
Query Optimization for Database-ReturningQueries

SIMON RINK, Saarland University, Saarland Informatics Campus, Germany

JENS DITTRICH, Saarland University, Saarland Informatics Campus, Germany

Recently, the novel concept of database-returning SQL queries (DRQs) was introduced. Instead of a single,

(potentially) denormalized result table, DRQs return an entire subdatabase with a single SQL query. This

subdatabase represents a subset of the original database, reduced to the relations, tuples, and attributes that

contribute to the traditional join result. DRQs offer several benefits: they reduce network traffic in client-server

settings, can lower memory requirements for materializing results, and significantly simplify querying hierar-

chical data. Currently, two state-of-the-art algorithms exist to compute DRQs: (1.) ResultDBSemi-Join builds

upon Yannakakis’ semi-join reduction algorithm by adding support for cyclic queries. (2.) ResultDBDecompose

computes the standard single-table result and projects the result to the base tables to obtain the resulting

subdatabase.

However, multiple issues can be identified with these algorithms. First, ResultDBSemi-Join employs simple

heuristics to greedily solve the underlying enumeration problems, often leading to suboptimal query plans.

Second, each algorithm performs best under different conditions, so it is up to the user to choose the appropriate

one for a given scenario. In this paper, we address these two issues. We propose two enumeration algorithms

for ResultDBSemi-Join to handle the Root Node Enumeration Problem (RNEP) and the Tree Folding Enumeration
Problem (TFEP). Further, we present a unified enumeration algorithm, TD

ResultDB
, to automatically decide

between plans generated by our new enumeration algorithms for ResultDBSemi-Join and ResultDBDecompose.

Through a comprehensive experimental evaluation, we show that the enumeration time overhead introduced

by our methods remains minimal. Furthermore, by effectively solving the RNEP and TFEP, we achieve up to a

6x speed-up in query execution time for ResultDBSemi-Join, whereas TDResultDB
consistently selects the best

available plans.

CCS Concepts: • Information systems→ Structured Query Language; Query optimization.

Additional Key Words and Phrases: query optimization, query processing, SQL, denormalization, subdatabase,

Yannakakis, graph theory, result database

ACM Reference Format:
Simon Rink and Jens Dittrich. 2025. Query Optimization for Database-Returning Queries. Proc. ACM Manag.
Data 3, 6 (SIGMOD), Article 353 (December 2025), 26 pages. https://doi.org/10.1145/3769818

1 Introduction
In their recent work, Nix and Dittrich [26] introduced the RESULTDB operator, implementing the

thrilling concept of a database-returning query (DRQ). DRQs return a reduction of the original

database, which contains only the relations, tuples, and attributes that would take part in the

traditional join result. An example is given in Figure 1, which shows that the returned subdatabase

shown in Figure 1d is just a reduction of the original database from Figure 1a. Note that Figure 1d

contains no redundancies, unlike the single-table result from Figure 1b. This becomes especially

important for N:M queries with a heavy workload, substantially reducing output sizes, which can

Authors’ Contact Information: Simon Rink, Saarland University, Saarland Informatics Campus, Germany, simon.rink@

bigdata.uni-saarland.de; Jens Dittrich, Saarland University, Saarland Informatics Campus, Germany, jens.dittrich@bigdata.

uni-saarland.de.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/12-ART353

https://doi.org/10.1145/3769818

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

https://doi.org/10.1145/3769818
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3769818

353:2 Simon Rink and Jens Dittrich

owners
id name
0 Person A

1 Person B

2 Person C

cars
id color oid
0 black 0

1 black 1

2 red 2

(a) Exemplary database.

owners ⊲⊳ cars
name color

Person A black

Person B black

(b) Single-Table Result.

1 SELECT RESULTDB o.name , c.color
2 FROM owners o, cars c
3 WHERE o.id < 2 AND
4 c.oid = o.id

(c) RESULTDB query.

owners
name

Person A

Person B

cars
color
black

(d) Resulting subdatabase.

Fig. 1. RESULTDB Example.

significantly reduce network traffic in diverse client-server setups, such as distributed DBMSs [6].

Note that one would need to post-join the result database on the client side, i.e., join all returned

tables, in case a denormalized result was required. In that case, required join keys would also

need to be transmitted, independently of whether the keys are part of the projection. Beyond this

application, DRQs also offer additional benefits, such as potential memory overhead reductions for

large intermediate results, preventing relational information loss, and simplifying the process of

querying hierarchical data [26].

Naturally, this idea has far-reaching implications for query processing and optimization. So

far, the state-of-the-art [26] to compute DRQs consists of two algorithms for the same problem:

ResultDBSemi-Join and ResultDBDecompose.

ResultDBSemi-Join utilizes a modified version of Yannakakis’ semi-join reducer [33]. It interprets

the query graph as a tree, initially applying semi-join reductions from the leaf nodes to a designated

root node, followed by another round of semi-join reductions from the root back to the leaves. This

ensures that all relations contain only the tuples required for the regular join. However, these tree

reductions are only feasible if the graph is acyclic [5]. To still be able to deal with cyclic graphs,

the concept of folding is introduced, where a cyclic query is joined until it has an acyclic join

graph, allowing for the execution of Yannakakis’ base algorithm again. Therefore, ResultDBSemi-Join

modifies the established query processing, and by that, introduces new optimization problems in

the context of DRQs, specifically the Root Node Enumeration Problem (RNEP) and the Tree Folding
Enumeration Problem (TFEP) [26]. The RNEP deals with the optimal root node choice for semi-

join reductions, given that the root heavily influences the overall runtime due to the tree shape’s

dependency on the root. For example, the different trees shown in Figure 2 could result in vastly

different query execution times. The goal of the TFEP, on the other hand, is to find the most efficient

way to transform a cyclic graph into an acyclic one. For example, multiple ways exist to resolve the

cycle in Figure 3a.

ResultDBDecompose differs from ResultDBSemi-Join by computing the regular single-table results,

followed by a projection on all base tables, a process coined decomposing. For this reason, its optimiza-

tion solely depends on state-of-the-art single-table optimizers [12, 16, 24]. In [26], ResultDBDecompose

was used as a naive baseline for evaluating ResultDBSemi-Join against, however, it proved to be highly

efficient for queries with low redundancies.

Problem Statement. Two major issues can be identified with the state-of-the-art. First,

ResultDBSemi-Join uses for both the RNEP and the TFEP a simple heuristic selecting nodes with

the highest number of neighbors, and by that, does not utilize any enumeration. In the case of

the RNEP, these nodes stem from the projection set only. Naturally, the created join plans can

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

Query Optimization for Database-ReturningQueries 353:3

Table 1. Table of Acronyms

Acronym Definition

DRQ Database-Returning Query

RNEP Root Node Enumeration Problem

TFEP Tree Folding Enumeration Problem

BEP Block Enumeration Problem

BEP Set Block Enumeration Problem Set

FP Folding Problem Set

CC Connected Component

DFS Depth-First Search

TVC Two-Vertex Cut

SC Solution Class for TDFold

CCP Connected-Complement Pair

GHD Generalized Hypertree Decomposition

be arbitrarily bad, raising the need for an enumeration-based solution. Second, ResultDBSemi-Join

performs well when there is high redundancy in large result sets, whereas ResultDBDecompose excels

under opposite conditions. However, both methods exist in isolation, i.e., there is no algorithm

deciding which method to use for a query, leaving the decision up to the user. To the best of our

knowledge, both issues remain unaddressed in the context of DRQs.

Contributions. This work contributes the following to the optimization of DRQs:

(1) A unified top-down enumeration algorithm for DRQs (TDResultDB) that evaluates whether

to use plans generated by our new enumeration algorithms for ResultDBSemi-Join or

ResultDBDecompose. (Section 3)

(2) A new top-down enumeration algorithm (TDRoot) utilizing dynamic programming to solve

the RNEP. (Section 4)

(3) A new top-down enumeration algorithm (TDFold) approximating optimal solutions for the

TFEP. (Section 5 and Section 6)

(4) An extensive evaluation using an implementation in the state-of-the-art query execution

engine mutable [17] to show the potential of our contributions compared to the existing

baseline for DRQs [26] as well as state-of-the-art heuristics based on Generalized Hypertree

Decompositions [1, 32]. (Section 8)

Related work is discussed in Section 7.

2 Preliminaries
This section summarizes the two algorithms ResultDBSemi-Join and ResultDBDecompose [26]. Both

compute the result of a DRQ, i.e., a subdatabase only containing the base relations, tuples, and

attributes contributing to the regular single-table query result.

2.1 ResultDBSemi-Join

We will first present ResultDBSemi-Join for acyclic queries, followed by its adaptation for cyclic

queries. It is important to mention the different definitions of acyclicity used in [26] and this paper:

Definition 2.1 (𝛼-Acyclicity and 𝐽𝐺-Acyclicity). Let 𝑄 be a query, and let 𝐺 (𝑄) = (𝑉 , 𝐸) be the join
graph of 𝑄 , where 𝑉 is the set of relations and 𝐸 is the set of join edges. 𝑄 is called 𝛼-acyclic if it

can be transformed into an equivalent query 𝑄 ′
where𝐺 (𝑄 ′) is a tree [11]. By contrast, 𝑄 is called

𝐽𝐺-acyclic if 𝐺 (𝑄) is a tree [26].

