
Blurring the Lines between Blockchains and
Database Systems: the Case of Hyperledger Fabric

Ankur Sharma
ankur.sharma@bigdata.uni-saarland.de

Big Data Analytics Group, Saarland University

Felix Martin Schuhknecht
felix.schuhknecht@bigdata.uni-saarland.de

Big Data Analytics Group, Saarland University

Divya Agrawal
s8diagra@stud.uni-saarland.de

Big Data Analytics Group, Saarland University

Jens Dittrich
jens.dittrich@bigdata.uni-saarland.de

Big Data Analytics Group, Saarland University

ABSTRACT
Within the last few years, a countless number of blockchain
systems have emerged on the market, each one claiming to
revolutionize the way of distributed transaction processing
in one way or the other. Many blockchain features, such as
byzantine fault tolerance, are indeed valuable additions in
modern environments. However, despite all the hype around
the technology, many of the challenges that blockchain sys-
tems have to face are fundamental transaction management
problems. These are largely shared with traditional database
systems, which have been around for decades already.
These similarities become especially visible for systems,

that blur the lines between blockchain systems and classical
database systems. A great example of this is Hyperledger
Fabric, an open-source permissioned blockchain system un-
der development by IBM. By implementing parallel trans-
action processing, Fabric’s work�ow is highly motivated
by optimistic concurrency control mechanisms in classical
database systems. This raises two questions: (1) Which con-
ceptual similarities and di�erences do actually exist between
a system such as Fabric and a classical distributed database
system? (2) Is it possible to improve on the performance of
Fabric by transitioning technology from the database world
to blockchains and thus blurring the lines between these two
types of systems even further? To tackle these questions, we
�rst explore Fabric from the perspective of database research,
where we observe weaknesses in the transaction pipeline.
We then solve these issues by transitioning well-understood
database concepts to Fabric, namely transaction reordering

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5643-5/19/06.
https://doi.org/10.1145/3299869.3319883

as well as early transaction abort. Our experimental eval-
uation under the Smallbank benchmark as well as under a
custom workload shows that our improved version Fabric++
signi�cantly increases the throughput of successful transac-
tions over the vanilla version by up to a factor of 12x, while
decreasing the average latency to almost half.

CCS CONCEPTS
• Information systems → Distributed database trans-
actions;

ACM Reference Format:
Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens
Dittrich. 2019. Blurring the Lines between Blockchains and Data-
base Systems: the Case of Hyperledger Fabric. In 2019 International
Conference on Management of Data (SIGMOD ’19), June 30-July 5,
2019, Amsterdam, Netherlands. ACM, Amsterdam, The Netherlands,
18 pages. https://doi.org/10.1145/3299869.3319883

1 INTRODUCTION
Blockchains are one of the hottest topics in modern dis-
tributed transaction processing. However, from the perspec-
tive of database research, one could raise the question: what
makes these systems so special over classical distributed
databases, that have been out there for a long time already?

The answer lies in byzantine fault tolerance: while classi-
cal distributed database systems require a trusted set of par-
ticipants, blockchain systems are able to deal with a certain
amount of maliciously behaving nodes. This feature opens
lots of new application �elds such as transactions between
organizations, that do not fully trust each other.
Regarding the aspect of byzantine fault tolerance,

blockchain systems have a clear advantage over distributed
database systems. Unfortunately, with respect to essentially
any other aspect of transaction processing, classical database
systems are decades ahead of blockchain systems.
A great example for this is the order-execute transaction

processing model, that prominent systems like Bitcoin [1]
and Ethereum [2] implement: In the ordering phase, all peers
�rst agree on a global transaction order, typically using a
consensus mechanism. Then, each peer locally executes the

transactions in that order on a replica of the state. While this
approach is simple, it has two severe downsides: First, the
execution of transactions happens in a sequential fashion.
Second, as every transaction must be executed on every
peer, the performance of the system does not scale with the
number of peers. Of course, both parallel execution as well
as scaling capabilities have been well-established properties
of distributed database systems since many years.
1.1 Catching up
Still, there are blockchain systems that try to catch up. A
prominent example for this is Hyperledger Fabric [10], a
popular open-source blockchain system introduced by IBM.
Instead of implementing the order-execute model, it follows
a sophisticated simulate-order-validate-commit model. This
model is highly in�uenced by optimistic concurrency control
mechanisms in database systems: Transactions are simulated
speculatively in parallel before actually ordering them. Then,
after ordering, Fabric checks in the validation phase whether
the order does not con�ict with the previously computed sim-
ulation e�ects. Finally, the e�ects of non-con�icting transac-
tions are committed. The advantages of this model are clear:
parallel transaction execution and therefore the ability to
scale — features, which will be mandatory for any upcoming
blockchain system, that aims at high performance.

We strongly believe that Fabric’s ambitions in transition-
ing technology from the world of databases to blockchains
are a step in the right direction. Unfortunately, its implemen-
tation of parallel transaction processing still su�ers from
certain problems which highly limit the gain, that can be
achieved by concurrency. These problems can be identi�ed
easily in two simple experiments.

Transactions per second
0 150 300 450 600

Aborted Successful

SuccessfulBlank

Transactions

Meaningful

Transactions

Fabric

Figure 1: Transactions per second of vanilla Fabric
when meaningful transactions are �red as described
in Section 6 for the con�guration BS=1024, RW=8,
HR=40%,HW=10%,HSS=1%. Additionally, we show the
throughput when blank transactions are �red.

In the �rst experiment (Figure 1, top bar), we submit a
stream of meaningful transactions, which originate from an
asset transfer scenario, and report the throughput, divided
into aborted and successful transactions. This experiment
reveals a severe problem of Fabric: a large number of trans-
actions end up as being aborted. The reason for all these
aborts are serialization con�icts, a negative side-e�ect of
concurrent execution.
If we want to increase the number of successful transac-

tions, we essentially have two options: Either we (a) increase

the overall throughput of the system or (b) turn transactions,
that would have been aborted by Fabric, to successful ones.
Unfortunately, option (a) is hardly applicable in Fabric. We
can see this in the second experiment (Figure 1, bottom bar),
where we submit blank transactions without any logic. In-
terestingly, the total throughput of blank and meaningful
transactions essentially equals. This reveals, that the over-
all throughput of the system is not dominated by the core
components of transaction processing, but actually by other
auxiliary factors: cryptographic computations and network-
ing overhead.

1.2 Fabric++
Thus, option (b) is the key: we have to turn transactions, that
would have been aborted by Fabric, to successful ones. We
achieve this, by transitioning a well-known technique from
database systems to Fabric: transaction reordering. Instead of
arbitrarily ordering transactions, we inspect the transaction
semantics and arrange the transactions in a way such that
the number of serialization con�icts is drastically reduced.
Furthermore, we remove transactions, that have no chance to
commit anymore, as early as possible from the pipeline. This
early abort of transactions further improves the situation, as
transactions, which have no chance to commit, are out of
consideration for reordering.
In total, we carry out the following steps to further

"databasify" Fabric:
(1) To have a basis for the discussion, we �rst inspect the
transaction �ow of Hyperledger Fabric version 1.2 from a
conceptual perspective. (Section 2).
(2) We carefully inspect the related work in the area of con-
currency control and discuss, which techniques are related to
Fabric and which are out of consideration. (Section 3). This
leads us directly to the techniques we are integrating.
(3) Based on the analysis of the transaction �ow in Fabric, we
discuss its weaknesses in detail and describe, how database
technology can be utilized to counter them. (Section 4).
(4) We transition database technology to the transaction
pipeline of Fabric. Precisely, we �rst improve on the ordering
of transactions. By default, the system orders transactions
arbitrarily after simulation, leading to unnecessary serial-
ization con�icts. To counter this problem, we introduce an
advanced transaction reordering mechanism, which aims at re-
ducing the number of serialization con�icts between transac-
tions within a block. This mechanism signi�cantly increases
the number of valid transactions, that make it through the
system and therefore the overall throughput (Section 5.1).
(5) Next, we advance the abort of transactions. By default,
Fabric checks whether a transaction is valid right before the
commit. This late abort unnecessarily penalizes the system
by processing transactions, that have no chance to commit.
To tackle this issue, we introduce the concept of early abort

to various stages of the pipeline. We identify invalid trans-
actions as early as possible and abort them, assuring that
the pipeline is not throttled by transactions that have no
chance to commit eventually. A requirement for this concept
is a �ne-grained concurrency control mechanism, by which
we extend Fabric as well (Section 5.2). These modi�cations
signi�cantly extend the vanilla Fabric, turning it into what
we call Fabric++.
(6) We perform an extensive experimental evaluation of the
optimizations of Fabric++ under the Smallbank benchmark
as well as under a custom workload. We show that we are
able to signi�cantly increase the number of successful trans-
actions over the vanilla version. Additionally, we vary the
blocksize, the number of channels, and clients to show that
our optimizations also have a positive impact on the scal-
ing capabilities of the system. Further, using the Caliper
benchmark, we show that Fabric++ also produces a lower
transaction latency than vanilla Fabric (Section 6).

2 HYPERLEDGER FABRIC
First, we have to understand the work�ow of Fabric. Let
us describe in the following section how it behaves in ver-
sion 1.2.

2.1 Architecture
Fabric is a permissioned blockchain system, meaning all
peers of the network are known at any point in time. Peers
are grouped into organizations, which typically host them.
Within an organization, all peers trust each other. Each peer
runs a local instance of Fabric. This instance includes a copy
of the ledger, containing the ordered sequence of all transac-
tions that went through the system. This includes both valid
and invalid transactions. Apart from the ledger, each peer
also contains the current state in form of a state database,
which represents the state after the application of all valid
transactions in the ledger to the initial state. Apart from the
peers, which play an important role both in the simulation
phase and the validation phase, there is a separate instance
called the ordering service, which is the core component of
the ordering phase and assumed to be trustworthy.

