster-B. Additionally, the Synthetic dataset
has now six attributes and a total size of 50GB per node,
i.e., 500GB for Cluster-A and 200GB for Cluster-B. We
generate the values for the first attribute in the range [1..10]
and with an exponential repetition for each value, i.e., 10i−1

where i ∈ [1..10]. We generate the other five attributes at
random. Then, we shuffle all tuples across the entire dataset
to have the same distribution across data blocks.

MapReduce Jobs. For the UserVisits dataset, we consider
eleven jobs (JobUV1 – JobUV11) with a selection pred-
icate on attribute searchWord and with a full projection
(i.e., projecting all 9 attributes). The first four jobs JobUV1
– JobUV4 have a selectivity of 0.4% (1.24 million output
records) and the remaining seven jobs (JobUV5 – JobUV11)
have a selectivity of 0.2% (0.62 million output records). For
the Synthetic dataset, we consider other eleven jobs (Job-

Syn1 – JobSyn11) with a full projection, but with a selec-
tion predicate on the first attribute. These jobs have a selec-
tively of 0.2% (2.2 million output records). All jobs for both
datasets select disjoint ranges to avoid caching effects.

9.6.1 Performance for the First Job

Since HAIL piggybacks adaptive indexing on MapReduce
jobs, the very first question that the reader might ask is: what
is the additional runtime incurred by HAIL on MapReduce
jobs? We answer this question in this section. For this, we
run job JobUV1 for UserVisits and job JobSyn1 for Syn-
thetic. For these experiments, we assume that there is no
block with a relevant index for jobs JobUV1 and JobSyn1.

Figure 12 shows the job runtime for five variants of
HAIL for the UserVisits dataset. In Cluster-A, we observe
that HAIL has almost no overhead (only 1%) over HAIL
(ρ = 0) when using an offer rate of 10% (i.e., ρ = 0.1).
Notice that HAIL (ρ = 0) has no matching index available
and hence behaves like normal Hadoop with just the binary
PAX layout to speed up the job execution. We can also see
that the new layout gives us an improvement of at most a
factor of two in our experiments. Interestingly, we observe
that HAIL is still faster than Hadoop with ρ = 0.1 and
ρ = 0.25. Indeed, the overhead incurred by HAIL increases
along with the offer rate used by HAIL. However, we ob-
serve that HAIL increases the execution time of JobUV1 by
less than factor of two w.r.t. both Hadoop and HAIL with-
out any indexing, even though all data blocks are indexed
in a single MapReduce job. We especially observe that the
overhead incurred by HAIL scales linearly with the ratio of
indexed data blocks (i.e., with ρ), except when scaling from
ρ = 0.1 to ρ = 0.25. This is because HAIL starts to be CPU
bound only when offering more than 20% of the data blocks
(i.e., from ρ = 0.25). This changes when running JobUV1
in Cluster-B. In these results, we clearly observe that the
overhead incurred by HAIL scales linearly with ρ. We espe-
cially observe that HAIL benefits from using newer CPUs
and have better performance than Hadoop for most offer
rates. HAIL has only 4% overhead over Hadoop when hav-
ing ρ = 1. Additionally, we can see that the adaptive index-
ing in HAIL incurs low overhead: from 10% (with ρ = 0.1)
to 43% (with ρ = 1).

Towards Zero-Overhead Static and Adaptive Indexing in Hadoop 23

0

300

600

900

1200

1103

855
722

637630
785

Jo
b

ru
nt

im
e

[s
]

JobUV1

Hadoop HAIL (ρ=0) HAIL (ρ=0.1)
HAIL (ρ=0.25) HAIL (ρ=0.5) HAIL (ρ=1)

569
479447436398

547

JobUV1

Cluster A Cluster B

Fig. 12 HAIL Performance when running the first MapReduce job
over UserVisits.

0

300

600

900

1200

990
785

674624554

961

Jo
b

ru
nt

im
e

[s
]

JobSyn1

Hadoop HAIL (ρ=0) HAIL (ρ=0.1)
HAIL (ρ=0.25) HAIL (ρ=0.5) HAIL (ρ=1)

483470438430393

864

JobSyn1

Cluster A Cluster B

Fig. 13 HAIL Performance when running the first MapReduce job
over Synthetic.