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

353:4 Simon Rink and Jens Dittrich

A

B C

D

1. C' = C ⋉ D

2. A' = A ⋉ C'

6. D' = D ⋉ C''

3. A'' = A' ⋉ B

5. C'' = C' ⋉ A''4. B' = B ⋉ A''

(a) Root node A

A

B

C

D

1. C' = C ⋉ D

2. A' = A ⋉ C'

6. D' = D ⋉ C''

3. B' = B ⋉ A'

5. C'' = C' ⋉ A''

4. A'' = A' ⋉ B'

(b) Root node B

Fig. 2. Exemplary ResultDBSemi-Join execution for two different root nodes of the same join graph. Red arrows
indicate bottom-up semi-joins, whereas blue arrows indicate top-down semi-joins.

We adapt the notion from [26], referring to acyclicity as 𝐽𝐺-acyclicity. Note that an 𝐽𝐺-acyclic

query is always 𝛼-acyclic, but not vice versa.

2.1.1 Acyclic Queries. As shown in Figure 2, ResultDBSemi-Join works in three different phases for

acyclic queries:

P1: Pick a root node based on a heuristic.

P2: Perform bottom-up semi-joins from the leaves to the root.

P3: Perform top-down semi-joins from the root to the leaves. This phase can stop early once all

nodes in the projection set have been fully reduced.

For instance, in Figure 2a, we start by reducing 𝐶 with 𝐷 to obtain the reduced node 𝐶′
, which is

then used to reduce 𝐴 to obtain 𝐴′
. Afterward, 𝐴′

is reduced by 𝐵 to obtain the fully reduced 𝐴′′
.

However, given that only the root is fully reduced at this point, the top-down pass is required to

also fully reduce the remaining relations. During this process, we differentiate between two kinds

of semi-join orders: vertical and horizontal.

The vertical order refers to the order in which relations of different depths in the graph are

reduced. For example, in Figure 2a, Step 1 must precede Step 2. This order is fixed by the root node.

On the other hand, the horizontal order refers to the sequence in which parents are reduced by

their children. Unlike the prior order, this order is not determined by the root and can be chosen

freely. For example, for correctness, it does not matter whether Steps 2 or 3 are performed first.

Note that in Figure 2b, the horizontal order is fixed, as every node has only at most one parent or

child. Thus, the choice of the root node also impacts the possibilities regarding the horizontal order,

motivating the Root Node Enumeration Problem:

Definition 2.2 (Root Node Enumeration Problem). Let 𝐺 = (𝑉 , 𝐸) be an acyclic join graph, and let 𝐶

be a cost function. Find the best root node 𝑣 ∈ 𝑉 for ResultDBSemi-Join according to 𝐶 .

The state-of-the-art selects the node from the projection set with the highest number of neighbors

as the root. The quality of this choice is completely random, as no enumeration is involved in

this process. Our solution, TDRoot, will implement a dedicated cost function, together with the

corresponding enumeration approach based on dynamic programming.

2.1.2 CyclicQueries. Yannakakis’ base algorithm is not feasible for queries which are not 𝛼-acyclic

[5, 26]. To mitigate this, the concept of tree folding was introduced in [26]. The idea is that certain

relations are folded (i.e., joined) together, thus merging the corresponding vertices and edges of the

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

Query Optimization for Database-ReturningQueries 353:5

A B

C D

(a) Cycle.

A⨝B

C⨝D

(b) 2-Join Solution.

A

C⨝B D

(c) 1-Join Solution.

Fig. 3. A cyclic join graph, together with ways to fold a cycle such that the resulting graph is acyclic.

join graph, effectively removing all cycles such that Yannakakis’ semi-join reducer can be applied

again. We call a set of nodes that are folded together a fold. For example, Figure 3b shows one way

to solve the cycle presented in Figure 3a by folding 𝐴 and 𝐵, as well as 𝐶 and 𝐷 . An alternative

solution, folding only 𝐶 and 𝐵, is shown in Figure 3c. Note that after the semi-join reduction has

been applied, we need to decompose these folds into the corresponding base relations again. For

that, the algorithm tracks what attributes belong to which base relation. The decomposing step

can become computationally expensive with highly redundant data, as shown in Section 8. This

motivates the need to minimize the computational cost caused by the folding as much as possible.

For that, the Tree Folding Enumeration Problem is introduced:

Definition 2.3 (Tree Folding Enumeration Problem). Let 𝑄 be a query with a cyclic join graph

𝐺 = (𝑉 , 𝐸) and let 𝐶 be a cost function. A subset S ⊆ 2
𝑉
is called a solution for 𝐺 , when all 𝑆 ∈ S

are mutually disjoint, and when folding all elements of each 𝑆 ∈ S will resolve all cycles in 𝐺 . S is

called optimal w.r.t 𝐶 if S has the lowest cost according to 𝐶 out of all possible solutions.

For example, Figure 3c is the result of applying the solution

{
{𝐴}, {𝐶, 𝐵}, {𝐷}

}
to Figure 3a.

If a join graph is cyclic, the state-of-the-art approach joins nodes with the highest number of

neighbors, as they are more likely to be part of a cycle. This approach has two issues. First, there is

no guarantee that the joined relations are part of a cycle. Second, this does not consider the plan

quality.

In this paper, we will present a solution, TDFold, tackling these issues. Different ways of how to

solve the cycle via folding are enumerated, and in the end, the best solution found is chosen.

2.2 ResultDBDecompose

This algorithm has the following approach: the regular single-table result is computed, which

is then projected (or decomposed) to the required base relations and attributes. Normally, when

computing a single-table result, semi-join reducers tend to increase the runtime tremendously

compared to usual query processing [7, 26]. However, due to the need to eliminate duplicates, the

final decomposition step becomes particularly costly in scenarios with many redundant tuples. This

makes a case for ResultDBSemi-Join, especially when optimized, which can shine in these scenarios.

3 TDResultDB - Find the Best DRQ Plan
The primary goal of our contribution TDResultDB is to answer the difficult question whether the

optimized variant of ResultDBSemi-Join or ResultDBDecompose yield lower overall costs. For that, cost

estimations of both algorithms are required. To determine optimized cost estimates and query

plans for ResultDBSemi-Join, we will first compute the best folding strategy according to TDFold

and use the resulting graph to find the optimal root node according to TDRoot. The costs of both

phases are then simply added to obtain the costs of ResultDBSemi-Join. On the other hand, cost

estimations for ResultDBDecompose simply involve estimating the costs of creating and decomposing

the single fold containing all relations. Section 6 will discuss the cost estimations required for

folds, which can simply be reused here. Naturally, subplans and costs can be shared between

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

353:6 Simon Rink and Jens Dittrich

enumerations for ResultDBDecompose and ResultDBSemi-Join. Therefore, the following sections focus

on the cost estimation and enumeration strategies for ResultDBSemi-Join. Given that TDFold will

require knowledge of TDRoot, we will start by introducing TDRoot.

4 TDRoot - Find the Best Root Node
This section introduces our new enumeration algorithm to optimize acyclic query processing in

ResultDBSemi-Join by addressing the RNEP.

4.1 Intuition and Core Idea
While the root node choice does not affect the correctness of the results [5, 33], it significantly

impacts the algorithm’s efficiency in terms of memory and CPU usage. To enhance efficiency, we

prioritize horizontal semi-joins with higher selectivity during Phase 2 of ResultDBSemi-Join. This

approach reduces the number of tuples in parent nodes as early as possible, yielding a more efficient

overall execution.

Importantly, this selectivity-based horizontal order also introduces a deterministic execution

sequence. This allows a cost estimation of a complete run for a fixed root node. Given the roots’

impact on the overall runtime, it makes sense to enumerate each possible root node to choose the

best one.

Existing methods for single-table results [32], to the best of our knowledge, simulate the whole

tree traversals from both phases to estimate the resulting costs for each root. However, this approach

leads to unnecessary computations, given that some parts of the executions (and thus their costs)

will stay the same for different root nodes. For example, as seen in Figure 2, the overall structure of

the tree heavily changes between the different root nodes. However, there are two elements that

both have in common. First, in Step 1, C is reduced by the original 𝐷 . Second, in Step 6, D is reduced

by the maximally reduced 𝐶 . Therefore, we can observe that the semi-join reductions below node

𝐴, i.e., in the subtree with root 𝐶 will not change between the presented tree structures, both in

Phases 2 and 3, implying that we should utilize dynamic programming to reuse the costs that would

result from these reductions. To identify these situations, we can make use of the following lemma:

Lemma 4.1. Let 𝐺 = (𝑉 , 𝐸) be a connected, acyclic join graph, let 𝑇𝑟1 ,𝑇𝑟2 be trees of 𝐺 with roots

𝑟1, 𝑟2 ∈ 𝑉 , let 𝑢 ∈ 𝑉 where 𝑢 ∉ {𝑟1, 𝑟2}, and let 𝑇𝑢 be a subtree of 𝑇𝑟1 and 𝑇𝑟2 with root 𝑢. Further,

assume that the selectivity-based horizontal semi-join order is used in 𝑇𝑢 . If 𝑢 has the same parent

in both 𝑇𝑟1 and 𝑇𝑟2 , then the semi-joins happening in 𝑇𝑢 are the same in 𝑇𝑟1 and 𝑇𝑟2

Proof. Proof via induction over 𝑢.