2.2 High-level Work�ow
At its core, Fabric follows a simulate-order-validate-commit
work�ow, as shown in Figure 2.
2.2.1 Simulation Phase. In the simulation phase, a client sub-
mits a transaction proposal to a subset of the peers, called the
endorsement peers or endorsers, for simulation. This subset
of endorsement peers is de�ned in a so called endorsement
policy. Since organizations do not fully trust each other, it
is typically speci�ed, that at least one peer of each involved
organization has to simulate the transaction proposal. The
endorsers now simulate the transaction proposal against a
local copy of the current state in parallel. As the name of this

Simulation
Phase

Ordering
Phase

Validation
Phase

Commit
Phase

Client 1

Ordering
Service

Peer A1

Peer B1

Peer A2

Peer B2

Client 2

Endorsement

Endorsement

Proposal

Transaction

Block
Peer A1

simulate

Peer A1

simulate

simulate

simulate

append to ledgervalidate ✓ ✘

Peer A2 Peer A2

append to ledgervalidate ✓ ✘

Peer B1 Peer B1

append to ledgervalidate ✓ ✘

Peer B2 Peer B2

append to ledgervalidate ✓ ✘

Proposal

Endorsement

Transaction

Figure 2: High-level work�ow of Fabric.

phase suggests, none of the e�ects of the simulation become
durable in the current state at this point. Instead, each en-
dorser builds up a read set and a write set during simulation
to capture the e�ects. After simulation, each endorser re-
turns its read and write set to the client. Along with that, the
endorsers also return a cryptographic signature over the sets.
If all returned read and write sets are equal, the client forms
an actual transaction. It contains the previously computed
read set and write set along with all signatures. The client
then passes this transaction on to the ordering service.
2.2.2 Ordering Phase. In the ordering phase, the trusted
ordering service receives the transactions from the clients.
Among all received transactions, it establishes a global order
and packs them into blocks containing a certain number of
transactions. By default, the transactions are essentially or-
dered in the way in which they arrive at the service, without
inspecting the transaction semantics in any way. The order-
ing service then distributes each formed block to all peers
of the network. Note that the system does not guarantee
that all peers receive a block at the same time. However, it
guarantees that all peers receive the same blocks in the same
order.
2.2.3 Validation Phase. As soon as a block arrives at a peer,
its validation phase starts. For each transaction within the
block, the validation consists of two checks: First, Fabric tests
whether the transaction respects the endorsement policy and
whether all contained signatures �t to the read and write
set. If this is not the case, it means that either an endorser
or the client tampered with the transaction in some way. In
this case, the systems marks the transaction as invalid. If
a transaction passes the �rst test, Fabric secondly checks,
whether any serialization con�icts occur. As the simulation
of transactions happens in parallel before ordering them, it
is possible that the e�ects of the simulation stand in con�ict
with the established order. Therefore, Fabric marks transac-
tions, which con�ict with previous transactions, as invalid
as well.
2.2.4 Commit Phase. In the commit phase, each peer ap-
pends the block, which contains both valid and invalid trans-
actions, to its local ledger. Additionally, each peer applies all
changes made by the valid transactions to its current state.

3 RELATEDWORK
Before diving into the optimizations we apply, we have to
discuss related work in the �eld.

In this work, we transition mature database techniques to
the world of blockchains. As mentioned in the introduction,
we essentially apply two prominent techniques from the
�eld of database concurrency control to Fabric: transaction
reordering and early transaction abort. Of course, concurrency
control is a large and active area of research and the alerted
reader might wonder, why we focus on precisely these tech-
niques. The answer lies in the fact, that a blockchain system
such as Fabric, despite being a parallel transaction processing
system, di�ers from parallel database systems in four points:
(a) A blockchain system like Fabric commits at the granu-

larity of blocks instead of committing at the granularity
of individual transactions. The commit granularity has a
signi�cant e�ect on the type of applicable optimizations.

(b) A blockchain system like Fabric is a distributed system,
where the state is fully replicated across the network
and where transactions operate on all nodes. In contrast
to that, parallel database systems are typically either in-
stalled locally on a single node or partition their state
across a network, such that transactions operate on a
subset of the network. The type of distribution and repli-
cation has a signi�cant e�ect on the optimization options.

(c) In Fabric, a single transaction is simulated in parallel
on multiple nodes to establish trust. The state, against
which the transaction is simulated potentially di�ers
across nodes. In a parallel database system, the situation
is way simpler: a transaction is executed exactly once
against the only state present in the system.

(d) The performance of a blockchain system like Fabric is
largely dominated by cryptographic signature computa-
tions, network communication, and trust validation. In
contrast, the performance of parallel database systems is
highly in�uenced by low-level components, such as the
choice of the locking mechanism for concurrency con-
trol. Therefore, despite being closely related, blockchain
optimizations happen on a di�erent level than database
optimizations.

Let us now go through the related work. Essentially, con-
currency control techniques can be divided into two classes:
(1) methods, that aim at improving the overall transactional
throughput [13, 17, 20, 26] and (2) methods, that try to turn
aborted transactions into successful transactions [24, 28].

3.1 Class 1: Transaction Throughput
The works of [26], [20], and [13] all aim at improving par-
allel transaction execution. In [26], the authors propose a
mechanism, which collects a batch of transactions and an-
alyzes the access dependencies between these transactions.
The resulting dependency graph is then partitioned into

non-intersecting subgraphs. As the transactions in di�erent
subgraphs do not con�ict with each other, they can be safely
executed in parallel. [20] and [13] go a step further by not
only analyzing dependencies between entire transactions,
but actually between transaction-fragments. Precisely, they
�rst split the transactions into possible fragments and then
analyze the dependencies between these fragments, while
respecting existing dependencies between entire transac-
tions. By this, they are able to achieve a higher degree of
parallelism. In general, a design as proposed by these three
papers allows to equip systems, that would otherwise follow
a purely sequential execution, with a partial parallel exe-
cution. In the context of blockchains, systems following an
order-execute model could bene�t from such a technique.
Obviously, Fabric is not the right candidate for this method,
as it already parallelizes the simulation phase by default.
[17] aims at improving concurrency control from a low-

level perspective. It proposes interesting optimizations to
MVCC components such as timestamp allocation, version
storage, validation, index management, and recovery. In the-
ory, these techniques could be applied to the underlying
storage system of Fabric. However, improving low-level com-
ponents of Fabric will not improve the overall performance,
which is largely dominated by top-level components han-
dling cryptography, networking, and trust validation.

Unfortunately, the techniques of class (1) are not suited to
improve the transactional throughput of a blockchain sys-
tem such as Fabric. We saw the reason for this in Figure 1
in the introduction. For blank transactions, the concurrency
control mechanism essentially has no work to do. For mean-
ingful transactions, simulation and validation must be syn-
chronized. Still, the throughput equals. This means, that a
technique that directly a�ects transactional processing, such
as concurrency control, can not lead to an improvement in
throughput. Instead, the system is dominated by factors, that
are not directly related to transactional processing, such as
cryptographical computations and networking. As a conse-
quence, optimizations of class (1) are out of consideration.

3.2 Class 2: Transaction Abort & Success
[24] relates to our work, as it shares the same motivation:
to reduce the amount of transactions, that are unnecessar-
ily aborted due to serialization con�icts. In the context of a
local parallel database system implementing multi-version
concurrency control (MVCC) [16, 21, 25, 27], the authors
propose to protect each frequently accessed entry addition-
ally with a shared lock. The use of such a lock prevents
unnecessary aborts due to read-write con�icts between trans-
actions accessing these hot entries. E�ectively, this need to
acquire a lock assures for potentially con�icting transactions,
that they commit in a non-con�icting order. Unfortunately,

this strategy is hardly applicable to the distributed trans-
action processing model of Fabric. Since Fabric simulates
and commits transactions in parallel on multiple nodes, this
technique would require a trusted �ne-grained distributed
locking service to synchronize accesses, causing excessive
network communication and coordination e�ort.
In [28], the authors also aim at reducing the number of

aborted transactions by in�uencing the commit order. How-
ever, they follow a completely di�erent strategy than [24]:
When a transaction T wants to commit and detects a read-
write con�ict with an already committed transaction, then
it is not directly aborted. Instead, it is checked whether the
commit time of T can be simply changed retrospectively to
its begin time. If this change does not trigger a read-write,
write-write, or a write-read con�ict with another concurrent
transaction, then T is allowed to commit at its begin time.
While this technique would be applicable in the ordering
service of Fabric, its e�ects would be highly limited. This
is caused by the simplicity of the method which allows the
commit time of a transaction to be changed only to its begin
time, not to other possible points in time within the com-
mit sequence. This wastes a lot of optimization potential. In
contrast, our transaction reordering mechanism considers
commit reordering for all transactions within a block and
aims at �nding the best global order.
The bene�t of transaction reordering has also recently

been studied in [11]. In the context of OLTP systems, the
authors identify that the number of successful transaction
can be improved by up to a factor of 2.7x via reordering of
transaction batches.

Thus, class (2) methods, which aim at increasing the num-
ber of successful transactions and clearing the ones that must
be aborted, are the key for improving a blockchain system
such as Fabric. Our optimizations of transaction reordering
and early transaction abort fall into this class. In the fol-
lowing section, we will elaborate the importance of these
techniques in detail.

4 BLURRED LINES: FABRIC VS
DISTRIBUTED DATABASE SYSTEMS

With an understanding of the work�ow of Fabric, we are able
to discuss its architecture in relation to distributed database
systems. In particular, we are interested in aspects of Fabric,
that are (a) conceptually shared with distributed database
systems, but (b) have potential for the application of database
technology.

4.1 The Importance of Transaction Order
The �rst component we look at is the ordering mechanism.
Such a component is also present in any distributed database
system with transaction semantics and therefore a great
candidate for transitioning database technology to Fabric.

As described in Section 2, Fabric relies on a single trustwor-
thy ordering service for ordering transactions. Since Fabric
simulates the smart contracts bound to proposals before per-
forming the ordering, the order actually has an in�uence on
the number of serialization con�icts between transactions.
Again, this is a property shared with any parallel database
system, that separates transaction execution from transac-
tion commit.
In ordering transactions, various di�erent strategies are

possible: The simplest option is to arbitrarily order them,
for instance in the order in which they arrive. While this
arrival order is fast to establish, it can lead to serialization
con�icts, that are potentially unnecessary. These con�icts
increase the number of invalid transactions, which must be
resubmitted by the client. Unfortunately, the vanilla Fabric
follows exactly this naive strategy. This is caused by the
design decision that the ordering service is not supposed to
inspect the transaction semantics, such as the read and write
set, in any way. Instead, it simply leaves the transactions in
the order in which they arrive. This strategy can be problem-
atic, as the example in Table 1 shows. In this example, four
transactions are scheduled in the order in which they arrive,
namely T1) T2) T3) T4, where T1 updates the key k1
from version �1 to �2. Since the transactions T2, T3, and T4
each read k1 in version �1 during their simulations, they
have no chance to commit, as they operated on an outdated
version of the value of k1. They will be identi�ed as invalid
in the validation phase and the corresponding transaction
proposals must be resubmitted by the client, resulting in a
new round of simulation, ordering, and validation.

Table 1: For the order T1) T2) T3) T4, only one
out of four transactions is valid: T2, T3, and T4 read the
outdated version �1 of key k1, that has been updated
by T1 to �2 before.
Transaction Read Set Write Set Is Valid?

