
Janiform Intra-Document Analytics for Reproducible
Research

Jens Dittrich Patrick Bender

Saarland University
infosys.cs.uni-saarland.de

ABSTRACT
Peer-reviewed publication of research papers is a corner stone of
science. However, one of the many issues of our publication culture
is that our publications only publish a snapshot of the final result of
a long project. This means, we put well-polished graphs describing
(some) of our experimental results into our publications. However,
the algorithms, input datasets, benchmarks, raw result datasets, as
well as scripts that were used to produce the graphs in the first
place are rarely published and typically not available to other re-
searchers. Often they are only available when personally asking
the authors. In many cases, however, they are not available at all.
This means from a long workflow that led to producing a graph for
a research paper, we only publish the final result rather than the en-
tire workflow. This is unfortunate and has been lamented upon in
various scientific communities. In this demo we argue that one part
of the problem is our dated view on what a “document” and hence
“a publication” is, should, and can be. As a remedy, we introduce
portable database files (PDbF). These files are janiform, i.e. they
are at the same time a standard static pdf as well as a highly dy-
namic (offline) HTML-document. PDbFs allow you to access the
raw data behind a file, perform OLAP-style analysis, and reproduce
your own graphs from the raw data — all of this within a portable
document. We demo a tool allowing you to create PDbFs smoothly
from within LATEX. This tool allows you to preserve the connec-
tion of raw data to its final graphical output through all stages of
the workflow. Notice that this pdf already showcases our technol-
ogy: rename this file to “.html” and see what happens (currently we
support the desktop versions of Firefox, Chrome, and Safari).

1. INTRODUCTION
Irreproducibility is a problem frequently lamented upon in var-

ious scientific communities [11, 14]. In the context of computer
science it has recently been coined “The Real Software Crisis” [9].
The database community has identified it more than ten years
ago and is attacking it through repeatability committees, e.g. [10].
These committees rerun the experiments of accepted papers using
the datasets and code provided by the authors. Obviously, given the
sheer size and complexity of some projects, in many cases these

boils down to black box testing, i.e. it can neither be tested if the
code actually implements the algorithms presented in the paper nor
whether the code measures and reports results in a proper way. An-
other problem of repeatability committees is that they cannot rem-
edy inherent publication bias: “reviewers don’t like negative re-
sults”. Hence, for an experimental evaluation you need the “right”
queries, the “right” datasets and the “right” baselines. The results
then need to be visualized, presented, and interpreted in the “right”
way (e.g. log vs linear scale, offset on y-axis). This naturally leads
to a flood of papers with positive results. And to papers where the
“improvements don’t add up” [3]. Publication bias was attacked
by the inauguration of Experiments&Analysis papers at (P)VLDB.
These kind of papers reevaluate existing work in a uniform setting
and may also publish negative results. These experimental eval-
uations may then serve as landmarks in the flood of papers with
(overly) positive results giving clear advice on the strength and
weaknesses of a particular method.

This small demo is neither the place to even summarize nor de-
fend the different arguments in the debate on repeatability and our
experimental culture. It is an emotional topic where the esteemed
reader of these lines probably has strong opinions in one way or the
other. This is just fine. In the following, we will simply accept that
there is a problem [14, 9]1. And that this problem is calling “for a
new model for the way how we publish our results” [11]. Handling
this problem can be regarded an instance of “small data” [5, 6]2.

Obviously, we cannot solve all of the world’s problems with re-
producible research like baseline, dataset, query, and presentation
bias. In this demo we will attack the latter and show how to pre-
serve the connectivity from raw data to graphical display in the
research workflow. We believe that our demo is an important step
towards making access and analysis of raw data more transparent.

2. SIGNIFICANCE OF THE CONTRIBU-
TION

We believe that our contribution is significant for the following
reasons:

1. Portable DataBase Files. We provide Portable DataBase
Files (PDbF), a general model to combine a static pdf doc-
ument with additional highly dynamic content. In order to
specify a PDbF, we simply require access to a static docu-
ment S , dynamic content D, and a PDbF-configuration file
C defining where to place the dynamic content. An example

1Just read the “ten simple rules for reproducible results” [14] and
then ask yourself how little of this we implement in our papers.
2Also notice an upcoming Dagstuhl perspectives workshop on Ar-
tifact Evaluation for Publications [4] where the first author partici-
pates.

1

http://infosys.cs.uni-saarland.de

of D could be an embedded relational database and an ap-
propriate visualization of some of its content, e.g. a bar chart
visualizing measurements collected in a table.