Figure 13 shows the job runtimes for Synthetic. Overall,
we observe that the overhead incurred by HAIL continues
to scale linearly with the offer rate. In particular, we observe
that HAIL has no overhead over Hadoop in both clusters,
except for HAIL (ρ = 1) in Cluster-A (where HAIL incurs
a negligible overhead of ∼3%). It is worth noting that when
using newer CPUs (Cluster-B) adaptive indexing in HAIL
has very low overhead as well: from 9% to only 23%.

From these results, we can conclude that HAIL can effi-
ciently create indexes at job runtime while limiting the over-
head of writing pseudo data blocks. We observe the effi-
ciency of the lazy adaptive indexing mechanism of HAIL
to adapt to users’ requirements via different offer rates.

9.6.2 Performance for a Sequence of Jobs

We saw in the previous section that HAIL adaptive indexing
techniques can scale linearly with the help of the offer rate.
But, which are the implications for a sequence of MapRe-
duce jobs? To answer this question, we run the sequence of
eleven MapReduce jobs for each dataset.

Figures 14 and 15 show the job runtimes for the
UserVisit and Synthetic datasets, respectively. Overall, we
clearly see in both computing clusters that HAIL improves
the performance of MapReduce jobs linearly with the num-
ber of indexed data blocks. In particular, we observe that the
higher the offer rate, the faster HAIL converges to a com-
plete index. However, the higher the offer rate, the higher
the adaptive indexing overhead for the initial job (JobUV1
and JobSyn1). Thus, users are faced with a natural tradeoff

between indexing overhead and the required number of jobs

0

300

600

900

1200

1 2 3 4 5 6 7 8 9 10 11

Jo
b

ru
nt

im
e

[s
]

JobsUV

Hadoop HAIL (ρ=0) HAIL (ρ=1)
HAIL (ρ=0.5) HAIL (ρ=0.25) HAIL (ρ=0.1)

1 2 3 4 5 6 7 8 9 10 11

JobsUV

Cluster A Cluster B

Fig. 14 HAIL performance when running a sequence of MapReduce
jobs over UserVisits.

0

300

600

900

1200

1 2 3 4 5 6 7 8 9 10 11

Jo
b

ru
nt

im
e

[s
]

JobsSyn

Hadoop HAIL (ρ=0) HAIL (ρ=1)
HAIL (ρ=0.5) HAIL (ρ=0.25) HAIL (ρ=0.1)

1 2 3 4 5 6 7 8 9 10 11

JobsSyn

Cluster A Cluster B

Fig. 15 HAIL performance when running a sequence of MapReduce
jobs over Synthetic.

to index all blocks. But, it is worth noting that users can use
low offer rates (e.g. ρ = 0.1) and still quickly converge to a
complete index (e.g. after 10 job executions for ρ = 0.1). In
particular, we observe that after executing only a few jobs
HAIL already outperforms Hadoop significantly. For exam-
ple, let us consider the sequence of jobs on Synthetic using
ρ = 0.25 on Cluster-B. Remember that for this offer rate the
overhead for the first job compared to HAIL without any in-
dexing is relatively small (11%) while HAIL is still able to
outperform Hadoop. With the second job HAIL is slightly
faster than the full scan and the fourth job improves over
full scan in HAIL by more than a factor of two and over
Hadoop by more than a factor of five13. As soon as HAIL
converges to a complete index, HAIL significantly outper-
forms full scan job execution in HAIL by up to a factor of
23 and Hadoop by up to a factor of 52. For the UserVisits
dataset, HAIL outperforms unindexed HAIL by up to a fac-
tor of 24 and Hadoop by up to a factor of 32. Notice that,
performing a full scan over Synthetic in HAIL is faster than
in Hadoop, because HAIL reduces the size of this dataset
when converting it to binary representation.

In summary, the results show that HAIL can efficiently
adapt to query workloads with a very low overhead only for
the very first job: the following jobs always benefit from the
indexes created in previous jobs. Interestingly, an important
result is that HAIL can converge to a complete index after
running only a few jobs.