1. T1 — (k1, �1 ! �2) X
2. T2 (k1, �1), (k2, �1) (k2, �1 ! �2) ⇥

3. T3 (k1, �1), (k3, �1) (k3, �1 ! �2) ⇥

4. T4 (k1, �1), (k3, �1) (k4, �1 ! �2) ⇥

Interestingly, for the four transactions from the previous
example, there exists an order that is con�ict free. In the
schedule T4) T2) T3) T1, as shown in Table 2, all four
transactions are valid, as their read and write sets do not
con�ict with each other in this order.
This example shows that the vanilla orderer of Fabric

misses a chance of removing unnecessary serialization con-
�icts. While this problem is new to the blockchain domain,
as blockchains typically o�er only a serial execution of trans-
actions, within the database community, this problem is actu-
ally well known. There exist reordering mechanisms which
aim at minimizing the number of serialization con�icts via a

Table 2: The order T4) T2) T3) T1 results in all
four transactions being valid.
Transaction Read Set Write Set Is Valid?

1. T4 (k1, �1), (k3, �1) (k4, �1 ! �2) X
2. T2 (k1, �1), (k2, �1) (k2, �1 ! �2) X
3. T3 (k1, �1), (k3, �1) (k3, �1 ! �2) X
4. T1 — (k1, �1 ! �2) X

reordering of transactions [11, 18, 29, 30]. However, in a data-
base system, it is typically avoided to bu�er a large number
of incoming transactions before processing as low latency
is mandatory. Thus, reordering is not always an option in
such a setup. Fortunately, as blockchain systems bu�er the
incoming transactions anyways to group them into blocks,
this gives us the opportunity to apply sophisticated transac-
tion reordering mechanisms without introducing signi�cant
overhead.
We will add such a transaction reordering mechanism to

Fabric in Section 5.1, which signi�cantly enhances the num-
ber of valid transactions, that make it through the system.

4.2 On the Lifetime of Transactions
The second aspect we look at from a database perspective
tackles the lifetime of transactions within the pipeline. In
Fabric, every transaction that goes through the system is
either classi�ed as valid or as invalid with respect to the
validation criteria. In the vanilla version, this classi�cation
happens in the validation phase right before the commit
phase. A severe downside of this form of late abort is that a
transaction, that violated the validation criteria already in an
earlier phase, is still processed and distributed across all peers.
This penalizes the whole system with unnecessary work,
throttling the performance of valid transactions. Besides,
this concept also delays the abort noti�cation to the client.
We have to distinguish in which phase a violation hap-

pens. First, a violation can occur already in the simulation
phase, in form of so called cross-block con�icts, meaning a
transaction from a later block, which is currently in the simu-
lation phase, con�icts with a valid transaction from an earlier
block. Second, a violation can occur as well as in the ordering
phase, in form of within-block con�icts between con�icting
transactions in a single block.
Let us look at these two scenarios in isolation in Sec-

tion 4.2.1 and Section 4.2.2, respectively.

4.2.1 Violation in the simulation phase (cross-block conflicts).
To understand the problem in the simulation phase, let us
look at the following situation and how the vanilla version of
Fabric handles it. Let us assume there are four transactionsT1,
T2,T3, andT4 that are currently in the ordering phase and that
end up in a block of size four, which is shipped to all peers for
validation. Before the validation of that block starts within a
peer P , the smart contract of a transaction proposal T5 starts

its simulation in P . To do so, it acquires a read lock1 on the
entire current state. While the simulation is running, the
block has to wait for the validation, as it has to acquire an
exclusive write lock on the current state. The problem in this
situation is: if T1, T2, T3, or T4 write the value of a key, that
is read by T5, then T5 simulates on stale data. Therefore, in
the moment of the read, the transaction becomes virtually
invalid. Still, in the vanilla version of Fabric, this stale read
is not detected before the validation phase of T5. Thus, T5
would continue its simulation and go through the ordering
phase, just to be invalidated in the very end.

4.2.2 Violation in the ordering phase (within-block conflicts).
Apart from con�icts across blocks, there can be con�icts
between transactions within a block. These con�icts appear
after putting the transactions into a particular order in the
ordering phase. For instance, the example from Table 1 in Sec-
tion 4.1 showed a schedule, where the three transactions T2,
T3, and T4 individually con�ict with the previously sched-
uled transaction T1 of the same block. Unfortunately, these
con�icts are not detected within the orderer of the vanilla
version of Fabric. The block containing T2, T3, and T4 would
be distributed across all peers of the network for validation,
although 3/4 of transactions within the block are virtually in-
valid. As before, this originates from the design decision that
the ordering service does not inspect transaction semantics.

The mentioned situations show that Fabric misses several
chances to abort transactions right at the time of violation. In
contrast to that, database systems are typically very eager in
aborting transactions [14], as it decreases network tra�c and
saves computing resources. This concept of "cleaning" the
pipeline as early as possible is called early abort in the context
of databases, which apply this concept in various �avors.
For instance, besides of the early abort of transactions, that
violate certain criteria, database systems eliminate records
from the query result set as early as possible by pushing
down selection and projection operations in the query plan.
To overcome the mentioned problems, we will apply the

concept of early abort at several stages of the transaction
processing pipeline of Fabric. By this, we assure to utilize
the available resources with meaningful work to the extend.
We will detail this in Section 5.2.

5 FABRIC++
We have outlined the problems of Fabric and how they relate
to key problems known in the context of database systems.
Let us now see precisely how we counter them. First, in Sec-
tion 5.1, we introduce a transaction reordering mechanism,
that aims at minimizing the number of unnecessary within-
block con�icts. Second, in Section 5.2, we introduce early

1The read lock can be shared by multiple simulation phases, as they do
not modify the current state.

transaction abort to several stages of the Fabric pipeline. This
also involves the introduction of a �ne-grained concurrency
control mechanism.

5.1 Transaction Reordering
When reordering a set of transactions S , multiple challenges
must be faced. First, we have to identify which transactions
of S actually con�ict with each other with respect to the
actions they perform. Again, these con�icts can occur, as
the transactions of S simulated in complete isolation from
each other. As the commits of S happen in a later phase,
they had no chance to see each other’s potentially con�ict-
ing modi�cations. Precisely, we have a con�ict between two
transactions Ti and Tj (denoted as Ti 9 Tj), if Ti writes to
a key that is read by Tj . In this case, Ti must be ordered
after Tj (denoted as Tj) Ti) to make the schedule serial-
izable, as otherwise, the read of Tj would be outdated. Un-
fortunately, the problem is typically more complex as cycles
of con�icts can occur, such that simple reordering cannot
resolve the problem. For example, if we have the cycle of
con�ictsTi 9 Tj 9 Tk 9 Ti , there is no order of these three
transactions that is serializable. Therefore, before reorder-
ing transactions, our mechanism must actually �rst remove
certain transactions of S to form a cycle-free subset S 0 ✓ S ,
from which a serializable schedule can be generated.
From a high-level perspective, the following �ve steps

must be carried out: (1) First, we build the con�ict graph of
all transactions of S . (2) Then, we identify all cycles within
this con�ict graph. (3) Based on that, we identify for each
transaction, in which cycles it occurs. (4) Next, we incremen-
tally abort transactions occurring in cycles, starting from
the ones that occur in most cycles, until all cycles are re-
solved. (5) Finally, we build a serializable schedule from the
remaining transactions. The pseudo-code of Algorithm 1
implements these �ve steps.
5.1.1 Example. To understand the principle and to discuss
some of the implementation details, let us go through a con-
crete example. Let us assume we have a set S of six transac-
tions T0 to T5 to consider for reordering. These six transac-
tions have read and write sets as shown in Table 3. In total,
they access ten unique keys K0 to K9.

Step (1): Based on this information, we now have to gen-
erate the con�ict graph of the transactions as done by the
function buildConflictGraph() in line 4 of Algorithm 1. To
do so in an e�cient way, we interpret the rows of Table 3 as
bit-vectors of length 10. Let us refer to them as �ecr (Ti) for
the reading accesses and �ecw (Ti) for the writing accesses
of a transaction Ti . For each transaction Ti , we now perform
a bitwise &-operation between �ecr (Ti) and �ecw (Tj) for all
j , i . If the result of an &-operation is not 0, we have identi-
�ed a read-write con�ict and create an edge in the con�ict
graph between the corresponding transactions. As a result,

1 func reordering(Transaction [] S) {

2 // Step 1: For each transaction in S buildConflictGraph ()

3 // inspects the read and write set and builds a conflict graph.

4 Graph cg = buildConflictGraph(S)

5 // Step 2: Within the conflict graph , we have to identify all

6 // occurring cycles. We do that by dividing cg into strongly

7 // connected subgraphs using Tarjans algorithm [2] in

8 // divideIntoSubgraphs ().

9 Graph [] cg_subgraphs = divideIntoSubgraphs(cg)

10 // In a strongly connected graph , each node is reachable from

11 // every other node. This implies that each strongly connected

12 // subgraph of cg with more than one node must contain at least

13 // one cycle. We identify the cycles within the subgraphs using

14 // Johnsons algorithm [1] in getAllCycles ().

15 Cycle [] cycles = emptyList ()

16 foreach subgraph in cg_subgraphs:

17 if(subgraph.numNodes () > 1):

18 cycles.add(subgraph.getAllCycles ())

19 // Step 3: To remove the cycles in cg, we have to remove

20 // conflicting transactions from S. To identify the

21 // transactions that cause the most problems , for each

22 // transaction of S, we count in how many cycles it occurs.

23 MaxHeap transactions_in_cycles = emptyMaxHeap ()

24 foreach Cycle c in cycles:

25 foreach Transaction t in c:

26 if transactions_in_cycles.contains(t)

27 transactions_in_cycles[t]++

28 else

29 transactions_in_cycles[t] = 1

30 // Step 4: Let us define S’ as S. We now greedily remove the

31 // transaction from S’ that occurs in most cycles , until all

32 // cycles have been resolved.

33 Transaction [] S’ = S

34 while not cycles.empty():

35 Transaction t = transactions_in_cycles.popMax ()

36 S’.remove(t)

37 foreach Cycle c in cycles:

38 if c.contains(t):

39 c.remove(t)

40 cycles.remove(c)

41 foreach Transaction t’ in c:

42 transactions_in_cycles[t’]--

43 // Step 5: From S’ we have to form the actual serializable

44 // schedule. We start by building the (cycle -free) conflict

45 // graph of S’.

46 Graph cg’ = buildConflictGraph(S’)

47 // Compute schedule. We start at some node of the graph ,

48 // that hasn�t been visited yet.

49 Transactions [] order = emptyList ()

50 Node startNode = cg’.getNextNode ()

51 while order.length () < cg’.numNodes ():

52 addNode = true

53 if startNode.alreadyScheduled ():

54 startNode = cg’.getNextNode ()

55 continue

56 // Traverse upwards to find a source

57 foreach Node parentNode in startNode.parents ():

58 if not parentNode.alreadyScheduled ():

59 startNode = parentNode

60 addNode = false

61 break

62 // A source has been found , so schedule it and traverse

63 // downwards.