Base Case: 𝑢 is a leaf in 𝑇𝑟1 . As 𝑢 is a single node, the corresponding subtree only consists of one

node. Therefore, no semi-joins happen in𝑇𝑢 , meaning the semi-joins in𝑇𝑢 are the same for both𝑇𝑟1
and 𝑇𝑟2 .

Induction Hypothesis. For a subtree 𝑇𝑢 of 𝑇𝑟1 and 𝑇𝑟2 , the semi-joins happening in 𝑇𝑢 are the

same for both 𝑇𝑟1 and 𝑇𝑟2 , if 𝑢 has the same parent in both 𝑇𝑟1 and 𝑇𝑟2 .

Induction Step. 𝑢 is an internal node in 𝑇𝑟1 . Let 𝑣 be the parent of 𝑢 in both 𝑇𝑟1 and 𝑇𝑟2 . Given that

𝑢 always has 𝑣 as parent, the children 𝐶𝑢 of 𝑢 are the same in both 𝑇𝑟1 and 𝑇𝑟2 . From our induction

hypothesis, we know that the semi-joins happening in the subtrees 𝑇𝑐 induced by all 𝑐 ∈ 𝐶𝑢 will

stay the same since 𝑢 is their parent in both 𝑇𝑟1 and 𝑇𝑟2 . Given that the selectivity-based order

yields a fixed horizontal order in 𝑇𝑢 , the children of 𝑢 will reduce 𝑢 in a fixed order, regardless

of the root. After 𝑢 has been reduced with all its children, we are left with 𝑢′
. 𝑢′

is then used to

reduce 𝑣 . In Phase 3, we then reduce 𝑢′
with the maximally reduced 𝑣 to obtain 𝑢′′

. Afterward, 𝑢′′
is

used to reduce its children 𝐶𝑢 in the same horizontal order as in Phase 2. The top-down semi-joins

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

Query Optimization for Database-ReturningQueries 353:7

happening in each 𝑇𝑐 for all 𝑐 ∈ 𝐶𝑢 will again be the same according to our induction hypothesis.

Concluding, the semi-joins happening in 𝑇𝑢 are the same for both 𝑇𝑟1 and 𝑇𝑟2 . □

In other words, the costs occurring in a subtree of 𝐺 are uniquely identified by the root of the

subtree, and the root’s parent. The idea of the algorithm is then to traverse all nodes 𝑣 ∈ 𝐺 and

compute the costs of the subtree rooted at 𝑣 , while using dynamic programming to reuse the costs

of subtrees that have already been evaluated.

Algorithm 1 Find the best root node in G.

1: function td_root(𝐺)

2: (best_root, best_costs, pt) = (NULL,∞, PlanTable())

3: for root ∈ 𝐺 .nodes do ⊲ Traverse all nodes
4: root_costs = subtree_costs(G, NULL, root, pt)

5: if root_costs < best_costs then
6: (best_root, best_costs) = (root, root_costs) ⊲ Update best root
7: return Plan(best_root, best_costs)

Algorithm 2 Estimate the costs of a subtree.

1: function subtree_costs(𝐺 , parent, root, pt)

2: if parent ≠ NULL and (parent, root) in pt then
3: return pt[parent, root]

4: costs = 0

5: for child ∈ selectivity_order(𝐺 , parent, root) do ⊲ Bottom-up phase
6: costs += subtree_costs(𝐺 , root, child, pt)

7: costs += semi_join_costs(root, child)

8: root = estimate_reduction(root, child) ⊲ Reduce root with child
9: if parent ≠ NULL then ⊲ Top-down phase
10: root = estimate_full_reduction(root) ⊲ Reduce root with parent
11: for child ∈ selectivity_order(𝐺 , parent, root) do
12: if reduction_required(child) then
13: costs += semi_join_costs(child, root)

14: if parent ≠ NULL then
15: pt[parent, root] = costs

16: return costs

4.2 The Algorithm
Building on the previous subsection’s intuition, we now formally present our algorithm TDRoot

in Algorithm 1. The function takes the current join graph 𝐺 as input. In line 2, we first define the

required variables and data structures. The plan table 𝑝𝑡 maps subtrees, identified by (parent, child)

pairs, to costs. In line 3, we traverse each possible root node, estimate its costs using our new cost

function (line 4), and update the best root found thus far in lines 5-6. We then return the final plan

in line 7.

Algorithm 2 defines the cost estimation for the subtree rooted at a given node. Before discussing

the actual algorithm, we first define some auxiliary functions:

• selectivity_order(𝐺 , 𝑝, 𝑟): Iterates over the children of 𝑟 in the order they should be traversed.
The current parent of 𝑟 , 𝑝 , will be ignored. It is precomputed once for each node and stored

for reuse. The precomputation requires O(|𝑉 |2log|𝑉 |) time at worst. It utilizes predetermined

cardinality estimations and assumes selectivity independence. Each returned 𝑐ℎ𝑖𝑙𝑑 is reduced

by all its descendants. The iteration requires O(|𝑉 |) time.

• semi_join_costs(𝑟 , 𝑠): Estimates the costs of reducing 𝑟 with 𝑠 via a semi-join. Takes into

account the current amount of tuples in 𝑟 and 𝑠 and requires O(1) time.

• estimate_reduction(𝑟 , 𝑠): Returns the state (i.e. remaining tuples) of node 𝑟 after being

reduced with 𝑠 and requires O(1) time.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

353:8 Simon Rink and Jens Dittrich

• reduction_required(𝑟): Checks whether any node in the subtree starting with 𝑟 is in the

projection set, and thus needs to be reduced in the top-down phase. The check requires O(1)
time and utilizes precomputed results, that require O(|𝑉 |) time once.

• estimate_full_reduction(𝑟): Returns the state of 𝑟 after being fully reduced and requires

O(1) time.

Algorithm 2 takes the join graph 𝐺 , the root of the subtree, the parent of root in G, and pt as input,
while returning the costs occurring in the subtree. In lines 2-3, it starts by checking whether the

current (parent, root) pair already exists in the table and returns the respective costs if that is

the case. In line 5, we traverse each child in the selectivity order to account for the bottom-up

semi-join costs and the recursive child costs. During the traversal, we start with a recursive call to

Algorithm 2 (line 6), where the current root takes the role of the new parent and the child the role

of the new root. Note that this call will return the costs from both the bottom-up and top-down

phases. Line 7 adds the estimation of the semi-join costs between the root and the child, where the

utilized child node is assumed to be reduced by all its descendents. Afterward, line 8 updates the

current root by estimating its reduction with the child. This leaves the costs of the third phase to be
explored. Here, we start in lines 9-10 by fully reducing the root with the parent (if a parent exists).
Afterward, we again traverse each child in line 11 and compute the costs to reduce them (lines

12-13). A reduction is only required, when the child or any of its descendants is in the projection

set. Afterward, the overall costs for the respective subtree are final. Therefore, we can update our

plan table and return our results.

4.3 Time Complexity Analysis
In the following, a node visitation refers to any instance where a node is iterated by

selectivity_order(𝐺 , 𝑝 , 𝑟) (both bottom-up and top-down), or when evaluated as root. During

a call to Algorithm 2, we visit each node at most once, and each visitation requires O(1) time, thus

Algorithm 2 runs in O(|𝑉 |) time. TDRoot evaluates Algorithm 2 O(|𝑉 |) times, meaning lines 3-6

require O(|𝑉 |2) time. Due to the required precomputations, the overall worst-case complexity is

O(|𝑉 |2log|𝑉 |) time. Note that several graph structures offer much better performance, depending

on how well they can profit from dynamic programming.

5 TDFold - Find the Best Folding Strategy
Section 4 discussed optimizing queries on tree-shaped join graphs. However, this excludes the

important class of cyclic queries [7, 8], for which we must first solve the TFEP in order to apply

Yannakakis’ base algorithm. To this end, we propose the TDFold algorithm, which has the primary

objective of identifying cost-effective strategies for eliminating cycles through folding, and consists

of two phases:

Phase 1: Create a so-called folding problem set FP of enumeration problems for each cycle within

the graph. This functionality will be implemented by create_folding_problem_set(𝐺).
Phase 2: Enumerate different solutions for each enumeration problem, and estimate the cost of

each solution based on a new cost function to choose the best solution. This functionality will be

implemented by enumerate_folding_problem_set(𝐺 , FP, 𝑃𝑇), where 𝑃𝑇 is a plan table.

