WWHow! Freeing Data Storage from Cages

Alekh Jindal*

Jorge-Arnulfo Quiané-Ruiz* *

Jens Dittrich*

*Information Systems Group, Saarland University
http://infosys.cs.uni-saarland.de

*QCRI, Qatar Foundation
http://www.qcri.ga

Abstract. Efficient data storage is a key component of data manag-
ing systems to achieve good performance. However, currently data
storage is either heavily constrained by static decisions (e.g. fixed
data stores in DBMSs) or left to be tuned and configured by users
(e.g. manual data backup in File Systems). In this paper, we take
a holistic view of data storage and envision a virtual storage layer.
Our virtual storage layer provides a unified storage framework for
several use-cases including personal, enterprise, and cloud storage.

1. INTRODUCTION

To better understand the problem, let us first see some of the typ-
ical data storage scenarios and analyze what they have in common.

1.1 Current Approaches to Data Storage

We start from the simplest use case of a personal user using a File
System Storage, right up to an enterprise user using Cloud Storage.
Use Case 1: File System. Consider a researcher, Alice, having two
laptops (one personal, one from her university). Alice stores differ-
ent types of files at different locations. For example, she stores
movies on her personal laptop and grant proposals on her univer-
sity laptop. Alice also maintains regular copies of her data on ex-
ternal devices, in case one of her laptop crashes. For instance, she
maintains copies of grant proposals on hard-drives and recent con-
ference talks on USB sticks. Finally, Alice also changes the data
format (e.g. compressed) of her files in order to save storage space.
Use Case 2: RAID. Consider a University IT department using
RAID storage servers to store its data. The RAID system automat-
ically stores parity information on different disks and stripes them
to allow for one or more disk failures. The server admin does not
need to worry about the reliability of data. She just needs to choose
the RAID level for the first time. However, changing the RAID
level is often a complex task in practice.

Use Case 3: Relational DBMS. Consider a car manufacturer us-
ing an RDBMS for managing its inventory and sales. The manufac-
turer provides the schema definition as well as the data to store. The
RDBMS takes care of physical data storage, recovery, and data lay-
outs (e.g. row store in IBM DB2). For an expert DBA, the RDBMS

FWork done at Saarland University.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2013.
6th Biennial Conference on Innovative Data Systems Research (CIDR ’13)
January 6-9, 2013, Asilomar, California, USA.

provides several additional data tunings knobs such as replication,
indexing, partitioning, and storage locations.

Use Case 4: Cloud. Consider a web analytics start-up company
using Cloud storage to store large volumes of web logs. The start-
up company needs to pick a cloud provider for its data. However,
it does not need to worry about the data placement. The Cloud
Storage automatically replicates and distributes data over several
storage locations in order to guarantee the availability of their data.
Furthermore, the start-up company does not care about adding new
storage locations: the Cloud Storage does so automatically. Addi-
tionally, the company may chose to store the data in multiple data
layouts [10] or indexes [5].

All of these use-cases are very different, right? No! We argue
that they are all facets of the same single data storage problem.
‘We observe that in each of the four Use Cases, the users are im-
plicitly or explicitly answering the following three key questions:
(1) What to store? (i.e. which parts to store from a dataset or file
and how many times), (2) Where to store? (i.e. on which devices or
locations), and (3) How to store? (i.e. in which layout or format).
Table 1 categorizes these storage decisions in the four Use Cases
and labels them according to whether they use fixed (H), flexible &
manual (), or flexible & automatic (') storage decisions.

What to store? The second column of Table 1 shows the what de-
cisions in the four Use Cases. In Use Case 1 (UCI for short), the
file system requires Alice to make manual choices of which mas-
ter copies as well as the backup copies of data to store. In UC2,
RAID automatically creates data replicas or parity, depending on
the RAID level. In UC3, an RDBMS typically stores the data as
well as the recovery log. A DBA has further control to create in-
dexes and materialized views to speed up query execution. Simi-
larly, Fractured Mirrors makes a fixed decision of storing exactly
two copies of the data. Finally, in UC4, Cloud Storage is flexible
to create one or more data replicas for availability.