64 if addNode:

65 startNode.scheduled ()

66 order.append(startNode)

67 foreach Node childNode in startNode.children ():

68 if not childNode.alreadyScheduled ():

69 startNode = childNode

70 break

71 return order.invert ()

72 }

Algorithm 1: Reordering mechanism in pseudo code.

Table 3: Ten unique keys that are accessed by six trans-
actions, separated in read set and write set.

Read Set
Transactions K0 K1 K2 K3 K4 K5 K6 K7 K8 K9

T0 1 1 0 0 0 0 0 0 0 0
T1 0 0 0 1 1 1 0 0 0 0
T2 0 0 0 0 0 0 1 1 0 0
T3 0 0 1 0 0 0 0 0 1 0
T4 0 0 0 0 0 0 0 0 0 1
T5 0 0 0 0 0 0 0 0 0 0

Write Set
Transactions K0 K1 K2 K3 K4 K5 K6 K7 K8 K9

T0 0 0 1 0 0 0 0 0 0 0
T1 1 0 0 0 0 0 0 0 0 0
T2 0 0 0 1 0 0 0 0 0 1
T3 0 1 0 0 1 0 0 0 0 0
T4 0 0 0 0 0 1 1 0 1 0
T5 0 0 0 0 0 0 0 1 0 0

we obtain the con�ict graph C(S) of our six transactions as
shown in Figure 3.

T0
T1

T3

T2

T4
T5

T0
T1

T3

T2

T4
T5

Figure 3: Con�ict graph C(S) of the transactions in S .

Note that this algorithm has quadratic complexity on the
number of transactions. Still, we apply it as the number of
transactions to consider is very small in practice due to the
limitation by the block size and therefore, the overhead is
negligible.

Step (2): To identify the cycles, we apply Tarjan’s algo-
rithm [22] in the function divideIntoSubgraphs() in line 9
to identify all strongly connected subgraphs. In general, this
can be done in linear time in O(N + E) over the number
of nodes N and number of edges E and results in the three
subgraphs as shown in Figure 4.

Using Johnson’s algorithm [15], we then identify all cycles
within the strongly connected subgraphs. Again, this step
can be done in linear time in O((N + E) · (C + 1)), where C
is the number of cycles. Therefore, if there are no cycles in
the subgraphs, the overhead of this step is very small.

T0
T1

T3

T2

T4
T5

T0
T1

T3

T2

T4
T5

Figure 4: The three strongly connected subgraphs of
the con�ict graph of Figure 3.

We identify that the �rst subgraph (colored in green) con-
tains the two cycles c1 = T0 9 T3 9 T0 and c2 = T0 9 T3 9

T1 9 T0. The second subgraph (colored in red) contains the
cycle c3 = T2 9 T4 9 T2. The third subgraph (colored in
yellow) contains only one node and is thus cycle-free.

Step (3): From this information, we can build a table de-
noting for every transaction in which cycle it appears as
shown in the lines 15 to 18 of Algorithm 1. Table 4 visualizes
the result for our example. If a transaction Ti is part of a
cycle c j , the corresponding cell is set to 1, otherwise 0. The
last row of the table sums up for every transaction in how
many cycles it is contained in total.
Table 4: If a transaction Ti is a part of a cycle c j , the
corresponding cell is set to 1, otherwise 0. The last row
contains for every transaction the total number of cy-
cles, in which it appears.

Cycle T0 T1 T2 T3 T4 T5

c1 1 0 0 1 0 0
c2 1 1 0 1 0 0
c3 0 0 1 0 1 0Õ

2 1 1 2 1 0

Step (4): We now iteratively remove transactions, that
participate in cycles, starting from the ones that appear in
most cycles. The lines 33 to 40 of Algorithm 1 show the
corresponding pseudo-code. As we can see, T0 and T3 both
appear in two cycles, so we take care of them �rst. If we
can choose between two transactions, such as T0 and T3,
we pick the one with the smaller subscript. This assures
that our algorithm is deterministic. We remove T0, which
clears all cycles in which T0 appears, namely c1 and c2. The
transactionsT2 andT4 remain with a participation in cycle c3
each. We remove T2 which clears c3 and thereby the last
cycle.
From this we now know that from the

set S
0 = {T1,T3,T4,T5} we can generate a serializable

schedule, leading to the cycle-free con�ict graph C(S
0
)

(line 46) as shown in Figure 5.

T1

T3 T4
T5

T0
T1

T3

T2

T4
T5

Figure 5: The cycle-free con�ict graph C(S
0
), contain-

ing only the transactions T1, T3, T4, and T5.
Step (5): Generating the �nal schedule is essentially a

repetitive execution of two parts until all nodes are scheduled:
(a) the locating of the source node in the current subgraph
(lines 53 to 61) and (b) the scheduling of all nodes that are
reachable from that source (lines 64 to 70).
We start part (a) at the node of C(S 0) representing the

transaction with the smallest subscript, namely T1. From
this starting node, we have to �nd a source node, as sources

have to be scheduled last.T1 has two parents, namelyT3 and
T4, so it not a source. We follow the edge to T3, which has
not been visited yet but is also not a source, as it has T4 as
a parent as well. We follow the edge to T4, which has not
been visited yet and which is a source. Therefore, we can
schedule T4 safely at the last position in our schedule, to
which we refer to as position 4. Now, part (b) starts as all
nodes that are reachable fromT4 must be scheduled before it.
T4 has two children, namely T1 and T3. We follow the edge
to T1, which has not been scheduled yet. However, as T1 has
an incoming edge from T3, we also cannot directly schedule
it. First, we visit T3 and identify that it has a parent in form
of T4, the source at which we started. With this information,
we know that T3 must be scheduled at position 3 and T1
must be scheduled at position 2. This ends part (b), as all
reachable nodes have been scheduled. Next, we restart at the
only remaining nodeT5. AsT5 is not only a source but also a
sink, we can schedule it instantly at position 1. This results
in the �nal schedule T5) T1) T3) T4, which is returned
to the orderer.

Please note that our reordering mechanism is not guaran-
teed to abort a minimal number of transactions, as this would
be a NP-hard problem. However, it o�ers a very lightweight
way to generate a serializable schedule with a small number
of aborts.

5.1.2 Batch Cu�ing. In the context of transaction reorder-
ing, we have to discuss and extend a mechanism within the
ordering service, that we omitted for simplicity in the de-
scription of Fabric in Section 2, namely batch cutting. When
the ordering service receives the transactions in form of a
constant stream, it decides based on multiple criteria when
to "cut" a batch of transactions to �nalize it and to form the
block. In the vanilla version, a batch is cut as soon as one
of the following three conditions hold: (a) The batch con-
tains a certain number of transactions. (b) The batch has
reached a certain size in terms of bytes. (c) A certain amount
of time has passed since the �rst transaction of this batch
was received.

In Fabric++, we extend these criteria by one additional
condition.We also cut the batch, if (d) the transactions within
the batch access a certain number of unique keys. This condi-
tion ensures that the runtime of our reordering mechanism,
in particular the time of step (1), remains bounded.

5.2 Early Transaction Abort using
Advanced Concurrency Control

The reordering mechanism previously described not only
tries to minimize the number of unnecessary aborts, it also
enables a form of early abort. Transactions, that are removed
from S because of their participation in con�ict cycles can
be aborted already in the ordering phase instead of later on

the validation phase. This assures that less transactions are
distributed across the network.

In the following, we want to push this concept of aborting
transactions as early as possible in the pipeline to the limits.
Additionally to early aborting transactions that occur in con-
�ict cycles, we can integrate two more applications of early
abort, as we will describe in Section 5.2.1 and Section 5.2.2.
The �rst one is happening already in the simulation phase.
Let us see in the following how this works.

5.2.1 Early Abort in the Simulation Phase. To realize early
abort in the simulation phase, we �rst have to extend Fabric
by a more �ne-grained concurrency control mechanism, that
allows for the parallel execution of simulation and validation
phasewithin a peer.With such amechanism at hand, we have
the chance of identifying stale reads during the simulation
already.
To understand the concept, let us consider the example

from Section 4.2.1 again. With a �ne-grained concurrency
control mechanism, the block containing T1, T2, T3, and T4
would not have to pend for validation while the smart con-
tract bound to the proposalT5 is simulating. Instead, the four
transactions would apply their updates in an atomic fashion
while T5 is simulating. As a consequence of this design, for
every readT5 performs, we can check whether the read value
is still up-to-date. As soon as we detect a stale read, we can
abort the simulation of the transaction proposal. Addition-
ally, we directly notify the corresponding client about the
abort, such that it can resubmit the proposal without delay.
Let us discuss in the following, how exactly our �ne-

grained concurrency control mechanism works and how
we realize it in Fabric++. In the context of modern database
systems, advanced concurrency control mechanisms are well
established [16, 19, 21, 23, 24, 27]. Instead of locking the en-
tire store, these techniques typically perform a �ne-grained
locking on the record level or even at the level of individual
cells/values. As there is conceptually no di�erence between
the store of a database system and the store used within the
Fabric peers, similar techniques can be applied here.

simulation
starts

last-block-ID=4

Validation Phase

Simulation Phase
update balA=50

read balB=100
block-ID=5

abort
simulation

Current State

Ledger

balA=(70,block-ID=4)
balB=(80,block-ID=3)

last-block-ID=4

read balA=70
block-ID=4✓

balA=(70,block-ID=5)
balB=(100,block-ID=5)

✘

block 5 validated

last-block-ID=5

update balB=100

balA=(50,block-ID=5)
balB=(80,block-ID=3)

Figure 6: Parallelization with early abort using our
�ne-grained concurrency control.

As discussed in Section 2, Fabric implements its current
state in form of a key-value store, whichmaps each individual
key to a pair of value and version-number. The version-
number is actually composed of the ID of the transaction,
that performed the update, as well as the ID of the block that

contains the transaction. In the original version of Fabric,
the sole purpose of the version-numbers is to identify stale
reads. In the validation phase, for every transaction we check
whether the version-number of the read value still matches
the one in the current state.
We can go one step further and exploit the available

version-numbers to implement a lock-free concurrency con-
trol mechanism protecting the current state. To do so, in
Fabric++, we �rst remove the read-write lock, that was un-
necessarily sequentializing simulation and validation phase.
The version-number, that is maintained with each value, is
su�cient to ensure the same transaction isolation semantics
as the vanilla version. As no lock is acquired anymore, we
need a mechanism to ensure that updates performed by the
validation phase are not seen by simulation phases running
in parallel. To achieve this behavior, during simulation, we
have to inspect the version-number of every read value and
test whether it is still up-to-date.