Afterward, the chosen solution will be applied to 𝐺 . This section will focus on the first phase,

i.e., the implementation of create_folding_problem_set(𝐺), whereas the second phase will be

discussed in Section 6.

5.1 General Idea
The main goal of TDFold is to optimize queries with large N-M joins by minimizing redundancies. It

does so by reducing the number of relations per fold, achieved by only considering joins within

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

Query Optimization for Database-ReturningQueries 353:9

B

D

F

E

G

I

J H

A

C

(a) A cyclic join graph. Each distinct color represents
a block.

EA, B, C,
D, E

E, F, GH, I, J

(b) The block-cut forest for the given graph. Note that
this is not a join graph.

Fig. 4. A cyclic graph, and the corresponding block-cut forest.

cycles. Still, within a cycle, various folding strategies with different relations per fold are explored.

For that, we define sets of enumeration problems, where each enumeration problem is tied to a

cycle in the join graph. The sets should satisfy the following properties:

P1: Within each enumeration problem, we are able to find at least one solution to the TFEP of

the subgraph induced by the corresponding cycle.

P2: All enumeration problems are mutually disjoint.

These properties ensure that different cycles can be solved independently. For example, in Figure 4a,

you can see a join graph with three different cycles, colored in orange, purple, and green. One

example for an enumeration problem set for these cycles would be

{{
𝐻, 𝐼, 𝐽

}
,
{
𝐴, 𝐵,𝐶, 𝐷, 𝐸

}
,
{
𝐹,𝐺

}}
.

Within each of these mutually disjoint enumeration problems, we can find at least one solution to

resolve the corresponding cycle. Having independent enumeration problems is highly desirable, as

this simplifies the enumeration, avoids unnecessary joins between different cycles, and enables

parallelization in query engines with multi-threading [23].

However, ensuring disjoint enumeration problems while guaranteeing a solution for the cycle of

each enumeration problem is challenging due to overlapping cycles. The next sections address how

to handle this.

5.2 Independent Enumeration Problems
In the previous subsection, we motivated why we want to create disjoint enumeration problems

for each cycle. In order to do that, we first have to identify all cycles. While various methods exist

[30, 31] for finding cycles, we opt for blocks [19], as they naturally partition the join graph into

distinct cycles.

Definition 5.1 (Block). Let 𝐺 = (𝑉 , 𝐸) be a join graph. A connected subgraph 𝐺 ′ = (𝑉 ′, 𝐸′) ⊆ 𝐺

is called biconnected if there is no vertex 𝑣 ′ ∈ 𝑉 ′
such that removing 𝑣 ′ disconnects 𝐺 ′

. 𝐺 ′
is

called a block if it is a maximal biconnected subgraph, i.e., there is no other biconnected subgraph

𝐺 ′′ = (𝑉 ′′, 𝐸′′) ⊆ 𝐺 with 𝑉 ′ ⊂ 𝑉 ′′
. In this paper, a block 𝐵 is solely defined by its vertices for

simplicity reasons, i.e., 𝐵 = 𝑉 ′
.

For example, in Figure 4a, each block is illustrated using a distinct color. However, not every

block corresponds to a cycle; only those with at least three vertices form a cycle [19]. Intuitively,

since removing any node from the block does not disconnect it, there must be at least two distinct

paths between any pair of nodes, implying the presence of a cycle. For example, in Figure 4a, every

color except blue represents a cyclic block. We denote the set of blocks with three vertices by

B𝐺 . Consequently, identifying the cycles of a graph is equivalent to finding B𝐺 [21, 29]. Now, to

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

353:10 Simon Rink and Jens Dittrich

motivate our idea for create_folding_problem_set(𝐺), as a simplification, we want to create a

single set PB𝐺
which contains a so-called block enumeration problem (BEP) for each block 𝐵 ∈ B𝐺 ,

where a BEP is defined as follows:

Definition 5.2 (Block Enumeration Problem (BEP)). Let 𝐵 ∈ B𝐺 be a block. A set of vertices 𝑃 ⊆ 𝐵 is

called a BEP of 𝐵, if there is a subset S ⊆ 2
𝑃
, such that S is a solution to the TFEP of the induced

graph 𝐺 [𝐵], i.e., a subgraph of 𝐺 limited to the nodes of 𝐵.

For example, 𝑃 ′ = {𝐴, 𝐵,𝐶, 𝐷} is a BEP for the purple block in Figure 4a, sinceS′ =
{
{𝐴, 𝐵,𝐶, 𝐷}

}
is a solution to the TFEP of the purple subgraph. However, 𝑃 ′′ = {𝐴, 𝐵,𝐶} is not a BEP because

even folding all relations in 𝑃 ′′
would not resolve the cycle in the purple subgraph. Therefore, using

a BEP ensures property P1 of Section 5.1. The BEP 𝑃 of a block 𝐵 will later be used to enumerate

different solutions S ⊆ 2
𝑃
for𝐺 [𝐵]. Following property P2, we want each 𝑃 ∈ PB𝐺

to be disjoint.

If PB𝐺
adheres to both properties P1 and P2, we formally define it as a BEP set:

Definition 5.3 (BEP Set). Let𝐺 be a join graph, and let B ⊆ B𝐺 be a set of blocks. Then PB is called

a BEP set of B, if it contains a BEP for each 𝐵 in B𝐺 , and all 𝑃 ∈ PB are pairwise disjoint.

Unfortunately, we cannot simply set the BEP of each block equal to itself, as this would conflict

with property P2, given the presence of so-called cut vertices, which are a special case of vertex

cuts [19]:

Definition 5.4 (Vertex Cut). A subset 𝑉 ′ ⊂ 𝑉 of a connected graph 𝐺 = (𝑉 , 𝐸) is called a vertex cut

if removing 𝑉 ′
from 𝐺 disconnects 𝐺 . If |𝑉 ′ | = 1, the single node from 𝑉 ′

is called a cut vertex
(sometimes referred to as articulation point), whereas for |𝑉 ′ | = 2, 𝑉 ′

is called a two-vertex cut.

For instance, 𝐸 is a cut vertex in Figure 4a as removing it will disconnect the remaining

graph. To solve the problem of intersecting BEPs, we want to assign each cut vertex to exactly

one 𝑃 ∈ PB𝐺
, such that PB𝐺

is a BEP set. For example,

{{
𝐻, 𝐼, 𝐽

}
,
{
𝐴, 𝐵,𝐶, 𝐷, 𝐸

}
,
{
𝐹,𝐺

}}
and{{

𝐻, 𝐼, 𝐽
}
,
{
𝐴, 𝐵,𝐶, 𝐷

}
,
{
𝐸, 𝐹,𝐺

}}
would be BEP sets for B𝐺 . However, looking at these assign-

ments, we can already see that our simplification to keep one BEP set per graph is suboptimal, due

to two reasons. First, some BEPs are completely independent from other BEPs, like the BEP for the

orange block, given that the orange block does not intersect with any other block. Second, multiple

BEP sets can be created for the same set of blocks, requiring an enumeration to decide which one

to use. Therefore, what we want to do is to create BEP sets for sets of intersecting blocks, i.e., the

following set FP, which we coin a folding problem set:

{{ BEP Set︷ ︸︸ ︷{{
𝐻, 𝐼, 𝐽

}︸ ︷︷ ︸
BEP

}}
,

{ BEP Set︷ ︸︸ ︷{{
𝐴, 𝐵,𝐶, 𝐷, 𝐸

}︸ ︷︷ ︸
BEP

,
{
𝐹,𝐺

}︸ ︷︷ ︸
BEP

}
,

BEP Set︷ ︸︸ ︷{{
𝐴, 𝐵,𝐶, 𝐷

}︸ ︷︷ ︸
BEP

,
{
𝐸, 𝐹,𝐺

}︸ ︷︷ ︸
BEP

}}}
This leaves us with the question of how to create FP during create_folding_problem_set(𝐺).
5.3 Creating BEP Sets
The previous section introduced the concept of BEP sets, which consist of disjoint BEPs. Specifically,

we motivated that we aim to create BEP sets for sets of intersecting blocks. Therefore, this section

will introduce our method for this.

In a first step, we want to identify the sets of connected blocks. To achieve this, we utilize

so-called block-cut forests, adapted from block-cut trees [19]:

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

Query Optimization for Database-ReturningQueries 353:11

Definition 5.5 (Block-Cut Forest). Let𝐺 = (𝑉 , 𝐸) be a connected join graph, and let𝐶 ⊆ 𝑉 be the cut

vertices of 𝐺 which are part of at least two blocks 𝐵 ∈ B𝐺 . Then the block-cut forest 𝐵𝐶𝐺 of 𝐺 is

defined as an undirected graph (𝑉𝐵𝐶 , 𝐸𝐵𝐶), where 𝑉𝐵𝐶 = B𝐺 ∪𝐶 and (𝑈 , 𝑣) ∈ 𝐸𝐵𝐶 iff𝑈 ∈ B𝐺 , 𝑣 ∈
𝐶 and 𝑣 ∈ 𝑈 .