2. Alternative Dynamic Views on the Data. Our technology
allows you to perform offline OLAP-style analytics on the
data shipped within the document. All you need is a Web
Browser (currently Firefox, Chrome or Safari on a desktop
machine). We support a rich feature list. See Section 4 for
our currently supported features (as of March 31, 2015).

3. PDbF-Compiler. We provide a compiler taking as its input
the triple (S ,D,C). Our compiler outputs a janiform docu-
ment. That document is at the same time a valid pdf and
a valid HTML-document. Thus, if you open the file with a
pdf-viewer, you will see the static content, i.e. only the S -
part. However, if you rename the file to “.html” and open it
with a Web browser, you will be able to inspect the dynamic
part, i.e. D and S .

4. Full LaTeX integration. We instrument LaTeX to output
not only the static pdf-file S , but also the necessary data to
create a valid PDbF-configuration file C. In addition, we pro-
vide an extension to LaTeX allowing users to create graphs
directly from within LaTeX — without requiring the user to
invoke multiple tools manually. In addition, this process cre-
ates dynamic variants of the graphs as a side-effect, i.e. the
D-part. This means, the user simply defines the initial dis-
play of the graph (or table). Everything else is generated
automatically. The result of this instrumentation is again a
triple (S ,D,C) which can be fed into our PDbF-Compiler
(see Contribution 3) to create a janiform PDbF-document.

5. Preservation of Raw Data and Graph-Connectivity. Our
compilers preserve the connection between raw data and the
graphs and/or tables produced from that raw data through the
LaTeX compiler. In addition, we are able to ship that part of
the workflow, i.e. data, graphs, and the code producing the
graphs within a single “document”.

6. Longterm Preservation of Raw Data. As our tools embed
the raw data within the publication, PDbF-documents nat-
urally archive the raw data with the document. Therefore,
the raw data may be “downloaded” directly from within the
PDbF-document. In addition, there is no need anymore to
only publish a subset of the measurements (as graphs). Em-
bedding all raw data does not require much space and allows
other researchers to see the whole picture. And all of this
works by simply shipping a single “pdf” to the publisher of
the research.

7. Impact On Research in General. We believe that our tech-
nology may not only be interesting to the database commu-
nity. Our tool may be interesting for all research communi-
ties working with experimental data. Therefore, we are plan-
ning to open source our tool upon publication of this paper.

3. THE PDBF FRAMEWORK

3.1 Janiform File Format
How is it possible to create a single file that may both be inter-

preted as a valid pdf document and a valid HTML document? The
core idea is to create a document where complementary parts of the
file are ignored by the different applications. The core structure of a

(a) PDF perspective: the
pdf reader interprets the
green part, everything
else is treated as a com-
ment

(b) HTML perspective:
the HTML browser inter-
prets the green part, ev-
erything else is treated as
a comment

Figure 1: Structure of the janiform PDbF format

PDbF is shown in Figure 1. Its core structure is inspired by “funky
files” [2].

A PDF reader has the following perspective on this file: It reads
the magic numbers “%PDF-1.5%” (line 1). Then it locates the Xref
table at the end of the file. That Xref contains a dictionary of all
objects in this PDF file except for the dummy object (lines 3 to 8)
which contains the HTML part. As the dummy object is not refer-
enced by another object, it is never read by PDF viewers. Hence,
the file is displayed as a valid PDF.

An HTML browser has the following perspective on this file:
It reads lines 1 and 2. The text “%PDF-1.5%” is displayed at this
point. Lines 2–5 are ignored as they are an HTML comment. The
same happens for lines 6 and all following lines until the end of the
document. The HTML comment is actually never closed, however,
browsers are not very strict with such things. The same happens for
line 1, because normally there should not be any content before the
HTML tag. Hence, the HTML content is displayed.

3.2 Compiler Architecture
A flow chart describing how our different processing steps are

invoked and how the different compilers interact is shown in Fig-
ure 2. The figure shows the entire workflow to compile a tex-file
into a PDbF.

Figure 2: Compilation steps of the PDbF compiler framework

(1.) Our main controller is written in Java (abbreviated Java in the
following). It invokes the LaTeX Compiler.
(2.) The LaTeX compiler outputs the PDbF configuration file and
a draft version of the PDF document.