Where to store? The third column of Table 1 shows the where
decisions in the four Use Cases. In UCI1, Alice has to manually
decide where to store each type of data, e.g. movies on her per-
sonal laptop and grant proposals on her university laptop. Going
further, RAID (UC2) makes fixed decisions (based on the RAID
level) to store data on a set of storage devices, which can be added
or removed manually. Similarly, an RDBMS (UC3) allows users
to define table spaces, typically residing on different storage loca-
tions, for their application. However, Fractured Mirrors stores the
data on two (fixed) different machines. Cloud Storage (UC4), on
the other hand, is fully flexible on where to store the data. A cloud
provider can change data storage locations and even provision ad-
ditional physical machines automatically.

How to store? The fourth column of Table 1 shows the how deci-
sions in the four Use Cases. Again, users in UC1 must manually

Storage use case [[What to store? [Where to store? [How to store?
UC 1: File System master copy of data, movies on personal laptop, some files in original format,
periodic backup copy grant proposals on university laptop some files compressed
UC 2: RAID master copy of data, multiple storage devices unchanged data layouts
one or more replicas based on RAID level
master copy of data, single machine (typically) row or column layout,
Relational DBMS recovery log, compression for some tables
ucC 3: intermediate results (all or partially)
Relational DBMS two copies of data two machines one copy of data in row layout,
+ Fractured Mirrors second copy of data in column layout
UC 4: Cloud master copy of data, suitable cloud provider unchanged data layouts

one or more replicas based on provider setting

multiple virtual machines

Table 1: What, Where, and How flexibility for Use Cases 1-4. (" unchangeable, flexible & manual, and ' flexible & automatic)

decide how to store each of the data files (e.g. original format or
compressed). Similarly, RAID (UC2), does not care about the data
layouts; users must decide upon them. In contrast, an RDBMS
(UC3) stores data in a particular data layout, e.g. row layout in
PostgreSQL. However, this is a fixed decision. Fractured Mirrors
takes RDBMSs a step further by maintaining one copy in row and
one copy in column layout. Finally, Cloud Storage (UC4), similar
to UC2, is not concerned about the data layouts.

1.2 What is the Problem?

We observe that the decisions for what to store, where to store,
and how to store are actually an important part of our everyday
lives. However, these decisions are typically either unchangeable
() or manual () in current data storage systems. Only for a very
few scenarios these decisions are both flexible and automatic ().
For instance, picking an RDBMS product already cages several
physical storage decisions (including the data layout) while pro-
viding an unmanageable number of tuning knobs for the others.
Additionally, user applications cage the data storage even further,
since only an application knows how to make full use of its data.

Therefore, the challenge is to design a storage layer that frees
users (or data management systems) from all these storage level
details and that has full flexibility to automatically take care of all
data storage decisions. Users should only be concerned with their
input data, their workload, their preferences, and their constraints.

2. OUR VISION OF DATA STORAGE

We envision a new brand of data storage layer, coined
WWHow ! (What, Where, and How; pronounced [wow!]). The core
idea of WWHow! is threefold. First, to be fully flexible on what,
where, and how to store data. Second, to push down all storage level
logic to the data storage layer itself. Third, to free users from the
burden of configuring a set of complex storage parameters (). For
this, WiHow ! offers (i) strong data independence wherein the phys-
ical data definition (where and how) can be changed completely in-
dependently of the logical data definition (what), (ii) a declarative
Data Storage Language (DSL) that is completely decoupled from
the logical data languages (i.e. DDL/DML), and (iii) a holistic data
storage optimizer to automatically adapt data to its access patterns
and the underlying hardware. In fact, this is one of the main goals
of WiHow!: to have a data storage optimizer that frees users from
the details of data storage. Notice that, one can apply WWHow! to
any layer of the memory hierarchy as well as to new hardware.