The forest consists of nodes for both blocks and cut vertices shared by at least two blocks. A

cut vertex node is connected to a block node if it’s part of that block in the join graph. Figure 4b

illustrates this with three block nodes and one shared cut vertex node, 𝐸. A forest is needed (rather

than a single tree) because we only consider blocks with at least three vertices, which may form

multiple connected components (CCs) in the block cut forest. For example, the orange block node

in Figure 4b is disconnected from the remaining forest. Therefore, these CCs correspond to the

block sets we want to form separate BEP sets for. This raises the question: how do we create a BEP

set for a CC of the block cut forest?

Each BEP set must satisfy properties P1 and P2. Property P2 is met by assigning each cut vertex

to exactly one BEP. To ensure P1, we rely on the fact that for any block 𝐵 and any node 𝑣 ∈ 𝐵, the

set {𝐵 \ 𝑣} is always a solution for 𝐺 [𝐵], as folding the set yields two nodes, resolving the cycle in

𝐵 [26]. For example,

{
{𝐹,𝐺}

}
is a solution for the green block in Figure 4a. This guarantees that

{𝑃} is always a solution for a BEP 𝑃 of 𝐵 as long as |𝑃 | ≥ |𝐵 | − 1.

While {𝑃} isn’t necessarily the only solution, if 𝑃 ≠ 𝐵, however, a solution S, where |S| ≥ 2

may not exist. For instance, 𝑃 = {𝐹,𝐺} has only one solution in Figure 4a. Further, solutions may

still exist after losing multiple cut vertices, but we ignore these assignments since they do not

guarantee a possible solution. Therefore, within a BEP set, we assign each cut vertex to only one

BEP and ensure each BEP loses access to at most one cut vertex. To create a BEP set for a CC in the

block cut forest, we follow the approach below.

Given the acyclicity of the CC [19], we treat the CC as a tree and choose a block node 𝑅 from

the CC as a root. We then set the BEP of 𝑅 equal to 𝑅, whereas the BEP of all other blocks of that

CC loses access to its cut vertex parent in the tree. This will yield a BEP set, as each block obtains a

BEP, each cut vertex is assigned to the BEP of exactly one block (its parent in the tree), and the

BEP of each block loses access to at most one cut vertex (again its parent in the tree). For example,

when choosing 𝑅 =
{
𝐴, 𝐵,𝐶, 𝐷, 𝐸

}
as root in Figure 4b, then

{{
𝐴, 𝐵,𝐶, 𝐷, 𝐸

}
,
{
𝐹,𝐺

}}
would be the

resulting BEP set, as the root node got access to the whole block, whereas the green block lost

access to its’ parent in tree, 𝐸. Afterward, we repeat this procedure for all possible block root nodes

in the CC. Performing these assignments for all CCs will result in the folding problem set FP,

which we can express using the following formula:

Definition 5.6 (Folding Problem Set Formula). Let 𝐺 = (𝑉 , 𝐸) be a join graph, let 𝐵𝐶𝐺 = (𝑉𝐵𝐶 , 𝐸𝐵𝐶)
be the block-cut forest of𝐺 , let C ⊆ 2

𝑉𝐵𝐶
be the set of CCs of 𝐵𝐶𝐺 , and let 𝐵𝑙 (𝐶𝐶) be the set of block

nodes in a 𝐶𝐶 ∈ C. Further, when a 𝐶𝐶 ∈ C is interpreted as a tree with root 𝑅 ∈ 𝐵𝑙 (𝐶𝐶), then the

set only containing the parent of 𝐵 ∈ 𝐵𝑙 (𝐶𝐶) within that tree can be referenced by parent(𝐶𝐶, 𝐵, 𝑅).
The folding problem set FP is then given by⋃

𝐶𝐶∈C

{ ⋃
𝑅∈𝐵𝑙 (𝐶𝐶)

{{
𝑅

}
∪
(⋃
𝐵∈𝐵𝑙 (𝐶𝐶),

𝐵≠𝑅

{
𝐵 \ parent(𝐶𝐶, 𝐵, 𝑅)

})}}
Algorithmically, that means, that during create_folding_problem_set(𝐺), we must first com-

pute the blocks and cut vertices using the method from [21]. Then, we use them to construct the

block-cut forest. Both can be done in O(|𝑉 | + |𝐵𝐺 |). In order to assign cut vertices for a given root

within a CC, we can use a depth-first search (DFS) [30], which can also be done in O(|𝐵𝐺 |) time. In

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

353:12 Simon Rink and Jens Dittrich

the worst case, we have |𝐵𝐺 | − 1 possible assignments with our approach, and since |𝐵𝐺 | ≤ |𝑉 |,
we know that the assignment can be computed in O(|𝑉 |2) time. After the assignment has been

completed, we know that every set in FP only contains BEP sets, shown by the following lemma.

Lemma 5.7. Let𝐺 = (𝑉 , 𝐸) be a cyclic, connected join graph, let 𝐵𝐶𝐺 = (𝑉𝐵𝐶 , 𝐸𝐵𝐶) be the block-cut
forest of 𝐺 , and let C ⊆ 2

𝑉𝐵𝐶
be the set of CCs in 𝐵𝐶𝐺 . Further, for a 𝐶𝐶 ∈ C, let 𝐵𝑙 (𝐶𝐶) denote

the block nodes in 𝐶𝐶 , and let 𝐹𝑃 (𝐶𝐶) be the set of BEP sets associated with 𝐵𝑙 (𝐶𝐶). Then for the

folding problem set FP it holds that, ∀𝐶𝐶 ∈ C.∀P ∈ 𝐹𝑃 (𝐶𝐶).P is a BEP set for 𝐵𝑙 (𝐶𝐶).

Proof. Obviously, for each 𝐶𝐶 ∈ C, a set of BEP sets is created for 𝐵𝑙 (𝐶𝐶). That means, we

need to show that for any arbitrary 𝐶𝐶 , it holds that any P ∈ 𝐹𝑃 (𝐶𝐶) is a BEP set for 𝐵𝑙 (𝐶𝐶). Let
𝑅 ∈ 𝐵𝑙 (𝐶𝐶) denote the chosen root to create P, and let 𝑃 (𝐵) ∈ P denote the BEP associated with a

block 𝐵 ∈ 𝐵𝑙 (𝐶𝐶). For each 𝐵 ∈ 𝐵𝑙 (𝐶𝐶), there will be exactly one set 𝑃 ∈ P, such that 𝑃 = 𝑃 (𝐵), as
each block is traversed in Defintion 5.6 exactly once. Lastly, for each 𝐵 ∈ 𝐵𝑙 (𝐶𝐶), 𝑃 (𝐵) is a BEP,
because |𝑃 (𝐵) | ≥ |𝐵 | − 1, since 𝑃 (𝐵) only has lost access to its parent in 𝐵𝐶𝐺 and by that, a possible

solution to the TFEP of 𝐺 [𝐵] would be

{
𝑃 (𝐵)

}
. □

At this stage, we have demonstrated how to create different BEP sets for each CC in the block

cut forest. Therefore, we are left with enumerating solutions within FP in order to find the best

solution (w.r.t. the given cost function) for each CC in the block cut forest. The next section will

discuss our algorithm for that.

6 Enumerating Folding Problem Set Solutions
In the previous section, we discussed how to create a folding problem set FP containing different

BEP sets for each CC in the block cut forest of a join graph. Building on this, in this sectionwewill dis-

cuss the algorithm used to enumerate the solutions of FP: enumerate_folding_problem_set(𝐺 ,

FP, 𝑃𝑇). We start by presenting its general idea. Starting with the solution of a single BEP 𝑃 , let

𝑆 (𝑃) ⊆ 2
𝑃
be the best solution of 𝑃 , and let 𝐶 (𝑃) be the costs of 𝑆 (𝑃). Given that BEP sets consist

of independent BEPs (property P2), we can simply combine all their solutions. That means that the

costs 𝐶 (P) of a BEP set P are defined as

∑
𝑃∈P 𝐶 (𝑃), and the solution 𝑆 (P) of P as

⋃
𝑃∈P 𝑆 (𝑃).

Then, the algorithm will identify for each 𝐹𝑃 ∈ FP the BEP set P′ ∈ 𝐹𝑃 with the lowest costs,

and set the costs 𝐶 (𝐹𝑃) and solution 𝑆 (𝐹𝑃) of 𝐹𝑃 equal to 𝐶 (P′) and 𝑆 (P′). Now, we know that

each 𝐹𝑃 ∈ FP stems from a different CC of the block-cut forest, and by that, they are mutually

independent, so we can simply combine their solutions again. The costs and solution of FP will

then be equal to

∑
𝐹𝑃 ∈FP 𝐶 (𝐹𝑃) and⋃𝐹𝑃∈FP 𝑆 (𝐹𝑃). For instance, a solution for the folding problem

set from Section 5.2 would be

{{
𝐻, 𝐼, 𝐽

}
,
{
𝐴, 𝐵,𝐶

}
,
{
𝐷, 𝐸

}
,
{
𝐹,𝐺

}}
This leaves one remaining question: how can we find the best solution and costs for a given

BEP? We start by introducing our cost model in the next subsection.