13 Although HAIL is still indexing further blocks.

24 Stefan Richter et al.

0

300

600

900

1200

1 2 3 4 5 6 7 8 9 10 11

Jo
b

ru
nt

im
e

[s
]

JobsUV

HAIL (eager) HAIL (ρ=0.1) HAIL (ρ=1) HAIL (ρ=0)

Fig. 16 Eager adaptive indexing vs. ρ = 0.1 and ρ = 1

9.6.3 Eager Adaptive Indexing for a Sequence of Jobs

We saw in the previous section that HAIL improves the per-
formance of MapReduce jobs linearly with the number of
indexed data blocks. Now, the question that might arise in
the reader’s mind is: can HAIL efficiently exploit the saved
runtimes for further adaptive indexing? To answer this ques-
tion, we enable the eager adaptive indexing strategy in HAIL
and run again all UserVisits jobs using an initial offer rate of
10%. In these experiments, we use Cluster-A and consider
HAIL (without eager adaptive indexing enabled) with offer
rates of 10% and 100% as baselines.

Figure 16 show the result of this experiment. As ex-
pected, we observe that HAIL (eager) has the same perfor-
mance as HAIL (ρ = 0.1) for JobUV1. However, in contrast
to HAIL (ρ = 0.1), HAIL (eager) keeps its performance con-
stant for JobUV2. This is because HAIL (eager) automati-
cally increases ρ from 0.1 to 0.17 in order to exploit saved
runtimes. For JobUV3, HAIL (eager) still keeps its perfor-
mance constant by increasing ρ from 0.17 to 0.33. Now, even
though HAIL (eager) increases ρ from 0.33 to 1 for JobUV4,
HAIL (eager) now improves the job runtime as only 40% of
the data blocks remain unindexed. As a result of adapting its
offer rate, HAIL (eager) converges to a complete index only
after 4 jobs while incurring almost no overhead over HAIL.
From JobUV5, HAIL (eager) ensures the same performance
as HAIL (ρ = 1) since all data blocks are already indexed,
while HAIL (ρ = 0.1) takes 6 more jobs to converge to a
complete index, i.e., to index all data blocks.

These results show that HAIL can converge even faster
to a complete index, while still keeping a negligible indexing
overhead for MapReduce jobs. Overall, these results demon-
strate the high efficiency of HAIL (eager) to adapt its offer
rate according to the number of already indexed data blocks.

10 Conclusion

We presented HAIL (Hadoop Aggressive Indexing Li-
brary), a twofold approach towards zero-overhead index-
ing in Hadoop MapReduce. HAIL introduced two indexing
pipelines that address two major problems of traditional in-
dexing techniques. First, HAIL static indexing solves the
problem of long indexing times which had to be invested

on previous indexing approaches in Hadoop. This was a se-
vere drawback of Hadoop++ [15], which required expensive
MapReduce jobs in the first place to create indexes. Second,
HAIL adaptive indexing allows us to automatically adapt the
set of available indexes to previously unknown or changing
workloads at runtime with only minimal costs.

In more detail, HAIL static indexing allows users to
efficiently build clustered indexes while uploading data to
HDFS. Thereby, our novel concept of logical replication en-
ables the system to create different sort orders (and hence
clustered indexes) for each physical replica of a data set
without additional storage overhead. This means that in a
standard system setup, HAIL can create three different in-
dexes (almost) for free as byproduct of uploading the data
to HDFS. We have shown that HAIL static indexing also
works well for a larger number of replicas. E.g. in our ex-
periments HAIL created six different clustered indexes in
the same time HDFS took to just upload three byte-identical
copies without any index.

With HAIL static indexing, we can already provide sev-
eral matching indexes for a variety of queries. Still, our static
indexing approach has similar limitations as other traditional
techniques when it comes to unknown or changing work-
loads. The problem is, that users have to decide upfront on
which attributes to index and it is usually costly to revisit
this choice in case of missing indexes. We solve this problem
with HAIL adaptive indexing. Using this approach, our sys-
tem can create missing but valuable indexes automatically
and incrementally at job execution time. In contrast to pre-
vious work, our adaptive indexing technique again focuses
on indexing at minimal expense.

We have experimentally compared HAIL with Hadoop
as well as Hadoop++ using different datasets and a num-
ber of different clusters. The results demonstrated the high
superiority of HAIL. For HAIL static indexing, our experi-
ments showed that we typically create a win-win situation:
e.g. users can upload their datasets up to 1.6x faster than
Hadoop (despite the additional indexing effort!) and run jobs
up to 68x faster than Hadoop.