Figure 1 shows the WiHow! architecture. Users store their data
directly in WiWHow! using the DSL. Alternatively, users employ a
data managing system, e.g. an RDBMS, which in turn uses the
DSL to interact with WWHow !. The WiHow! layer translates the DSL
(WWHow ! language) statement into a physical data operation request
and sends it to the WWHow! controller. The WWHow! controller in-
spects whether or not the data operation request could be opti-
mized. Indeed, WWHow! users (end users or data managing sys-
tems) can (i) exercise full control over their data operations, i.e. full

g ¥
T2 Data Managing System
o
=) i L e Ej (e.g. RDBMS)
o = 2 —— DSL
- 8 [a] LT
v
(WWHow! Language)
§ WWHow! Language ; —
g Interpreter . WWHow! Optimizer
S Physical data e What
O operations
% Where «— How
= Controller Storage

Physical data

! Optimized physical
operations

data operations

Themes

Physical Storage Location Interface

rﬂ..&.lu

Figure 1: WWHow! architecture

specification of what, where, and how to store; (ii) provide hints
in the form of storage preferences and constraints, which can be
saved as storage themes; or (iii) completely leave the data stor-
age decisions to WWHow!. In case no optimization is needed, the
WWHow! controller sends the data operation request directly to the
storage locations. Otherwise, it sends the data operation request to
the WWHow ! optimizer. The WiWHow! optimizer tries to come up with
a better data operation request, with full flexibility of what, where,
and how to store. In the worst case, the optimizer falls back to the
standard non-optimized data operation requests being used today.
We discuss several examples, below in Section 3, to illustrate these
new data storage scenarios. Notice that, applications can still op-
timize the way they access data as they can get all details on how
WiWHow ! stores its data.

3. WWHow! NOVEL APPLICATIONS

A key feature of WWHow! is an easy-to-use declarative Data Stor-
age Language, which provides complete control over what, where,
and how to store. The WiiHow! language grammar is as follows:
STORE | FETCH | DELETE | UPDATE | DESCRIBE url

[WHAT {query_expression}]

[WHERE {url}]

[HOW {layout]

[CONSTRAINTS {constraint}] [PREFERENCES {preference}];

Storage
Locations

It is worth noticing that WWHow! leverages existing query lan-
guages (such as SQL) to specify which parts of data (the WHAT
clause) from a data source (the url in the STORE clause) a user wants
to store. WiWHow! offers several storage applications that are either
not possible or hard to do in traditional storage systems. For space
constraints, we discuss only some of them below.

(1) WWHow! File System. Consider again Alice from UC1. Using
File System Storage, she has to make several manual storage de-
cisions (for UC1 in Table 1). She can still do the same using
WWHow!. For instance, she can store her conference talks (her .pdf
files twice and her .ppt files once) in encrypted format (using rsa)
on a university server as follows:

STORE ‘/Users/alice/conferences/talks/*.*’
WHAT *.(pdf | ppt | key), *.pdf

WHERE infosys.uni-saarland.de/talks/

HOW encryption(rsa) FOR *;

However, as Alice becomes more successful, using WWHow !, she can
change her data storage over time. She can simply specify her new
storage requirements and let WWHow ! handle the rest. For example,
as she travels for various research activities, she may want to have
access to her data all the time and from anywhere. WiHow! allows
her to specify this preference using the following WWHow ! language
statement:

STORE ‘/Users/alice/conferences/talks/*.*’

WHAT *.(pdf | ppt | key), *.pdf

PREFERENCE Availability=‘high’

WWHow ! optimizer then automatically creates redundant data copies
of her data across several storage locations (e.g. personal laptop,
university servers), without Alice needing to fiddle with them. No-
tice that, as with any automatic optimization in databases, users
loose some control with the WWHow! optimizer. However, we be-
lieve that the optimizer will come up with better decisions in most
of the cases. Now, assume Alice wants to make sure to not loose
her data, as it gets distributed across several storage locations. In
contrast to a preference, which is rather soft, this is a strict require-
ment for Alice. Thus Alice specifies this as a constraint:

STORE ‘/Users/alice/conferences/talks/*.*’

WHAT *.(pdf | ppt | key), *.pdf

CONSTRAINT FaultTolerance=‘high’;

Thus, we see that in contrast to a file system, WWHow! allows for
automatic decisions to evolve data storage over time (').