6.1 The Cost Model for BEP Solutions

Algorithm 3 Exemplary Hash-Based Semi Join Heuristic.

1: function semi_join_heuristic(𝐺 , 𝑃 , 𝐹)

2: (curr_costs, root) = (0, 𝐹 .node)

3: for child ∈ selectivity_order(𝐺 , 𝑃 , NULL, root) do ⊲ Bottom-Up
4: curr_costs += root.number_of_tuples

5: root = estimate_reduction(root, child)

6: for child ∈ selectivity_order(𝐺 , 𝑃 , NULL, root) do ⊲ Top-Down
7: if reduction_required(child) then
8: curr_costs += root.number_of_tuples

9: return curr_costs

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

Query Optimization for Database-ReturningQueries 353:13

A⋈C E

 B⋈D

(a) Using the folded node as root.

A⋈C

E

 B⋈D

(b) Using a different node as root.

Fig. 5. Two possible subtrees for the node created by folding {𝐵, 𝐷} from Figure 4a.

Since a solution S ⊆ 2
𝑃
of a BEP 𝑃 always consists of disjoint folds, we define a cost model at the

level of individual folds. The total cost of S can be then be computed as the sum of the fold costs.

Consequently, our cost function to estimate the query processing costs of a fold 𝐹 ∈ 2
𝑃
consists of

three component cost functions:

(1) The costs of the join order to join all relations in 𝐹 .

(2) The costs of decomposing the fold into its base relations after the semi-join reductions

have been completed.

(3) The costs of the semi-join reductions in the final acyclic tree involving the node created

by folding 𝐹 .

To estimate the costs for (1), we can simply reuse well-established cost functions (e.g. 𝐶Out [9]). To

estimate the costs for (2), we examine the decomposing operation: for each tuple in the maximally

reduced fold (i.e., after the semi-join reductions), we need to project it onto the attributes of each

relation of the fold that is part of the final projection. When a fold consists of only a single relation,

no decomposition is required, so the associated costs can simply be set to 0. Therefore, to estimate

the decomposing costs of a fold 𝐹 , we use the cost function 𝐶Decompose (𝐹):
Definition 6.1 (𝐶Decompose). Let 𝐺 = (𝑉 , 𝐸) be a join graph, let 𝑘 ∈ N be an implementation-specific

factor, let 𝐹 ⊆ 𝑉 be a fold storing 𝑛 tuples after being fully reduced, and let 𝐹 ′ ⊆ 𝐹 be the set of

relations participating in the final join result. Then:

𝐶Decompose (𝐹) =
{
0, |𝐹 | = 1

𝑛 · 𝑘 · |𝐹 ′ | otherwise

However, estimating (3) is especially challenging, as efficient cost computations are critical. The

difficulty lies in the fact that during TDFold, the parent nodes of the folded node 𝐹node (i.e., the node

created by folding 𝐹) are not yet known. Ideally, we would evaluate the cost for all possible parents

of 𝐹node, but this is computationally expensive. To address this, we use a heuristic: we assume 𝐹node
will become the root of the final tree and estimate the number of tuples from 𝐹node that will be

processed during the semi-join reduction. A specific example for hash-based semi-joins is shown

in Algorithm 3.

This algorithm closely follows Algorithm 2, but only estimates the processed tuples at the

root. The function selectivity_order(𝐺 , 𝑃 , NULL, 𝑟) is modified to include the BEP 𝑃 , using the

optimal horizontal order of 𝑃node across all folds under the assumption of independent selectivities.

Neighbors of 𝑃 that are not neighbors of 𝐹 are ignored, while neighbors in 𝑃 \ 𝐹 are added

dynamically. Additionally, if a set of connected neighbors 𝑁 belongs to the same cyclic block, it

is replaced by a single node representing the join of 𝑁 to maintain acyclicity. For instance, in

Figure 5a, the subtree considered for the fold {𝐵, 𝐷} of Figure 4a is shown. Here, neighbors of the
purple block are replaced with their join. These replacements do not affect the estimation, as the

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

353:14 Simon Rink and Jens Dittrich

A B C D

E F G H

(a) A graph with TVCs.

A D

E H

B⋈F C⋈G

(b) Using both TVCs.

A C D

E F H

B⋈G

(c) Using only one TVC.

Fig. 6. An example containing TVCs, and two resulting folded graphs when two or only one TVC(s) are folded.
Colored vertices represent blocks, whereas colored edges represents two-vertex cuts within blocks.

heuristic focuses only on by which neighbors a folded node is reduced. Overall, Algorithm 3 runs in

O(|𝑉 |) time per fold, with a preliminary sorting step per BEP requiring O(|𝑉 | log |𝑉 |) time. While

this approach underestimates the true costs, e.g., when 𝐹node is not the root, as in Figure 5b, it helps

to avoid particularly inefficient plans, especially in cases of large differences in (intermediate) result

sizes. Note that Algorithm 3 is only used within TDFold, i.e., when deciding for the best folds, and is

discarded in favor of the actual semi-join costs when creating the final tree with TDRoot.

Therefore, we define our cost model 𝐶Fold to estimate the costs of a fold 𝐹 as:

Definition 6.2 (𝐶Fold). Let 𝐺 = (𝑉 , 𝐸) be a join graph, let 𝑃 ⊆ 𝑉 be a BEP, let 𝐹 ⊆ 𝑃 be a fold, and

let 𝐶Join (𝐹) be any cost function determining the cost of joining all relations of 𝐹 . 𝐶Fold (𝐺, 𝑃, 𝐹) is
then defined as:

𝐶Join (𝐹) +𝐶Decompose (𝐹) + semi_join_heuristic(𝐺, 𝑃, 𝐹)

Concluding, different solutions for a BEP can now be evaluated using the new cost model 𝐶Fold.

Note that, given a join graph𝐺 = (𝑉 , 𝐸), the costs of evaluating ResultDBDecompose is simply equal

to 𝐶Fold (𝐺,𝑉 ,𝑉), as Algorithm 3 just returns 0 in that case. This leaves us with the discussion of

how to enumerate the different solutions of a given BEP.

6.2 Enumerating BEP Solutions

Algorithm 4 Greedily apply TVCs and return the resulting graph.

1: function get_greedy_join_graph(𝐺 , 𝑃 , 𝐵)

2: 𝐺 ′
=𝐺 [𝐵]

3: tvcs = get_two_vertex_cuts(𝐺 , 𝑃)

4: tvcs.sort_by_number_of_intersections_ascendingly()

5: applied_folds = ∅
6: for tvc ∈ tvcs do ⊲ Traverse all TVCs
7: if tvc & applied_folds ≠ ∅ then ⊲ Only apply non-intersecting TVCs
8: continue

9: 𝐺 ′
=𝐺 ′

.fold(tvc)

10: applied_folds = tvc ∪ applied_folds

11: return𝐺 ′ ⊲ Return the folded subgraph

The previous subsection demonstrated how to evaluate the costs of a given fold, and by that, the

entire solution of a BEP. Therefore, this section will discuss how we plan to enumerate various

solutions of a BEP. There is already a significant body of research on various join enumeration

algorithms [12, 16, 24], so our approach aims to leverage these existing methods to take advantage

of their strengths and efficiencies. In the following, we will discuss three different solution classes

(SCs) that we intend to enumerate for each BEP 𝑃 of a block 𝐵.

SC1F: Folding until one fold is left, which will trivially always resolve the cycle. For that, we

need to evaluate 𝐶Fold (𝐺, 𝑃, 𝑃) once. To enumerate all possible join orders, we will utilize the

well-established bottom-up join enumerator DPCCP.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

Query Optimization for Database-ReturningQueries 353:15

Algorithm 5 Enumerate different solutions for a BEP.