Our second set of experiments demonstrated the high ef-
ficiency of HAIL adaptive indexing to create clustered in-
dexes at job runtime and adapt to users’ workloads. In terms
of indexing effort, HAIL adaptive indexing has a very low
overhead compared to HAIL full scan (which is already 2x
faster than Hadoop full scan). For example, we observed 1%
runtime overhead for the UserVisits dataset when using an
offer rate of 10% and only for the very first job. The follow-
ing jobs already run faster than the full scan in HAIL, e.g. ∼2
times faster from the fourth job, with an offer rate of 25%.
The results also show that, even for low offer rates, our ap-
proach quickly converges to a complete index after running
only a few number of MapReduce jobs (e.g. after 10 jobs
with an offer rate of 10%). In terms of job runtimes, HAIL

Towards Zero-Overhead Static and Adaptive Indexing in Hadoop 25

adaptive indexing improves performance dramatically. For a
sequence of previously unseen jobs on unindexed attributes,
runtime improved by up to a factor of 24 over HAIL without
adaptive indexing and a factor of 52 over Hadoop.
Acknowledgments. Research supported by the Cluster of
Excellence on “Multimodal Computing and Interaction” and
the Bundesministerium für Bildung und Forschung.

References

1. A. Abouzied, D. J. Abadi, and A. Silberschatz. Invisible Load-
ing: Access-Driven Data Transfer from Raw Files into Database
Systems. In EDBT, pages 1–10, 2013.

2. S. Agrawal et al. Database Tuning Advisor for Microsoft SQL
Server 2005. VLDB, pages 1110–1121, 2004.

3. A. Ailamaki et al. Weaving Relations for Cache Performance.
VLDB, pages 169–180, 2001.

4. I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki.
NoDB: Efficient Query Execution on Raw Data Files. In SIGMOD
Conference, pages 241–252, 2012.

5. S. Blanas et al. A Comparison of Join Algorithms for Log Pro-
cessing in MapReduce. SIGMOD, pages 975–986, 2010.

6. N. Bruno and S. Chaudhuri. To Tune or not to Tune? A
Lightweight Physical Design Alerter. In VLDB, pages 499–510,
2006.

7. N. Bruno and S. Chaudhuri. An Online Approach to Physical
Design Tuning. In ICDE, pages 826–835, 2007.

8. N. Bruno and S. Chaudhuri. Physical Design Refinement: The
Merge-Reduce Approach. ACM TODS, 32(4), 2007.

9. M. J. Cafarella and C. Ré. Manimal: Relational Optimization for
Data-Intensive Programs. WebDB, 2010.

10. S. Chaudhuri and V. R. Narasayya. An Efficient Cost-Driven Index
Selection Tool for Microsoft SQL Server. In VLDB, pages 146–
155, 1997.

11. S. Chaudhuri and V. R. Narasayya. Self-Tuning Database Sys-
tems: A Decade of Progress. In VLDB, pages 3–14, 2007.

12. S. Chen. Cheetah: A High Performance, Custom Data Warehouse
on Top of MapReduce. PVLDB, 3(1-2):1459–1468, 2010.

13. J. Dean and S. Ghemawat. MapReduce: A Flexible Data Process-
ing Tool. CACM, 53(1):72–77, 2010.

14. J. Dittrich and J.-A. Quiané-Ruiz. Efficient Parallel Data Process-
ing in MapReduce Workflows. PVLDB, 5, 2012.

15. J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad. Hadoop++: Making a Yellow Elephant Run Like a Chee-
tah (Without It Even Noticing). PVLDB, 3(1):518–529, 2010.

16. J. Dittrich, J.-A. Quiané-Ruiz, S. Richter, S. Schuh, A. Jindal, and
J. Schad. Only Aggressive Elephants are Fast Elephants. PVLDB,
5(11):1591–1602, 2012.

17. J.-P. Dittrich, P. M. Fischer, and D. Kossmann. AGILE: Adap-
tive Indexing for Context-Aware Information Filters. In SIGMOD,
pages 215–226, 2005.

18. M. Y. Eltabakh et al. CoHadoop: Flexible Data Placement and Its
Exploitation in Hadoop. PVLDB, 4(9):575–585, 2011.

19. S. J. Finkelstein et al. Physical Database Design for Relational
Databases. ACM TODS, 13(1):91–128, 1988.

20. G. Graefe, F. Halim, S. Idreos, H. A. Kuno, and S. Manegold.
Concurrency Control for Adaptive Indexing. PVLDB, 5(7):656–
667, 2012.