(2) WWHow! RAID. Consider again the university IT department
from UC2. Using RAID Storage, the server admin not only makes
manual decisions (), but also lives with certain fixed decisions
(). Instead, using WWHow!, the server admin can create a reliable
RAID-1 like storage wherein Cloud Storage locations can be added
as the university grows in size'. WWHow! RAID is not just flexi-
ble in terms of storage locations but also in terms of data layouts.
For example, the server admin may see high update workloads at
some times (e.g. beginning of semester) and high read workloads
at others (e.g. during the semester). Using WWHow!, she can trans-
form her data to keep mirrored copies, for fast parallel reads, in-
stead of RAID parity for reliability. WiHow! can further boost read
performance by storing each mirrored copy in a different layout
and, thereafter, directing a parallel read to the most appropriate lay-
out [10]. Thus, we see that in contrast to standard RAID and Cloud
Storage, WWHow ! offers full control as well as automates several de-
cisions on what, where, and how to store data (').

(3) WWHow! Relational DBMS. Consider again the car manufac-
turer from UC3. Using a traditional RDBMS Storage, the manu-
facturer is tied to several manual () as well as fixed (¥) storage
decisions. Instead, using a WiHow! enabled RDBMS, the manufac-
turer can scale its data across different data centers. However, the
manufacturer may have different hardware at different (or same)
data centers. This affects query processing robustness, a key goal
in enterprise data management. WiWHow! handles this by consider-
ing the hardware characteristics while storing data pages. Further-
more, the manufacturer must achieve certain SLAs as its business
and data grows. The RDBMS may in turn translate these SLAs
into data access time constraints. WWHow! can handle such con-
straints by automatically replicating data pages (fully or partially),
adjusting page and buffer size, and adapting internal page layouts.
Again, we see that WifHow ! allows the manufacturer to flexibly and
automatically evolve its RDBMS with the business ().

IThis abstraction between logical and physical data is similar to ta-
blespaces in Oracle; however, in contrast to tablespaces, WiWHow ! is
not a one-to-one mapping from logical to physical data.

(4) WWHow! Cloud. Consider again the start-up from UC4. Using
traditional cloud storage the company has to pick the right cloud
provider (). However, with WWHow ! the company can simply spec-
ify its preferences and constraints. For example, the company may
have privacy concerns for its data (due to competitors or user agree-
ments). It is more natural and easier for the company to simply
provide this constraint and let WHow! optimizer to store data with
the more privacy secure cloud provider?. Furthermore, since the
company is in the initial stages, it has limited budget for its IT de-
partment. Using WWHow! the company can fix the maximum money
they want to spend on Cloud Storage. The WWHow! optimizer will
automatically decide what, where, and how to store data on the
Cloud, keeping monetary costs within the budget. Finally, the com-
pany can exploit the full flexibility of WiWHow! and achieve both
fault tolerance and high workload performance at the same time.
To do so, the company can create three full redundant copies of its
web logs data and create different clustered indexes for each copy
(as in [5]) as follows:

STORE ‘/System/webApp/logs/uservisits.log’

WHAT * AS replica-1, * AS replica-2, * AS replica-3

WHERE ec2-007-23-167-120.compute-1.amazonaws.com

HOW Idx(url) FOR replica-1,

Idx(sourceIP) FOR replica-2,
Idx(visitDate) FOR replica-3;

Thus, we see that with WifHow! even the Cloud Storage is not a
taken-for-granted storage system anymore. Instead, it is fully flex-
ible, agile, and adaptive ().

4. WWHow! ADVANTAGES

In the previous section we saw several examples of how
WWHow! can dramatically change the data storage experience. Now
below let us extract the major advantages that WiHow ! offers.

(1) Flexible Storage Control. Users are free to choose which stor-
age decisions they want to specify, while WitHow! takes care of the
unspecified storage decisions.

(2) Freeing Users From Storage Decisions. Users are no longer
confronted with a bunch of storage tuning knobs to obtain the best
performance for their applications. However, users can still exer-
cise partial (via preferences) or full control (via constraints) over
specific data storage aspects. The examples of Section 3 clearly
illustrate this flexibility.