Figure 6 visualizes this concept using a concrete example.
At the start of the simulation phase, we �rst identify the
block-ID of the last block that made it into the ledger. Let us
refer to this block-ID as the last-block-ID. In our example,
last-block-ID = 4. During the simulation of a smart con-
tract bound to a transaction proposal Texec , no read must
encounter a version-number containing a block-ID higher
than the last-block-ID. If it does see a higher block-ID it
means that during the simulation phase, a validated trans-
action T�alid in the validation phase modi�ed a value in the
read set of Texec and thus, the read set is outdated.
In our example, the read of balA = 70 in the simulation

phase happens before the update of balA to 50 in the val-
idation phase. This is re�ected by the version-number of
balA, namely block-ID = 4. Therefore, this read is up-to-
date and the simulation continues. In contrast to that, the
read of balB happens after the update of balB to 100 in the
validation phase. This is re�ected by the version-number
of balB, namely block-ID = 5. As 5 is higher than the
last-block-ID = 4, we can directly classify Texec as invalid,
as the transaction will not have a chance to pass the valida-
tion phase later on. Please note that the overall correctness
of our lock-free mechanism is ensured by the atomic updates
of the version-numbers.

5.2.2 Early Abort in the Ordering Phase. In addition to the
early abort in the simulation phase, as explained in Sec-
tion 5.2.1, we can transition a similar concept also to the
ordering phase. As Fabric performs commits at the gran-
ularity of whole blocks, two transactions within the same
block, that read the same key, must read the same version
of that key. For example, let us consider two transactions T6
and T7, where T6 is ordered before T7 within the same block

(T6) T7). If T6 read version �1 of a key k and T7 read ver-
sion �2 of k in their respective simulations, thenT7 is invalid.
Such a version mismatch can happen, if between the simula-
tions of T6 and T7 a change to the value of k was committed
by a valid transaction from a previous block. Therefore, as
soon as we detect a version mismatch between transactions
within the same block, we can early abort the latter transac-
tion. Again, this strategy assures that only those transactions
end up in a block, that have a realistic chance of commit.

6 EXPERIMENTAL EVALUATION
In the previous section, we have extended and modi�ed core
components of Fabric in several ways, turning it into Fab-
ric++. It is now time to evaluate the modi�cations in terms of
e�ectiveness. Primarily, we are interested in the throughput
of valid/successful and invalid/failed transactions, that make
it through the system. Secondarily, we are interested on the
in�uence of certain system con�gurations and the workload
characteristics on the system.

6.1 Setup
Before starting with the actual experiments, let us discuss
the setup. Our cluster consists of six identical servers, that
are located within the same rack and connected via gigabit-
ethernet. Four machines serve as peers, one machine runs the
ordering service, and one machine serves as the client, which
�res transaction proposals. Each server consists of two quad-
core Intel Xeon CPU E5-2407 (SandyBridge architecture)
running at 2.2 GHz with 32KB of L1 cache, 256KB of L2
cache, and 10MB of a shared L3 cache. 24GB of DDR3 ram
are attached to each of the twoNUMA regions. The operating
system used is a 64-bit Arch Linux with kernel version 4.17.
Fabric is set up to use LevelDB as the current state database.

6.2 Benchmark Framework and Workload
In the database community, there exist numerous established
benchmarking suites and workloads that can be used to test
and to compare systems, such as TPC-C [3], TPC-H [4], or
YCSB [5]. Unfortunately, since blockchains are still a rela-
tively young �eld, there exist only very few benchmarks
with standardized workloads.
6.2.1 Framework. First, we have to identify a framework
that can be used to run a workload against Fabric. There
are essentially three options available right now: Caliper [6],
Gauge [7], and BlockBench [12]. Caliper feels like a natu-
ral candidate, as it originates from the Hyperledger project
just like Fabric. While it is compatible with Fabric 1.2, it
su�ers from certain limitations: it supports only a single
channel, it supports only one transaction type per run, it
�res transactions non-uniformly with respect to time, and it
is prone to failing with missed events at high �ring rates [8].
As a consequence, Gauge was forked from Caliper, which
addresses some of these problems. Unfortunately, it lacks

Correction:
Actually, T6 becomes invalid in this example, not T7. Thus, the
former transaction is early aborted, not the latter.

compatibility with Fabric 1.2. The same incompatibility holds
for BlockBench.

As none of the available frameworks is fully satisfying and
since the framework is just a tool for running experiments,
we decided to build our own benchmarking framework. It al-
lows us to �re transaction proposals uniformly at a speci�ed
rate from multiple clients in multiple channels and reports
the throughput of successful and aborted transactions per
second. We use our framework for all main experiments in
the upcoming evaluation. Still, we include an experimental
run on Caliper with a compatible workload in Section 6.7 to
ease for other groups the comparison with our work.

6.2.2 Workload. In the following experiments, we use two
di�erent types of workloads.

The �rst one is the Smallbank [9] workload, which is per-
fectly suited to test a blockchain system, as it simulates a
typical asset transfer scenario. Initially, it creates for a certain
number of users a checking account and a savings account
each and initializes them with random balances. The work-
load consists of six transactions, where �ve of them update
the account balances in certain ways: TransactSavings and
DepositChecking increase the savings account and the check-
ing account by a certain amount respectively. SendPayment
transfers money between two checking accounts. WriteCheck
decreases a checking account, while Amalgamate transfers all
funds from a savings account to a checking account. Addi-
tionally, there is a read-only transaction Query, which reads
both the checking as well as the savings account of a user.
During a single run, we repeatedly �re these six transactions
in a random fashion, where we uniformly pick one of the
�ve modifying transactions with a certain probability Pw ,
and the reading transaction with a probability 1 � Pw . For
each picked transaction, we determine the accounts to access
by following a Zip�an distribution, which we can con�gure
in terms of skewness by setting the s-value. Note that an
s-value of 0 corresponds to a uniform distribution.
Our second workload consists solely of a single, highly

con�gurable transaction, which performs a certain num-
ber of read and write accesses on a set of account balances.
Initially, we create a certain number of accounts (N), each
initialized with a random integer. Our transaction performs a
certain number of reads and writes (RW) on a subset of these
accounts. Among the accounts, there exist a certain number
of hot accounts (HSS), that are picked for a read respectively
write access with a higher probability. This probability for
picking a hot account for reading (HR) respectively for writ-
ing (HW) can also be con�gured.
In a single run, we �re a constant stream of transactions

for a certain amount of time at a certain �ring rate. In the
following experiments, we �x the experimental and system
con�guration to the parameters as shown in Table 5. We

identi�ed these parameter values empirically with the goal
to �nd a con�guration, that sustains the system without
overloading it.

Table 5: Experiment and system con�guration.

Experiment Parameters Values

Fired transaction proposals per second per client 512
Duration in which transaction proposals are �red 90 sec
Number of channels 1
Number of clients per channel 4

System Parameters Values

Maximum time to form a block 1 sec
Maximum number of keys accessed per block 16384
Maximum size per block 2MB
Maximum number of transactions per block (BS) 1024 (see Section 6.3)

6.3 The Impact of the Blocksize
We start our evaluation by investigating the e�ect of the
blocksize on Fabric and Fabric++. By default, Fabric’s sample
network limits the blocksize to only up to 10 transactions.
In the following experiment, we vary the blocksize from 16
transactions to 2048 transactions in logarithmic steps and
observe the impact on the number of successful transac-
tions. As workload, we test Smallbank as de�ned above with
100,000 users under a write heavy workload with Pw = 95%,
and a uniform distribution with s-value = 0. Figure 7 shows
the average number of successful transactions per second
over the entire run of 90 seconds.

Av
g.

 S
uc

ce
ss

fu
l T

ra
ns

ac
tio

ns
 p

er
 s

ec
on

d

0

200

400

600

800

1000

1200

16 32 64 128 256 512 1024 2048

Fabric Fabric++ (reordering & early abort)

Blocksize [Number of Transactions]

Figure 7: E�ect of the blocksize on the average number
of successful transactions under Fabric and Fabric++.

As we can see, increasing the blocksize also increases the
throughput of successful transactions for both Fabric and
Fabric++. This is due to the fact, that the usage of larger
blocks causes less network communication. Obviously, Fab-
ric’s default setting of 10 transactions per block is clearly too
small and severely limits the throughput. We can also ob-
serve, that Fabric++ gains more over Fabric with an increase
in the blocksize. This already gives us a �rst impression of the
e�ectiveness of our reordering mechanism, which bene�ts
from larger blocks. As we aim for a high overall through-
put, for the remaining experiments, we use a blocksize of
1024 transactions.

6.4 Transactional Throughput
Let us now test Fabric and Fabric++ under probably the most
important criterium for a transaction processing system,
namely the throughput of successful transactions.

6.4.1 Throughput under Smallbank. First, as workload, we
use Smallbank as de�ned in Section 6.2.2 and con�gure it
as shown in Table 6. Again, we initialize 100,000 users, each
equipped with a checking account and a savings account.
However, this time we vary the probability of picking a mod-
ifying transaction over the reading transaction in three steps:
We test Pw = 95% (write-heavy), Pw = 50% (balanced), and
Pw = 5% (read-heavy). Further, we vary the skewness of the
Zipf distribution, that is used to select the accounts: We go
from an s-value = 0.0 (uniform) to an s-value = 2.0 (highly
skewed) in steps of 0.2. Table 6 summarizes the con�guration
again.

Table 6: Smallbank workload con�guration.

Workload Parameters Values

Number of users (two accounts per user) 100,000
Probability for picking a modifying transactions (Pw) 95%, 50%, 5%
s-value of Zipf distribution 0.0 – 2.0 in steps of 0.2

In Figure 8, we can see the results. We show one plot
each for the read-heavy, balanced, and write-heavy work-
load. Within each plot, on the x-axis, we vary the s-value as
described and report on the y-axis the average number of
successful transactions per second over the run. Overall, we
can see that Fabric++ shows a higher throughput of success-
ful transactions for all tested runs. We can observe, that for
little to no skew (up to an s-value of 0.6), the throughput of
both Fabric and Fabric++ is relatively high, as the number of
potential con�icts between transactions is small by default.
Still, we see that with around 1000 successful transactions
per second, the throughput of Fabric++ is a bit higher than
for Fabric with around 900 transactions, which is mainly
caused by cleaning the pipeline from transactions, that have
no chance to commit. For higher skew (s-value � 1.0), we
can see that Fabric++ drastically improves over Fabric, espe-
cially for the balanced and write-heavy workloads. For an s-
value of 1.0, we observe improvement factors between 1.15x
and 1.37x, while for an s-value of 2.0, Fabric++ shows an
improvement between 2.68x and 12.61x. High skew in the ac-
cess leads to a large number of potential con�icts, which can
be resolved by our optimizations. For such a high contention,
our optimizations make the di�erence between a system, that
is essentially jammed (30 successful transactions per second
for Fabric under Pw = 95%, s-value = 2.0) and a system, that
�uently processes transactions (370 successful transactions
per second for Fabric++ under Pw = 95%, s-value = 2.0).