21. G. Graefe and H. A. Kuno. Self-selecting, self-tuning, incremen-
tally optimized indexes. In EDBT, pages 371–381, 2010.

22. http://engineering.twitter.com/2010/04/hadoop-at-twitter.html.
23. Hadoop Users, http://wiki.apache.org/hadoop/PoweredBy.

24. F. Halim et al. Stochastic Database Cracking: Towards Robust
Adaptive Indexing in Main-Memory Column-Stores. PVLDB,
5(6):502–513, 2012.

25. F. Halim, S. Idreos, P. Karras, and R. H. C. Yap. Stochastic
Database Cracking: Towards Robust Adaptive Indexing in Main-
Memory Column-Stores. PVLDB, 5(6):502–513, 2012.

26. H. Herodotou and S. Babu. Profiling, What-if Analysis, and
Cost-based Optimization of MapReduce Programs. PVLDB,
4(11):1111–1122, 2011.

27. S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki. Here are
my Data Files. Here are my Queries. Where are myResults? In
CIDR, pages 57–68, 2011.

28. S. Idreos et al. Database Cracking. In CIDR, pages 68–78, 2007.
29. S. Idreos et al. Self-organizing tuple reconstruction in column-

stores. In SIGMOD, pages 297–308, 2009.
30. S. Idreos et al. Merging What’s Cracked, Cracking What’s

Merged: Adaptive Indexing in Main-Memory Column-Stores.
PVLDB, 4(9):586–597, 2011.

31. S. Idreos, M. L. Kersten, and S. Manegold. Updating a Cracked
Database. In SIGMOD Conference, pages 413–424, 2007.

32. E. Jahani et al. Automatic Optimization for MapReduce Programs.
PVLDB, 4(6):385–396, 2011.

33. D. Jiang et al. The Performance of MapReduce: An In-depth
Study. PVLDB, 3(1):472–483, 2010.

34. A. Jindal, J.-A. Quiané-Ruiz, and J. Dittrich. Trojan Data Layouts:
Right Shoes for a Running Elephant. SOCC, 2011.

35. J. Lin et al. Full-Text Indexing for Optimizing Selection Opera-
tions in Large-Scale Data Analytics. MapReduce Workshop, 2011.

36. D. Logothetis et al. In-Situ MapReduce for Log Processing.
USENIX, 2011.

37. M. Lühring et al. Autonomous Management of Soft Indexes. In
ICDE Workshop on Self-Managing Database Systems, pages 450–
458, 2007.

38. C. Olston. Keynote: Programming and Debugging Large-Scale
Data Processing Workflows. SOCC, 2011.

39. A. Pavlo et al. A Comparison of Approaches to Large-Scale Data
Analysis. SIGMOD, pages 165–178, 2009.

40. J.-A. Quiané-Ruiz, C. Pinkel, J. Schad, and J. Dittrich. RAFTing
MapReduce: Fast recovery on the RAFT. ICDE, pages 589–600,
2011.

41. J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime Measure-
ments in the Cloud: Observing, Analyzing, and Reducing Vari-
ance. PVLDB, 3(1):460–471, 2010.

42. K. Schnaitter et al. COLT: Continuous On-line Tuning. In SIG-
MOD, pages 793–795, 2006.

43. A. Thusoo et al. Data Warehousing and Analytics Infrastructure
at Facebook. SIGMOD, pages 1013–1020, 2010.

44. T. White. Hadoop: The Definitive Guide. O’Reilly, 2011.
45. H.-C. Yang and D. S. Parker. Traverse: Simplified Indexing on

Large Map-Reduce-Merge Clusters. In DASFAA, pages 308–322,
2009.

46. M. Zaharia et al. Delay Scheduling: A Simple Technique for
Achieving Locality and Fairness in Cluster Scheduling. EuroSys,
pages 265–278, 2010.

	Introduction
	Overview
	HAIL Zero-Overhead Static Indexing
	HAIL Job Execution
	HAIL Zero-Overhead Adaptive Indexing
	Adaptive Indexing Strategies
	HAIL Splitting and Scheduling
	Related Work
	Experiments
	Conclusion