(3) Physical Data Independence. Theoretically, DBMSs claim to
provide physical data independence [7, 4, 12]. However, in prac-
tice, current DBMSs fail in doing so (see Chapter 2.3 of [7]). For
example, to partition a table vertically in Oracle 11g (as well as in
other databases), DBAs need to create and load a new table for each
vertical partition. Then, to access multiple vertical partitions, users
need to formulate join queries (or create views) over the different
vertical partitions. One of the goals of WifHow! is to hide all these
details from users.

(4) Flexible Decisions. Users can easily change their storage de-
cisions at any time, without affecting their application logic. This
is either impossible or very hard to realize in current data storage
systems. For example, to modify vertical partitioning in ORA-
CLE 11g, users need to create new tables and drop the old ones.
(5) No Storage Cages. Currently, data storage systems have a
hard-coded data store, i.e. using a given data storage system im-
plies using a given fixed data layout. MySQL allows developers to
build and install custom storage engines. However, this approach
still requires expert DBAs to design and skilled developers to de-
velop the new storage engine. Additionally, enterprise users end up
having many features replicated across different storage engines.

2The privacy levels could be self-declared by cloud providers, or
estimated by rating agencies, or even gauged by public opinion.

WWHow! significantly departs from this approach. Using WiHow !,
users can easily adapt data storage to their needs over time.
(6) Application Interoperability. Current data storage systems typ-
ically have a very strong coupling between their query processor
and data store. As a result, users are tied to a query processor as
soon as they choose a data store. Instead, WWHow! allows users to
deploy the most suitable query processor as well as to switch the
query processor at any time. Applications have only to send a log-
ical query plan to WWHow!, such as in federated query processing.
WWHow!, in turn, optimizes each received logical query plan and
produces a physical query plan accordingly.

Notice that, for space constraints, we cannot discuss all the in-
teresting aspects of WiHow ! in this paper.

5. WWHow! RESEARCH AGENDA

Our vision of data storage leads to several interesting research
challenges. We sketch our research agenda below.

First, in order to realize the WiHow! dream, we need to change
the way we design data management systems. Data management
systems must completely decouple data storage from query execu-
tion. Ideally, we should be able to store and manage data indepen-
dent of the data applications. Data applications should be able to
simply sit on top of the data. For this to happen, future data man-
agement systems must be able to push down storage level logic
to a dedicated and fully flexible storage layer (such as WWHow!).
This will not only improve application performance dramatically
but also bring forth several novel data applications, such as those
discussed in Section 3. Furthermore, future data management sys-
tems must be able to allow several applications to operate on the
same data. This means that the same data can be harnessed seam-
lessly across several systems, without needing costly ETLs. All
this requires data management system designs to have a better sep-
aration between the logical and the physical data definitions.

Second, data storage should not be treated as fixed decisions. In-
stead, we need to constantly adapt data storage to the application’s
needs. This is in fact one of the main goals of WWHow!, i.e. to adapt
data storage to users’ needs. To make the WWHow! dream a real-
ity, we need to understand the data access/update patterns in order
to make the right storage decisions. For this, we need to come up
with (i) efficient techniques to monitor data access/updates, (ii) on-
line algorithms to detect changes in access/update patterns, and
(iii) prediction models for future update/access patterns. Achiev-
ing this will allow WWHow! to adapt data storage to any change in
the needs of users’ applications.

Third, WiHow ! needs to make holistic storage decisions for what,
where, and how to store data. While users may explicitly specify
one or more of these decisions, WWHow ! must automatically figure
out the missing ones. Furthermore, we need to optimize for the dif-
ferent storage constraints and preferences specified by users. The
challenge here is that users’ constraints and preferences might be
antagonistic and hence hard to come up with the right storage deci-
sion. For example, a user might desire to store his data on a highly
available data storage (indicating a Cloud storage location) and
with high data privacy (indicating a non-Cloud storage location)
at the same time. This calls for both developing new techniques to
create and adapting flexible physical data designs.

Finally, we live in an information age and storing data is a part of
our everyday life. Therefore, we need to develop interfaces which
offer simple yet efficient data storage, i.e. users should have com-
plete control over their data and they should also find it easy to use.
For WiHow !, this means we need to develop an abstract storage in-
terface that allows for both: (i) users to have full control over its
data, and (ii) applications to interoperate on the same data. The

WWHow ! language we presented in Section 3 is just the first step to-
wards this direction.