6.4.2 Throughput under custom workload. Let us now inves-
tigate the throughput under our custom workload. Again,
we use the experimental con�guration as well as the system
con�guration of Table 5. We con�gure our workload such
that we use N = 10,000 accounts. We test both RW = 4
and RW = 8 read and write accesses per transaction. The
probability of picking a hot account for reading is varied
between HR = 10%, HR = 20%, and HR = 30%. The proba-
bility of picking a hot account for a writing access is varied
from HW = 5% to HW = 10%. Additionally, we vary the
number of hot accounts from HSS = 1% over HSS = 2% to
HSS = 4% from the total number of accounts. In total, we
test 36 con�gurations, which are summarized in Table 7.

Table 7: Custom workload con�guration.

Workload Parameters Values

Number of account balances (N) 10,000
Number of read & written balances per transaction (RW) 4, 8
Probability for picking a hot account for reading (HR) 10%, 20%, 40%
Probability for picking a hot account for writing (HW) 5%, 10%
Number of hot account balances (HSS) 1%, 2%, 4%

Figure 9 shows the results. We can see that Fabric++ signif-
icantly increases the throughput of successful transactions
over Fabric for all tested con�gurations. The largest improve-
ment of Fabric++ over Fabric in terms of successful transac-
tions we observe is around factor 3x for the con�guration
BS=1024, RW=8, HR=40%, HW=10%, HSS=1%.

6.4.3 Observations. We observe a signi�cant decrease in the
throughput of the successful transactions with the increase
in the hotness of the transactions in both workloads. Each
block bi roughly updates every hot key. This forces most of
the transactions in the next block bi+1 to abort because of
read-write con�icts. In comparison to Fabric, which su�ers
heavily from this scenario, Fabric++ reorders the transactions
within the block to remove the within-block con�icts to
improve the overall throughput of successful transactions.
Fabric++ is also capable of improving the throughput of

successful transactions signi�cantly under workloads (Small-
bank) which read and modify the same set of keys. Fabric++
prefers to select more transactions that access fewer keys
rather than selecting fewer transactions with large number
of accesses to improve the end-to-end throughput of success-
ful transactions (as shown in Figure 8). For the workload that
potentially has a non-overlapping read and write sets, Fab-
ric++ is able to re-organize the transaction block to minimize
the number of unnecessary aborts (as shown in Figure 9).
6.5 Optimization Breakdown
In Section 6.4, we measured the throughput of Fabric++ with
both optimizations activated. Let us now see at a sample
con�guration, how much the individual optimizations of

(a) Pw = 5% (read-heavy) (b) Pw = 50% (balanced) (c) Pw = 95% (write-heavy)

Figure 8: Average number of successful transactions per second of Fabric and Fabric++ under the Smallbankwork-
load, as de�ned in Table 6.

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

HW: 5% HW: 10% HW: 10% HW: 10%HW: 5% HW: 5%

HR: 10% HR: 20% HR: 40%

RW: 4

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

HW: 5% HW: 10% HW: 10% HW: 10%HW: 5% HW: 5%

HR: 10% HR: 20% HR: 40%

RW: 8

Fabric Fabric++ (reordering & early abort)

A
vg

. S
uc

ce
ss

fu
l T

ra
ns

ac
tio

ns
 p

er
 s

ec
on

d

Figure 9: Average number of successful transactions per second of Fabric and Fabric++ under 36 di�erent con�gu-
rations, as de�ned in Table 7.We vary the number of read &written balances per transaction (RW), the probability
for picking a hot account for reading (HR) and writing (HW), and the number of hot account balances (HSS).

reordering and early abort contribute to the improvement.
Figure 10 shows the improvement breakdown for the con-
�guration BS=1024, RW=8, HR=40%, HW=10%, HSS=1% in
comparison to standard Fabric. While Fabric achieves only
a throughput of around 100 successful transactions per sec-
ond, activating one of our two optimization techniques alone
improves this to around 150 transactions per second. In com-
parison to that, activating both techniques at the same time
results in the highest throughput of successful transactions
with around 220 transactions per second. This shows nicely
how both techniques work together: Transactions, that are
already early aborted in the simulation phase do not end
up in a block in the ordering phase. As a consequence, only
transactions, that have a realistic chance of being successful,
are considered in the reordering process.

6.6 Scaling Channels and Clients
In all of our previous experiments we used four clients to �re
transactions on a single channel. We now vary the number
of channels, and the number of clients to see the e�ect on
the throughput. We use the con�guration BS=1024, RW=8,
HR=40%, HW=10%, HSS=1% to evaluate the average through-
put of successful transactions for Fabric and Fabric++.

Su
cc

es
sf

ul
 T

ra
ns

ac
tio

ns
 p

er
 s

ec
on

d

0

50

100

150

200

250

Fabric
Fabric++ (only reordering)
Fabric++ (only early abort)
Fabric++ (reordering & early abort)

Figure 10: Breakdown of the individual impact of
our optimizations on the throughput of successful
transactions for the con�guration BS=1024, RW=8,
HR=40%, HW=10%, HSS=1%.

First, we vary the number of channels in Figure 11(a) from
1 to 8. Per channel, we use 2 clients to �re transaction propos-
als. We can see that when going from 1 channel to 4 channels,
the throughput of both Fabric and Fabric++ signi�cantly in-
creases. Obviously, the additional mechanisms of Fabric++
do not harm the scaling with the number of channels. Only
when using 8 channels, the throughput decreases again for

Su
cc

es
sf

ul
 T

ra
ns

ac
tio

ns
 p

er
 s

ec
on

d

0

100

200

300

400

1 2 4 8

Fabric Fabric++ (reordering & early abort)

Number of channels

(a) Varying the number of channels from 1 to 8. Per channel, we
use 2 clients to �re the transaction proposals.

Su
cc

es
sf

ul
 T

ra
ns

ac
tio

ns
 p

er
 s

ec
on

d

0

50

100

150

200

250

1 2 4 8
Number of clients per channel

(b) Varying the number of clients per channel from 1 to 8. All
clients �re their transaction proposals in a single channel.

Figure 11: The impact of the number of channels as
well as the number of clients per channel on the
throughput of successful transactions for the con�g-
uration BS=1024, RW=8, HR=40%, HW=10%, HSS=1%.

both Fabric and Fabric++. This is simply the case because
individual channels start competing for resources. This also
increases the number of failed transactions: Scaling from 1 to
8 channels increases the number of failed transactions from
213 TPS to 837 TPS for Fabric and from 81 TPS to 704 TPS for
Fabric++. Due to the competition for resources, individual
simulations phase take longer and increase the chance of
working on stale data.

After varying the number of channels, let us now vary the
number of clients per channel in Figure 11(b). We test 1, 2, 4,
and 8 clients, where all clients �re their transaction proposals
into a single channel. Here, the picture is a slightly di�erent
to the behavior when scaling channels. The throughput of
Fabric increases very gently with the number of clients, and
we see an improvement from around 60 to 105 successful
transactions per seconds when going from 1 to 8 clients. For
Fabric++, we see the highest throughput with around 205
successful transactions per second already for 2 clients. For
8 clients, the throughput drops by around factor 2 to the
throughput of Fabric, clearly showing that the �ring clients
also compete for resources. This is also visible in an increase
in failed transactions when going from 1 to 8 clients per

channel, which increase from 86 TPS to 928 TPS for Fabric
and from 20 TPS to 841 TPS for Fabric++.

6.7 Hyperledger Caliper
For completeness, let us �nally see how Fabric and Fabric++
perform under a run of the Hyperledger Caliper benchmark-
ing framework. As said, Caliper severely struggles with high
transaction �ring rates, so we cannot use the con�guration of
Table 5 as before. Instead, we �re at a lower rate of 150 trans-
actions per second per client, resulting in 600 transactions
per second in total. As a consequence of this low �ring rate,
we also tune down the block size to 512 transactions. We test
our custom workload with N = 10000, RW = 4, HR = 40%,
HW = 10%, HSS = 1%. Table 8 shows the results.

Table 8: Latency and Throughput as measured by
Caliper for Fabric and Fabric++.

Metric Fabric Fabric++

Max. Latency [seconds] 1.44 1.14
Min. Latency [seconds] 0.26 0.12
Avg. Latency [seconds] 0.47 0.28

Avg. Successful Transactions per second 188 299

Interestingly, Caliper also produces latency numbers ad-
ditionally to the measured throughput of successful trans-
actions. We can see that the average latency of Fabric++ is
almost half the latency of the vanilla Fabric. As less virtu-
ally invalid transactions trash the pipeline in Fabric++, valid
transactions can commit earlier. The run of Caliper also con-
�rms our �ndings on the throughput: Fabric++ signi�cantly
increases the number of successful transactions per second.

7 CONCLUSION
In this work, we identi�ed strong similarities of the transac-
tion pipeline of contemporary blockchain systems at the case
of Hyperledger Fabric and distributed database systems in
general.We analyzed these similarities in detail and exploited
them to transition mature techniques from the context of
database systems to Fabric, namely transaction reordering
to remove serialization con�icts as well as early abort of
transactions, that have no chance to commit. In an extended
experimental evaluation, where we tested Fabric++ and the
vanilla version under the Smallbank benchmark as well as
under a custom workload, we show that Fabric++ is able
to signi�cantly outperform Fabric by up to a factor of 12x
for the number of successful transactions per second. Fur-
ther, we are able to almost half the transaction latency, while
keeping the scaling capabilities of the system intact.

8 ACKNOWLEDGEMENT
This work was funded by the German Research Foundation
(DFG) via the collaborative research center “Methods and
Tools for Understanding and Controlling Privacy” (SFB 1223).