1: function enumerate_bep(𝐺 , 𝑃 , 𝐵, PT)

2: if PT.has_folding_plan(𝑃) then
3: return PT.folding_plan[𝑃]

4: if !PT.has_join_plan(𝑃) then
5: dp_ccp(𝐺 , 𝑃 , PT, c_out)

6: ⊲ Join all relations in the BEP
7: PT.update_folding_plan(𝑃 , c_fold(𝐺, 𝑃, 𝑃), {𝑃 })
8: ⊲ Join until two folds are left if possible
9: if 𝑃 = 𝐵 then
10: for CCPs (𝑃1, 𝑃2) ∈ 2

𝑃 × 2
𝑃
where 𝑃1 ∪ 𝑃2 = 𝑃 do

11: costs = c_fold(𝐺, 𝑃, 𝑃1) + c_fold(𝐺, 𝑃, 𝑃2)

12: PT.update_folding_plan(𝑃 , costs, {𝑃1 , 𝑃2})

13: ⊲ Try to create smaller blocks with TVCs
14: 𝐺 ′

= (𝑉 ′, 𝐸′) = get_greedy_join_graph(𝐺 , 𝑃 , 𝐵)

15: if 𝐺 ′ == 𝐺 [𝐵] then
16: return PT[𝑃].folding_plan ⊲ No TVCs were found
17: FP′′

= create_folding_problem_set(𝐺 ′
, 𝐵 − 𝑃)

18: ⊲ Recursively enumerate new blocks
19: (folds, costs) = enumerate_folding_problem_set(𝐺 ′

, FP′′
, 𝑃𝑇)

20: ⊲ Not all nodes in𝑉 ′ are part of a BEP in FP′′ , but part of the solution
21: for v ∈ (𝑉 ′ \ (𝐵 − 𝑃)) that are not an element of any BEP of FP′′ do
22: costs += c_fold(𝐺 ′

, {v}, {v})

23: folds.add({v})

24: PT.update_folding_plan(𝑃 , costs, translate(folds,𝐺))

25: return PT[𝑃].folding_plan

SC2F: Folding until two folds are left, which will always resolve the cycle [26]. This is only

guaranteed to be possible when 𝐵 = 𝑃 , as discussed in Section 5.2, so we will only consider

SC2F when 𝐵 = 𝑃 . To obtain these final two folds, we need to enumerate pairs of subproblems

(𝑃1, 𝑃2) ∈ 2
𝑃 × 2

𝑃
, where 𝑃1 ∪ 𝑃2 = 𝑃 , 𝑃1 ∩ 𝑃2 = ∅, and both 𝑃1 and 𝑃2 are connected. In

other words, we seek to identify all top-level connected complement pairs (CCPs) [24] of 𝑃 . To

accomplish this, we can utilize the top-down join enumeration algorithm TDMinCutBranch [12],

which allows us to avoid re-enumerating all possible bottom-up join orders. Therefore, we need

to evaluate 𝐶Fold for both pair elements of each top-level CCP.

SCTVC: Using two-vertex cuts (TVCs) to divide blocks into smaller blocks, which can then be

recursively enumerated.

Since SCTVC is more complex than the other two, we explain it in more detail. Before showing

how TVCs help split blocks, we briefly outline why this works. A TVC is a node pair whose removal

disconnects the graph. For example, {𝐵, 𝐹 }, {𝐵,𝐺}, and {𝐶,𝐺} are TVCs in Figure 6a. Joining a

TVC within a block effectively merges its connectivity into a single cut vertex, producing smaller

blocks and requiring fewer joins to resolve the cycle than SC1F and SC2F alone.

Lemma 6.3. Let 𝐺 = (𝑉 , 𝐸) be a connected join graph, and let 𝐶 ⊂ 𝑉 be a vertex cut in𝐺 , with

|𝐶 | ≥ 2. Then the node 𝑓 ′ ∈ 𝑉 ′
resulting from folding 𝐶 is a cut vertex in the folded join graph

𝐺 ′ = (𝑉 ′, 𝐸′).

Proof. From the definition of a vertex cut, we know that removing 𝐶 splits 𝐺 into a set of

disjoint connected subgraphs S′
. Let 𝐸𝐶 be the edges connecting 𝐶 with 𝑉 \𝐶 . During the folding,

we copy 𝐺 to 𝐺 ′
, remove 𝐶 and 𝐸𝐶 from 𝐺 ′

, and add a new node 𝑓 ′ to 𝑉 ′
, that represents the fold

of 𝐶 . Finally, we add 𝐸𝑓 =
{
{𝑓 ′, 𝑣 ′}|𝑣 ′ is an unfolded node in 𝐺 ′

, that connected 𝑉 \𝐶 with 𝐶 in

𝐺
}
to 𝐸′

. It follows that each subgraph 𝑆 ′ ∈ S′
is connected to 𝑓 ′ only via edges from 𝐸𝑓 , thus all

𝑆 ∈ S in 𝐺 ′
are now connected via 𝑓 ′ only. Therefore, removing 𝑓 would split 𝐺 ′

into S′
again.

Thus, 𝑓 ′ is a cut vertex in 𝐺 ′
. □

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

353:16 Simon Rink and Jens Dittrich

As shown in Figure 6b, joining {𝐵, 𝐹 } and {𝐶,𝐺} creates three new blocks, enabling recursive

enumeration. To avoid the exponential cost (O(2𝑛) for 𝑛 TVCs) of evaluating all combinations

of which TVCs to apply, we greedily apply as many TVCs as possible to reduce the number of

relations per fold. However, care is needed: folding {𝐵,𝐺} instead, as shown in Figure 6c, results

in only two blocks, as {𝐵,𝐺} intersects with both other TVCs and alters their connectivity when

joined. We therefore prioritize TVCs with minimal overlap and only join non-intersecting TVCs

simultaneously.

This greedy folding strategy is given by Algorithm 4. Here, we first copy the induced

subgraph 𝐺 [𝐵] to the new graph 𝐺 ′
in line 2. Afterward, we compute all two vertex

cuts limited to 𝑃 in line 3 using the strategy described in [15, 20]. Afterwards, in line 4,

sort_by_number_of_intersections_ascendingly() will sort all TVCs in ascending order ac-

cording to their pairwise intersections, which will be done using Counting Sort. Afterward, we

greedily apply non-intersecting TVCs to𝐺 ′
in lines 6-10, prioritizing TVCs appearing earlier in the

TVC list. Finally, we return the folded graph 𝐺 ′
. Algorithm 4 runs in O(|𝑉 | + |𝐸 |) time [15, 20].

Next, we want to utilize create_folding_problem_set(𝐺 ′
, 𝐵 − 𝑃) to construct a new folding

problem set FP′′
for 𝐺 ′

. The function now takes an additional input: 𝐵 − 𝑃 , i.e., the set only

containing the removed cut vertex from 𝑃 , 𝑣 , if any. After creating an intermediate set FP′

according to Definition 5.6, the function additionally removes 𝑣 from all BEPs in FP′
. Any BEP sets

of FP′
that violate property P1 as a result are discarded. This is necessary to maintain isolation

with other BEPs of 𝐺 , as Definition 5.6 only considers the assignments local to 𝐺 ′
, and because of

that, ignores that 𝑃 might not have access to 𝑣 . Note that there will always be at least one BEP set

per CC in 𝐺 ′
, as you can always choose a block 𝐵′

containing 𝑣 as root for Definition 5.6. As 𝐵′

then still only looses one vertex, the corresponding BEP still fulfills property P1, whereas others

BEPs are unaffected.

Crucially, join and decomposition costs must still be estimated with respect to the vertices

from the original graph 𝐺 , not the folded graph 𝐺 ′
. For instance, for the BEP {𝐶 ⊲⊳ 𝐺, 𝐷,𝐻 } in

Figure 6b, the enumeration happens on 𝐺 ′
, possibly yielding

{
{𝐶 ⊲⊳ 𝐺,𝐷}, {𝐻 }

}
as a potential

solution. Since {𝐶 ⊲⊳ 𝐺, 𝐷} corresponds to {𝐶,𝐺, 𝐷} in Figure 6a, the join and decomposition cost

estimation must use the original fold, with the cost model handling this translation automatically.

Finally, we will utilize a plan table 𝑃𝑇 to store various plans and costs. Let 𝑃 ′
be a BEP of a

block 𝐵′
of any (potentially folded) graph 𝐺 ′

. For 𝑃 ′
, it will store the best solution to resolve the

cycle in 𝐺 ′ [𝐵′], as well the corresponding costs (𝑃𝑇 .folding_plan[𝑃 ′
]). Further, for subproblems

𝑃 ′′ ⊆ 𝑃 ′
, it will store the best join order and costs (𝑃𝑇 .join_plan[𝑃 ′′

]). To allow reusability between

different folded graphs, these will be stored and looked up using the fold corresponding to 𝑃 ′′
in

the original graph 𝐺 . Lastly, for 𝑃 ′′
, the value of 𝐶Fold (𝐺 ′, 𝑃 ′, 𝑃 ′′) will be stored. For convenience,

calling 𝑃𝑇 .c_fold(𝐺 ′, 𝑃 ′, 𝑃 ′′) will return the corresponding costs, if already evaluated, and compute

and store them first otherwise. With all these ideas in place, we will now present Algorithm 5.