6. RELATED WORK & CONCLUSION

File and personal information management systems, e.g. [6],
help users to organize their data on personal computers. Novel fea-
tures like Apple MobileMe and Windows Live further allow users
to synchronize their data across devices. However, personal in-
formation management is still very limited in flexibility of what,
where, and how to store data.

RAID servers are standard for recoverable data storage. How-
ever, often in practice, once the system is installed, it is very diffi-
cult for the administrator to change the RAID level. Though recent
works such as [11, 2] are steps towards a more flexible where part
in RAID, the how part still remains unexplored.

Database management systems provide a lot of storage tuning
knobs. For instance, users can create materialized views [8] (what
part), define tablespaces (how part), or turn the physical database
design knobs (e.g. partitioning, indexing, cracking [9]). How-
ever, databases have a fixed data store per product, e.g. row store
in PostgreSQL. RodentStore [3] provides a storage language, but
it requires users to manually specify tedious storage algebra ex-
pressions. WWHow! language, on the other hand, is more user-
friendly. Still, WiHow! language statements could be compiled to
RodentStore storage algebra for storage optimization. Fractured
Mirrors [13] makes a fixed decision of two data copies, one in row
and one in column layout. However, Fractured Mirrors (as well
as [10]) focusses on how to store the data. Instead, WWHow! offers
full flexibility of what, where, and how to store data.

Cloud services offer scalable data storage e.g. Amazon S3 [1].
However, these services create storage cages for user data. In gen-
eral, Cloud services automatically manage where to store the data.
Nevertheless, they still leave the what and how part unanswered.

Conclusion. In this paper, we identified what, where, and how as
three key aspects of data storage. We presented WWHow !, a holistic
data storage layer that is fully flexible to decide what, where, and
how to store data. We believe that the WiHow ! layer, along with the
WWHow! language, allows for many novel and exciting data storage
applications, such as all-in-one personal data storage, RAID over
Cloud, and replicated storage for multiple indexes/layouts.
Acknowledgments. Work partially supported by BMBF.

7['1] A%Eoﬁ%@eggggs .amazon. com.

[2] M. Balakrishnan et al. Differential RAID: Rethinking RAID for SSD

Reliability. In EuroSys, 2010.

P. Cudré-Mauroux et al. The Case for RodentStore: An Adaptive,

Declarative Storage System. In CIDR, 2009.

C. J. Date. An Introduction to Database Systems. Addison Wesley,

8th edition, 2004.

J. Dittrich, J.-A. Quiane-Ruiz, S. Richter, S. Schuh, A. Jindal, and

J. Schad. Only Aggressive Elephants are Fast Elephants. PVLDB,

5(11), 2012.

J.-P. Dittrich et al. iMeMex: Escapes from the Personal Information

Jungle. In VLDB, 2005.

[7]1 R. Elmasri and S. Navathe. Fundamentals of Database Systems.

Addison Wesley, 5th edition, 2007.

J. Goldstein et al. Optimizing Queries Using Materialized Views: A

Practical, Scalable Solution. In SIGMOD, 2001.

[9] S.Idreos et al. Database Cracking. In CIDR, 2007.

[10] A.Jindal, J.-A. Quiané-Ruiz, and J. Dittrich. Trojan Data Layouts:
Right Shoes for a Running Elephant. In SOCC, 2011.

[11] O. Ozmen et al. Workload-Aware Storage Layout for Database
Systems. In SIGMOD, 2010.

[12] R. Ramakrishnan and J. Gehrke. Database Management Systems.
McGraw-Hill, 3rd edition, 2003.

[13] R. Ramamurthy et al. A Case for Fractured Mirrors. In VLDB, 2002.

3

—_

[4

=

[5

—_

[6

[t}

[8

[l

	Introduction
	Current Approaches to Data Storage
	What is the Problem?

	Our Vision of Data Storage
	WWHow!Novel Applications
	WWHow!Advantages
	WWHow!Research Agenda
	Related Work & Conclusion
	References