REFERENCES
[1] 2019. https://bitcoin.org/bitcoin.pdf
[2] 2019. https://github.com/ethereum/wiki/wiki/White-Paper
[3] 2019. http://www.tpc.org/tpcc/
[4] 2019. http://www.tpc.org/tpch/
[5] 2019. https://github.com/brianfrankcooper/YCSB
[6] 2019. https://github.com/hyperledger/caliper
[7] 2019. https://github.com/persistentsystems/gauge
[8] 2019. https://github.com/persistentsystems/gauge/blob/master/docs/

caliper-changes.md
[9] 2019. http://hstore.cs.brown.edu/documentation/deployment/

benchmarks/smallbank/
[10] Elli Androulaki, Artem Barger, Vita Bortnikov, et al. 2018. Hyperledger

fabric: a distributed operating system for permissioned blockchains.
In EuroSys 2018, Porto, Portugal, April 23-26. 30:1–30:15. https://doi.
org/10.1145/3190508.3190538

[11] Bailu Ding, Lucja Kot, and Johannes Gehrke. 2018. Improving Opti-
mistic Concurrency Control Through Transaction Batching and Oper-
ation Reordering. PVLDB 12, 2 (2018), 169–182. http://www.vldb.org/
pvldb/vol12/p169-ding.pdf

[12] Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin
Ooi, and Ji Wang. 2018. Untangling Blockchain: A Data Processing
View of Blockchain Systems. IEEE Trans. Knowl. Data Eng. 30, 7 (2018),
1366–1385. https://doi.org/10.1109/TKDE.2017.2781227

[13] Jose M. Faleiro, Daniel Abadi, and Joseph M. Hellerstein. 2017. High
Performance Transactions via Early Write Visibility. PVLDB 10, 5
(2017), 613–624. https://doi.org/10.14778/3055540.3055553

[14] Zhengyu He and Bo Hong. 2009. Impact of early abort mechanisms
on lock-based software transactional memory. In 16th International
Conference on High Performance Computing, HiPC 2009, December 16-
19, 2009, Kochi, India, Proceedings. 225–234. https://doi.org/10.1109/
HIPC.2009.5433207

[15] Donald B. Johnson. 1975. Finding All the Elementary Circuits of a
Directed Graph. SIAM J. Comput. 4, 1 (1975), 77–84. https://doi.org/
10.1137/0204007

[16] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman,
Jignesh M. Patel, and Mike Zwilling. 2011. High-Performance Concur-
rency Control Mechanisms for Main-Memory Databases. PVLDB 5, 4
(2011), 298–309.

[17] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017.
Cicada: Dependably Fast Multi-Core In-Memory Transactions. In Pro-
ceedings of the 2017 ACM International Conference on Management
of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017.
21–35. https://doi.org/10.1145/3035918.3064015

[18] Gang Luo, Je�rey F. Naughton, Curt J. Ellmann, and Michael Watzke.
2010. Transaction reordering. Data Knowl. Eng. 69, 1 (2010), 29–49.
https://doi.org/10.1016/j.datak.2009.08.007

[19] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast
Serializable Multi-Version Concurrency Control for Main-Memory
Database Systems. In SIGMOD 2015, Melbourne, Victoria, Australia,
May 31 - June 4. 677–689. https://doi.org/10.1145/2723372.2749436

[20] Thamir M. Qadah and Mohammad Sadoghi. 2018. QueCC: A Queue-
oriented, Control-free Concurrency Architecture. In Proceedings of
the 19th International Middleware Conference, Middleware 2018, Rennes,
France, December 10-14, 2018. 13–25. https://doi.org/10.1145/3274808.
3274810

[21] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. Ac-
celerating Analytical Processing in MVCC using Fine-Granular High-
Frequency Virtual Snapshotting. In SIGMOD 2018, Houston, TX, USA,
June 10-15, 2018. 245–258. https://doi.org/10.1145/3183713.3196904

[22] Robert Endre Tarjan. 1972. Depth-First Search and Linear Graph
Algorithms. SIAM J. Comput. 1, 2 (1972), 146–160. https://doi.org/10.
1137/0201010

[23] Tianzheng Wang, Ryan Johnson, Alan Fekete, and Ippokratis Pandis.
2017. E�ciently making (almost) any concurrency control mechanism
serializable. The VLDB Journal 26, 4 (01 Aug 2017), 537–562. https:
//doi.org/10.1007/s00778-017-0463-8

[24] Tianzheng Wang and Hideaki Kimura. 2016. Mostly-Optimistic Con-
currency Control for Highly Contended Dynamic Workloads on a
Thousand Cores. PVLDB 10, 2 (2016), 49–60. http://www.vldb.org/
pvldb/vol10/p49-wang.pdf

[25] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017.
An Empirical Evaluation of In-Memory Multi-Version Concurrency
Control. PVLDB 10, 7 (2017), 781–792. https://doi.org/10.14778/
3067421.3067427

[26] Chang Yao, Divyakant Agrawal, Gang Chen, Qian Lin, Beng Chin Ooi,
Weng-Fai Wong, and Meihui Zhang. 2016. Exploiting Single-Threaded
Model in Multi-Core In-Memory Systems. IEEE Trans. Knowl. Data Eng.
28, 10 (2016), 2635–2650. https://doi.org/10.1109/TKDE.2016.2578319

[27] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and
Michael Stonebraker. 2014. Staring into the Abyss: An Evaluation of
Concurrency Control with One Thousand Cores. PVLDB 8, 3 (2014),
209–220.

[28] Yuan Yuan, Kaibo Wang, Rubao Lee, Xiaoning Ding, Jing Xing, Spyros
Blanas, and Xiaodong Zhang. 2016. BCC: Reducing False Aborts in Op-
timistic Concurrency Control with Low Cost for In-Memory Databases.
PVLDB 9, 6 (2016), 504–515. https://doi.org/10.14778/2904121.2904126

[29] Bo Zhang, Binoy Ravindran, and Roberto Palmieri. 2015. Reducing
Aborts in Distributed Transactional Systems through Dependency
Detection. In Proceedings of the 2015 International Conference on Dis-
tributed Computing and Networking, ICDCN 2015, Goa, India, January
4-7, 2015. 13:1–13:10. https://doi.org/10.1145/2684464.2684475

[30] Ningnan Zhou, Xuan Zhou, Xiao Zhang, et al. 2017. Reordering
Transaction Execution to Boost High-Frequency Trading Applica-
tions. Data Science and Engineering 2, 4 (2017), 301–315. https:
//doi.org/10.1007/s41019-017-0054-0

A HYPERLEDGER FABRIC: A RUNNING
EXAMPLE

In the following, the interested reader �nds a complete run-
ning example of Fabric’s work�ow in Figure 12 (simulation
phase), Figure 13 (ordering phase), and Figure 14 (validation
and commit phase), where two organizations A and B want
to transfer money between each other.
Each organization contributes two peers to the network.

The balances of the organizations are stored by two variables
BalA and BalB, where BalA stores the value 100 in its current
version �3 and BalB stores 50 in version �2. We can also see
that the ledger already contains six transactions T1 to T6,
where the four transactionsT1,T2,T4, andT6 were valid ones
and lead to the current state. The transactions T3 and T5
were invalid transactions. They are still stored in the ledger,
although they did not pass the validation phase.

A.1 Simulation Phase
Transaction processing starts with the simulation phase in
Figure 12. In step 1 , a client proposes a transaction proposal

(or short proposal) to the system. In our example, the pro-
posal intends to transfer the amount of 30 from BalA to BalB.
The two involved operations BalA-=30 and BalB+=30 are ex-
pressed in a smart contract2, an arbitrary program, that is
bound to the proposal. Additionally to the smart contract, an
endorsement policy must be speci�ed. It determines which
and/or how many peers have to endorse the proposal. In our
example of money transfer between two organizations, a rea-
sonable endorsement policy is to request endorsement from
one peer of each organization — like two lawyers, preserving
and defending the individual rights of their clients.

Peer A1

BalA=(100,v3)
BalB=(50,v2)

Peer B1Client
1 2

3

3

4

RS = {(BalA,v3),(BalB,v2)}
WS = {BalA=70, BalB=80}
SigA1

T1 T2 T3
Peer A2

Peer B2

Transaction Proposal

Simulate
BalA-=30 BalB+=30
Endorsement: A&B

RS = {(BalA,v3),(BalB,v2)}
WS = {BalA=70, BalB=80}
SigB1

Endorsement of A1

Endorsement of B1

RS = {(BalA,v3),(BalB,v2)}
WS = {BalA=70, BalB=80}
SigA1, SigB1

Transaction T7

T4 T5 T6
BalA=(100,v3)
BalB=(50,v2)

T1 T2 T3 T4 T5 T6

BalA=(100,v3)
BalB=(50,v2)

T1 T2 T3 T4 T5 T6
BalA=(100,v3)
BalB=(50,v2)

T1 T2 T3 T4 T5 T6

Figure 12: simulation phase.

Therefore, in step 2 , the proposal is sent to the two en-
dorsement peers A1 and B1 according to the policy. These
two peers now individually simulate the smart contract
(BalA-=30, BalB+=30), that is bound to the proposal, against
their local current state. Note that, as the name suggests, the
simulation of the smart contract against the current state
does not change the current state in any way. Instead, each
endorsement peer builds an auxiliary read set RS and a write
setWS during the simulation to keep track of all accesses that
happen. In our case of money transfer over the amount of 30,
the smart contract �rst reads the two current balances BalA
and BalB along with their current version-numbers. Second,
the smart contract updates the two balances according to the
transferred amount, resulting in the new balances BalA = 70
and BalB = 80. Overall, this builds the following read and
write set:

RS = {(BalA,�3), (BalB,�2)} WS = {BalA = 70,BalB = 80}

In this sense, the simulation of the smart contract is actually
only a monitoring of the execution e�ects. The reason for
performing only a simulation is that in this phase, we can-
not be sure yet whether this transaction will be allowed to
commit eventually – this check will be performed later in
the validation phase.

After the simulation of the smart contract on all endorse-
ment peers, in step 3 , the endorsement peers return their
individually computed read and write sets to the client, that

2Smart contracts are typically called chaincodes in Fabric. However, as
they do not conceptually di�er from smart contracts in blockchain systems
such as Ethereum, we stick to this term throughout the paper.

sent the transaction proposal. Additionally, they return a
signature of their simulation, that will be relevant in the
validation phase in Section A.3. If all read sets and write sets
match3, in step 4 , the actual transaction (called T7 in the
following) is formed from the results of the endorsement.
This transactionT7 now contains the e�ects of the execution
in form of the read and write set as well as all signatures and
can be passed on to the ordering service.

A.2 Ordering Phase
Asmentioned, the central component of the ordering phase is
the ordering service, that we visualize in Figure 13. It receives
all transactions, that made it through the simulation phase.
Consequently, it receives in step 5 our transaction T7, that
we followed through the simulation phase in Section A.1. In
step 6 , we assume that it also receives two other transac-
tions T8 and T9, that were endorsed in parallel to T7.

Peer A1

BalA=(100,v3)
BalB=(50,v2)

Peer B1

T1 T2 T3

Peer A2

Peer B2

T4 T5 T6
BalA=(100,v3)
BalB=(50,v2)

T1 T2 T3 T4 T5 T6

BalA=(100,v3)
BalB=(50,v2)

T1 T2 T3 T4 T5 T6
BalA=(100,v3)
BalB=(50,v2)

T1 T2 T3 T4 T5 T6

Ordering
Service

5

6

6

Client

Client

Client

T7

T8

T9

T8 T7 T9

7

8

9
T8 T7 T9

T8 T7 T9

9
T8 T7 T9

8

Figure 13: Ordering Phase.