2

(3.) Java reads the PDbF configuration file and does some post-
processing.
(4.) Java reads all tables from the database. (The database is spec-
ified as a source in the PDbF configuration file.)
(5.) Java invokes PhantomJS to create static snapshots of all graphs
automatically.
(6.) PhantomJS outputs a static image for every dynamic object
present in the PDbF configuration file.
(7.) Java invokes the LaTeX compiler a second time to obtain the
final placements of all static snapshots.
(8.) The LaTeX compiler outputs the final PDF document with im-
ages from Step 6.
(9.) Java reads the final PDF document as well as the PDbF inter-
preter (see Section 3.3).
(10.) Java reads the final PDF document, the finalized PDbF con-
figuration, and the PDbF interpreter and outputs the resulting PDbF.

Obviously, the entire process adds a few seconds to the standard
LaTeX compilation time, however the overhead is not substantial
and only required once for the final deployment of the PDbF. For
instance, on an Intel Core i5-3230M CPU@2.60 GHz (2 cores) we
require 21 seconds total compilation time for this submission. The
total file size of the PDbF is roughly the sum of 2.7 MB (for the
embedded tools) plus twice the size of the static pdf plus the size
of the database. For instance, the file size of this demo submission
is only ∼9 MB in total (5 MB of which is the database).

3.3 PDbF Interpreter
In order to display the static pdf as well as the HTML-overlay

in a Web browser we extended PDF.js [12]. We store the static
pdf, the database, and the config file as base64-encoded javascript
strings inside the HTML. When the PDbF is viewed as an HTML-
file, our PDbF interpreter first decodes this data. Then, the queries
of all visualizations are executed by the alasql [1], an in-memory
javascript SQL-engine. After that, all visualizations are rendered
and placed on top of their static image counterpart.

4. PDBF FEATURES
In this section we discuss the features currently supported by our

framework.

4.1 Support for DESKTOP Browsers and
PDF Viewers

We have tested our PDbF files with the following browsers:
Chrome 41, Opera 28, Firefox 36, and Safari 8. We tested the fol-
lowing PDF-Viewers: Adobe Reader XI, PDF-XChange Viewer,
QuickPDF (Android), Google Drive-PDF-Viewer (Android).

4.2 Dynamic Graphs
In the PDF view, a static snapshot of each graph will be gener-

ated showing the initial configuration of the graph. In the HTML
view, click the symbol in the upper left corner of a graph. A
window will appear with additional options. You may change the
display in many ways, e.g. from linear scale to logscale, adjust dis-
play ranges, and many other options.

Data for dynamic content can be specified in three ways: inline
in LaTeX, using a file with sql queries, or via JDBC connector that
imports arbitrary SQL results. We support several types of graphs
including multi-column bar plots (Figure 3), line plots (Figure 4),
and stacked bar plots (not displayed due to space constraints). They
may be specified directly in LaTeX. For instance, in order to specify
a line chart you simply write:

\lineChart[width=\textwidth, height=0.8\textwidth,
xunit=Date, yunit={Runtime [in sec]}]{

SELECT date, runtimeA AS engine_A,
runtimeB AS engine_B FROM data2;

}

The dynamic graphs are built using dygraph [7]. Arbitrary op-
tions may be specified in LaTeX that are then passed to dygraph.

4.3 Dynamic Pivot Tables
We also support dynamic pivot tables. See Figure 5 for an ex-

ample. This visualization is based on HTML pivot tables [13] and
jQuery [8]. You may group on arbitrary keys and display grouping
keys in rows and columns. This will in turn change the underlying
database query on the fly.

4.4 Raw Data Access
Raw data may be “downloaded” directly from the dynamic visu-

alizations as CSV. This may also be extended to “download” source
code and/or binaries from within the PDbF.

4.5 Future Work
We only started full time development on this project in February

2015. Hence, as of March 2015 there are many things left to do. For
instance, grouped stacked bar plots, change a query that produced
the plot, add filtering functions, native LaTeX tables, and vector-
ized static graphs. In addition, we would like to add automatic
support to compute measurement outliers and confidence intervals.

5. THE DEMO
Major part of the demo (Section 5.1) are already in your hands,

the other parts (Sections 5.2 and 5.3) will be shown at VLDB.

5.1 The PDbF File Format
This is Contributions 1, 5, 2, and 6. This part of the demo is

already contained in this document. We invite the reader and (also
the audience at VLDB) to change the suffix of this file from “.pdf”
to “.html” (on your desktop computer). Your desktop browser will
open and you will be able to see the dynamic features explained
in Section 4. Notice that the dynamic content is completely offline
and runs entirely in your Web browser’s sandbox (Firefox, Chrome
or Safari).