The ordering service now has the sole purpose of estab-
lishing a global order among the transactions. It treats the
transactions in a black box fashion and does not inspect the
transaction semantics, such as the read and write set, in any
way. By default, it essentially arranges the transactions in the
order in which they arrive, resulting in what we call for the
rest of the paper the arrival order. In step 7 , the ordering
service now outputs the ordered stream of transactions in
form of blocks, containing a certain number of transactions.
Outputting whole blocks instead of individual transactions
reduces the pressure on the network, as less communication
overhead is produced.

Finally, the generated block is distributed to all four peers
of the network to start the validation phase. Note that there
is no guarantee that all peers receive a block at the same time,
as the distribution happens partially from ordering service to
peers directly as shown in step 8 and partially between the
peers using a gossip protocol as shown in step 9 . However,
the service assures that all peers receive the blocks in the
same order.

3They might not match due to non-determinism in the smart contract
or due to malicious behavior of the endorsement peer(s).

A.3 Validation and Commit Phase4
When a block arrives at a peer, the validation phase starts,
visualized in Figure 14 for peerA1. The three remaining peers
execute the same validation process. Overall, the validation
phase has two purposes.

A.3.1 Endorsement Policy Evaluation. The �rst purpose is
to validate the transactions in the block with respect to the
endorsement policy. For example, it is possible that a mali-
cious transaction was generated by a malicious client and a
malicious peer in conspiracy to take advantage of the money
transfer. Let us assume that transactionT8 is such a malicious
transaction and that the malicious client, which proposedT8,
works together with peerA2, which is also malicious. Instead
of using the legit write setWSB2 = {BalA = 30,BalB =
120} from B2, the client creates a proposal with the write
setWSA2 = {BalA = 100,BalB = 120}, that it received from
its collaborator A2.

How is this transaction T8 now detected in the validation
phase? The key to this lies in the signatures Si�A2 and Si�B2,
that the endorsement peers generate at the end of the simula-
tion phase. The signature is computed over the read andwrite
set, the executed smart contract, and the used endorsement
policy. The client receives these cryptographically secure sig-
natures and must pack them into the transaction along with
the read and write set. The peers that validate the transaction
recompute the signatures of all endorsement peers, that were
responsible for transaction T8 and compare the signatures
with the received ones Si�A2 and Si�B2. In our example, in
step 10 , the peers detect that the signature of the honest
peer Si�B2 does not match to the one they computed from
the received write set and thus, would classify T8 as invalid.
T7 and T9, the remaining transactions in the block, are evalu-
ated in parallel. Their signatures match the ones computed
from the read and write set and therefore, these transactions
are valid with respect to the endorsement policy.

A.3.2 Serializability Conflict Check. The second purpose of
the validation is to analyze the transactions with respect to
serializability con�icts, that can arise from the order of trans-
actions. For every transaction, it must be checked whether
the version-numbers of all keys in the read set match the
version-numbers in the current state. Only if this is the
case, a transaction operates on an up-to-date state. Con-
sidering our example, let us perform the serializability con-
�ict check for the received block. T8 is already marked as
invalid as it did not pass the endorsement policy evalua-
tion, so it is not checked again. T7 passed the endorsement
policy evaluation and is now tested for serialization con-
�icts in step 11 . Its read set is RS = {(BalA,�3), (BalB,�2)}.

4Logically, these are two separate phases. However, as Fabric interleaves
these phases, we describe them together.

Peer A1
RS = {(BalA,v3),(BalB,v2)}
WS = {BalA=100, BalB=120}
SigA2 SigB2

RS = {(BalA,v3),(BalB,v2)}
WS = {BalA=70, BalB=80}
SigA1 SigB1

RS = {(BalA,v3),(BalB,v2)}
WS = {BalA=0, BalB=150}
SigA1 SigB2

RS = {(BalA,v3),(BalB,v2)}
WS = {BalA=100, BalB=120}
SigA2 SigB2

RS = {(BalA,v3),(BalB,v2)}
WS = {BalA=70, BalB=80}
SigA1 SigB1

RS = {(BalA,v3),(BalB,v2)}
WS = {BalA=0, BalB=150}
SigA1 SigB2✓ ✘ ✓ ✓ ✓ ✓

RS = {(BalA,v3),(BalB,v2)}
WS = {BalA=100, BalB=120}
SigA2 SigB2

RS = {(BalA,v3),(BalB,v2)}
WS = {BalA=70, BalB=80}
SigA1 SigB1

RS = {(BalA,v3),(BalB,v2)}
WS = {BalA=0, BalB=150}
SigA1 SigB2

RS = {(BalA,v3),(BalB,v2)}
WS = {BalA=100, BalB=120}
SigA2 SigB2

RS = {(BalA,v3),(BalB,v2)}
WS = {BalA=70, BalB=80}
SigA1 SigB1

RS = {(BalA,v3),(BalB,v2)}
WS = {BalA=0, BalB=150}
SigA1 SigB2

State: BalA=(70,v4) BalB=(80,v3)

✓ ✓

✘

State: BalA=(100,v3) BalB=(50,v2)

State: BalA=(70,v4) BalB=(80,v3)

RS = {(BalA,v3),(BalB,v2)}
WS = {BalA=100, BalB=120}
SigA2 SigB2

RS = {(BalA,v3),(BalB,v2)}
WS = {BalA=70, BalB=80}
SigA1 SigB1

RS = {(BalA,v3),(BalB,v2)}
WS = {BalA=0, BalB=150}
SigA1 SigB2

10 10 10

11

13

14

12

T8 T7 T9
Ordering Service

✘

Figure 14: Validation and Commit Phase.

The version numbers of BalA and BalB in the read set
match the ones of the current state and therefore, T7 is
marked as valid. As a consequence, in step 12 , the write
set of T7, namelyWS = {BalA = 70,BalB = 80} is writ-
ten to the current state. This changes the current state to
BalA = (70,�4) and BalB = (80,�3). Note that the version-
numbers of the modi�ed variables are incremented.
The next transaction to be checked is T9 in step 13 . Let

us assume it also performs a money transfer and has the
following read and write set:

RS = {(BalA,�3), (BalB,�2)} WS = {BalA = 0,BalB = 150}

This transaction will not pass the con�ict check, as it read
BalA in version �3 and BalB in version �2, while the cur-
rent state already contains BalA in version �4 and BalB in
version �3. Therefore, it operated on outdated data and is
marked as invalid. As a consequence, its write set is not
applied to the current state and simply discarded.
Finally, after validating all transactions of the block, in

step 14 the entire block is appended to the ledger along
with the information about which transactions are valid or
invalid.

B REORDERING: MICRO-BENCHMARKS
To analyze the e�ectiveness of our reordering mechanism,
we also evaluate it in a stand-alone micro-benchmark in iso-
lation of Fabric. For a given sequence of input transactions
we compute the number of valid transactions for this partic-
ular sequence (called "arrival order" in the following plots)
as well as for the sequence that is generated by our reorder-
ing mechanism (called "reordered" in the following plots).
Additionally, we measure the time to compute the reordered
schedule. In Figure 15, we test a workload pattern with vary-
ing number of con�icts. Additionally, we evaluate the e�ect
of varying the length of the cycles (Figure 16) and see how
well our reordering mechanism performs in comparison to
the naive arrival order.

B.1 Micro-Benchmark 1: Interleave reads
and writes to vary the number of
con�icts

The �rst input sequence we test consists of two equal sized
sub sequences, where one subsequence contains only trans-
actions that perform writes (colored in red) and the other
sequence only transactions that read (colored in blue). Each
transaction performs only one operation (either read or
write). Neither two writes nor two reads happen to the same
key. For the example of n = 6 transactions, we start with the
following sequence S1:

S1 = T [w(k1)],T [w(k2)],T [w(k3)],T [r (k1)],T [r (k2)],T [r (k3)]

To generate Si , we move the last transaction of Si�1 to the
front, leading to the following sequences S2, S3, and S4.

S2 = T [r (k3)],T [w(k1)],T [w(k2)],T [w(k3)],T [r (k1)],T [r (k2)]

S3 = T [r (k2)],T [r (k3)],T [w(k1)],T [w(k2)],T [w(k3)],T [r (k1)]

S4 = T [r (k1)],T [r (k2)],T [r (k3)],T [w(k1)],T [w(k2)],T [w(k3)]

Themore writing transactions happen before the correspond-
ing reading transactions, the more con�icts happen.Wewant
to �nd out whether our reordering mechanism can solve this
problem.

 0

 500

 1000

 0 100 200 300 400 500
 0

 5

 10

 15

 20

N
u
m

b
e
r

o
f
va

lid
 t
ra

n
sa

ct
io

n
s

T
im

e
 [
m

s]

Number of read-transactions shifted before the write-transactions

Arrival order
Reordered

Time to Reorder

Figure 15: Workload 1: Varying the number of con-
�icts within the transactions.

Figure 15 shows the results for n = 1024 transactions. As
we can see, our reordering mechanism is able to reorder
the transactions for every input sequence in a way such
that all transactions are valid. In contrast to that, the arrival

order su�ers under a lot of invalid reading transactions, if
writing transactions happen before. We can also see that
our reordering mechanism is computationally cheap: it takes
only around 1 to 2 ms to rearrange the transactions on a
Macbook Pro with Intel Core i7 running at 3.1 GHz.

B.2 Micro-Benchmark 2: Vary the length
of cycles

In the following experiment, we want to analyze the impact
of cycles on the arrival order and on our reordering mecha-
nism. To do so, we again form a sequence of n transactions,
that contains n/t cycles of size t transactions of the form
T [r (k0),w(k0)],T [r (k0),w(k1)],T [r (k1),w(k2)],T [r (k2),w(k0)]

Again, we want to identify how many transactions are valid
under the arrival order and when using our reordering mech-
anism. Figure 16 shows the results for 1024 transactions. For
the arrival order, only half of transactions are valid, no mat-
ter of the cycle length. This is because aborting every second
transaction breaks the cycles. In comparison to that, our
reordering mechanism is able to achieve a high number of
valid transactions, if the cycles are su�ciently long respec-
tively, there are not too many cycles to cancel. Of course, our
algorithm becomes more expensive with the length of the
cycles to break. However, since extremely long cycles are
very unlikely to occur in reality, the runtime of our mech-
anism will in general remain low in the ordering phase, as
we see our evaluation presented in Section 6.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500
 0

 200

 400

 600

 800

 1000

N
u
m

b
e
r

o
f
va

lid
 t
ra

n
sa

ct
io

n
s

T
im

e
 [
m

s]

Number of transactions per cycle

Arrival order
Reordered

Time to Reorder

Figure 16: Workload 2: Varying the size of the cycles.