5.2 The PDbF Compiler
This is Contribution 3. We will invite the audience to create

PDbF-files themselves on arbitrary input documents. These docu-
ments can then be enriched with dynamic content using our com-
piler. The final result may be viewed with a desktop Web browser.

5.3 LaTeX Integration
This is Contribution 4, see also Section 3.2. We invite readers

to bring their own LaTeX files. We will show them how to prepare
their tex-documents in order to be able to define graphs directly on
the raw data. We will demonstrate the seamless integration of our
technology into existing LaTeX compilers.

6. CONCLUSIONS
This demo opened the book for portable database files (PDbF).

PDbFs allow you to embed raw data into a document while pre-
serving the entire data-pipeline from raw data to graphs. This al-
lows readers to perform in-document OLAP-style analytics on the
published document. PDbFs are janiform documents that are at the
same time a valid pdf and a valid HTML document. Thus they can

3

Figure 3: Multi-column Bar Chart

Figure 4: Line chart

be viewed in either way. This pdf is an example of such a janiform
PDbF. In addition, the conference demo show-cases two compilers
allowing you to seamlessly create PDbFs, also from within LATEX.

As part of future work we want to research how to include other
parts of the research pipeline as part of the pdf. For instance, in
future, one might consider to embed a virtual machine emulator, an
operating system image, and all software that is required to run the
original code within the pdf (∼3GB of data). This may sound in-
feasible in 2015. But 4K video streaming over the Internet sounded
equally silly in 1995.

7. REFERENCES
[1] https://github.com/agershun/alasql.
[2] A. Albertini. Funky File Formats. In CCC. 2014.
[3] T. G. Armstrong, A. Moffat, W. Webber, and J. Zobel. Improvements

That Don’t Add Up: Ad-hoc Retrieval Results Since 1998. CIKM
’09, pages 601–610, New York, NY, USA, 2009. ACM.

[4] Dagstuhl Perspectives Workshop 15452: Artifact Evaluation for
Publications. 11/2015. http://www.dagstuhl.de/de/programm/
kalender/semhp/?semnr=15452.

Figure 5: Pivot table

[5] J. Dittrich. The Case for Small Data Management. In CIDR, 2015.
[6] J. Dittrich. The Case for Small Data Management. In keynote at

BTW, 3/2015. extended version of [5] (youtube).
[7] http://dygraphs.com.
[8] https://jquery.com.
[9] S. Krishnamurthi and J. Vitek. The Real Software Crisis:

Repeatability As a Core Value. Commun. ACM, 58(3):34–36, Feb.
2015.

[10] I. Manolescu, L. Afanasiev, A. Arion, J. Dittrich, S. Manegold,
N. Polyzotis, K. Schnaitter, P. Senellart, S. Zoupanos, and D. Shasha.
The Repeatability Experiment of SIGMOD 2008. SIGMOD Rec.,
37(1):39–45, Mar. 2008.

[11] J. P. Mesirov. COMPUTER SCIENCE. Accessible Reproducible
Research. Science (New York, N.Y.),
327(5964):10.1126/science.1179653, 01 2010.

[12] https://mozilla.github.io/pdf.js.
[13] https://github.com/nicolaskruchten/pivottable.
[14] G. K. Sandve, A. Nekrutenko, J. Taylor, and E. Hovig. Ten Simple

Rules for Reproducible Computational Research. PLoS Comput Biol,
9(10):e1003285, 10 2013. http://journals.plos.org/
ploscompbiol/article?id=10.1371/journal.pcbi.1003285.

4

https://github.com/agershun/alasql
https://media.ccc.de/browse/congress/2014/31c3_-_5930_-_en_-_saal_6_-_201412291400_-_funky_file_formats_-_ange_albertini.html#video
http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=15452
http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=15452
https://youtu.be/O7Qgo6RSzmE
http://dygraphs.com
https://jquery.com
https://mozilla.github.io/pdf.js
https://github.com/nicolaskruchten/pivottable
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003285
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003285

	Introduction
	Significance of the Contribution
	The PDbF Framework
	Janiform File Format
	Compiler Architecture
	PDbF Interpreter

	PDbF Features
	Support for DESKTOP Browsers and PDF Viewers
	Dynamic Graphs
	Dynamic Pivot Tables
	Raw Data Access
	Future Work

	The Demo
	The PDbF File Format
	The PDbF Compiler
	LaTeX Integration

	Conclusions
	References