The algorithm gets a join graph𝐺 , a block 𝐵, the BEP 𝑃 of 𝐵, and a plan table 𝑃𝑇 as input. In lines

2 and 3, we first check whether 𝑃 has been evaluated already, and if so, return the corresponding

folding plan entry. If not, we check whether the best join order for 𝑃 has been computed already,

and if not, compute it using the well-known DPCCP [24] algorithm. Afterward, in line 7, we estimate

the costs of SC1F, followed by the costs of SC2F in lines 9-12. Finally, in lines 14-24, we apply SCTVC

as described above. In particular, we create a greedily folded (sub-)graph𝐺 ′
in line 14. If𝐺 ′ ≠ 𝐺 [𝐵],

𝐺 ′
is utilized to create a new folding problem set FP′′

in line 17, which is recursively enumerated

in line 19. Note that some folded TVCs might not belong to any blocks in 𝐺 ′
, thus we have to

manually account for these in lines 21-23, as they still have to be folded to obtain a valid solution.

Further, the folds contained in folds are based on the nodes in 𝐺 ′
, thus we need to translate them

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

Query Optimization for Database-ReturningQueries 353:17

back into equivalent folds of 𝐺 , which is done by translate(folds, 𝐺) in line 24. Finally, we return

the best folding entry from our plan table.

Theorem 6.4. Let 𝐺 = (𝑉 , 𝐸) be a cyclic join graph, let 𝐵 ⊆ 𝑉 be a block of 𝐺 , and let 𝑃 ⊆ 𝐵 be a

BEP of 𝐵. Then, the solution returned by Algorithm 5 is a solution for the TFEP of 𝐺 [𝐵].

Proof Sketch. Proof via induction over 𝐺 [𝑃].
Base Case: There is no TVC in 𝐺 [𝑃]. Then the solutions of SC1F and, if 𝐵 = 𝑃 , SC2F are a solution

for the TFEP of 𝐺 [𝐵] [26].
Induction Hypothesis. The solution returned by Algorithm 5 is a solution for the TFEP of 𝐺 [𝐵].
Induction Step. There is at least one TVC in 𝐺 [𝑃]. Then, the solutions of SC1F and SC2F are still

valid solutions for the TFEP of𝐺 [𝐵]. That means, we need to show that SCTVC produces a solution

for the TFEP of 𝐺 [𝐵]. Let 𝐺 ′ = (𝑉 ′, 𝐸′) be the folded graph created in line 14, and let B𝐺 ′ ⊆ 2
𝑉 ′

denote the set of blocks in 𝐺 ′
. Following that, we know from Lemma 5.7 that the intermediate set

FP′
produced by create_folding_problem_set(𝐺 ′

, 𝐵 − 𝑃) is a folding problem set for𝐺 ′
. Further,

from Definition 5.6, we know that in the BEP sets of FP′
, there is one BEP 𝑃 ′

for each 𝐵′ ∈ B𝐺 ′

where 𝑃 ′ = 𝐵′
. This means that removing 𝑣 ∈ 𝐵 − 𝑃 from 𝑃 ′

will not change the fact that 𝑃 ′
is a

BEP. Therefore, FP′′
will contain at least one BEP set for each CC of B𝐺 ′ . Let𝑈 ′

denote the set of

nodes 𝑣 ′ ∈ (𝑉 ′ \ (𝐵 − 𝑃)), which are not an element of any BEP of the BEP sets of FP′′
. Following

the induction hypothesis, Algorithm 5 will return for each 𝐵′ ∈ B𝐺 ′ a solution for 𝐵′
, labelled as

𝑆 (𝐵′). Line 19 will then return the set S𝐺 ′ =
⋃

𝐵′∈B𝐺 ′ 𝑆 (𝐵′). Since S𝐺 ′ contains a solution for each

𝐵′ ∈ B𝐺 ′ , S𝐺 ′ is a solution for 𝐺 ′
. Let S𝐺 = (⋃𝑣′∈𝑈 ′ {{𝑣 ′}}) ∪ S𝐺 ′ . Since S𝐺 ′ is a solution for 𝐺 ′

,

we know that translated(S𝐺 ,𝐺) is a solution for the TFEP of 𝐺 [𝐵]. □

It follows directly, that the solutions by enumerate_folding_problem_set(𝐺 , FP, 𝑃𝑇) are

also a solution to the TFEP of 𝐺 . Thus, we are left with the time complexity analysis of enumer-
ate_folding_problem_set(𝐺 , FP, 𝑃𝑇), which we will show in the upcoming subsection.

6.3 Time Complexity Analysis
This section discusses the time complexity of enumerate_folding_problem_set(𝐺 , FP, 𝑃𝑇). For

simplicity, we ignore SCTVC and will focus on the enumeration of one block first. We know from

Section 5, that for each block 𝐵, there might be multiple BEPs for 𝐵, namely 𝐵𝐶 + 1, where 𝐵𝐶 is the

number of cut vertices of 𝐵. For simplicity, we assume |𝑉 | as an upper bound of 𝐵𝐶 , which will not

change the overall complexity. Each of these BEPs must be solved once only due to the plan table. For
a BEP 𝑃 of 𝐵 with 𝑃 = 𝐵, we must enumerate all possible join orders, which can be done in O(3 |𝐵 |)
time [24]. Further, for each top-level CCP (𝑃1, 𝑃2), we additionally must evaluate 𝐶Fold for both 𝑃1
and 𝑃2, which can be done in O(2 |𝐵 | |𝑉 |) time [12], as 𝐶Fold must be evaluated for each connected

subset of 𝐵. For a BEP 𝑃 ′
of 𝐵 with 𝑃 ′ ≠ 𝐵, we do not have to enumerate anything anymore, as

𝐶Fold (𝑃 ′) is already known from the enumeration of 𝑃 , thus can be estimated in O(1) time. Looking

at all blocks, the solution of all BEPs can be computed in O(∑𝐵∈B𝐺
3
|𝐵 |) ≤ O(3 |𝑉 |) time. Afterward,

we simply have to combine the costs and solutions of all BEP sets for each 𝐹𝑃 ∈ FP, done in

O(|𝑉 |2) time.

Now we also account for SCTVC, again starting with considering a single block 𝐵. We need to

consider |𝐵 | initial subgraphs, one for each possible BEP of 𝐵, depending on which cut vertex

has been removed. For each of these |𝐵 | initial subgraphs, we might have to consider at most

|𝐸𝐵 | differently folded graphs, where 𝐸𝐵 is the set of edges in 𝐵, as you could apply TVCs |𝐸𝐵 |
times in the worst case. Therefore, we have at most |𝐵 | |𝐸𝐵 | different subgraphs to consider per

block. Creating all these folded graphs will require O(|𝐵 | |𝐸𝐵 | ∗ (|𝑉 | + |𝐸 |)) time. Afterward, we

need to create a folding problem set for each of the resulting subgraphs, each requiring O(|𝐵 |2)
time to create, thus overall O(|𝐸𝐵 | |𝐵 |3). For each of these, we have to solve SC1F and SC2F again.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

353:18 Simon Rink and Jens Dittrich

However, we no longer need to compute the join orders, and need to compute𝐶Fold at most O(2 |𝐵 |)
times, requiring O(2 |𝐵 | |𝑉 |) time in the worst case per block. Regardless, we must evaluate the

costs of the best folds in SC2F for each of the |𝐵 | |𝐸𝐵 | different subgraphs. The evaluation for one

subgraph can be done in O(2 |𝐵 |) time, thus requiring O(2 |𝐵 | |𝐵 | |𝐸𝐵 |) ≤ O(2 |𝐵 | |𝑉 | |𝐸 |) for the entire
block. Consequently, choosing the best assignment for each subgraph can be done in O(|𝐵 |3 |𝐸𝐵 |).
Therefore, looking at all blocks, we have O(∑𝐵∈B𝐺

2
|𝐵 | |𝑉 | |𝐸 |) ≤ O(2 |𝑉 | |𝑉 | |𝐸 |) additional overhead.

Therefore, the overall complexity is given by O(3 |𝑉 |), the same complexity as DPCCP.

7 Related Work
This section presents selected works that are closely related to our proposals.

7.1 Blocks and Cut Vertices
The concepts of blocks and cut vertices have been utilized for various purposes. For example,

in [10], DeHaan and Tompa utilized cut vertices in their Biconnection Tree to ensure that only

CCPs are enumerated in their top-down enumeration approach. Their biconnection tree resembles

a block-cut tree but includes additional nodes that are not necessarily cut vertices. Further, the

biconnection tree is used during the enumeration itself, whereas our work merely uses blocks

and vertex cuts to prepare certain enumeration problems, which are then enumerated using other

methods. Another interesting work stems from Mancini et al. [23], which uses blocks to create

smaller enumeration problems, whose CCPs are then enumerated in a multi-threaded system that

allows for a faster enumeration time for large queries. That multi-threaded approach would also be

perfectly usable for our approach but is beyond the scope of this paper.

7.2 Full Reducer Problem
Naturally, the classical full reducer problem, where relations are first reduced before eventually

being joined, is related to the DRQ problem. However, the most important difference is the fact

that both problems have different objectives, and by that, approaches that are beneficial to one

problem might not be beneficial to the other. For example, avoiding joins like we do might decrease

the performance of full reducer algorithms [1, 32], however, adding joins like, e.g., in [32] might

decrease the performance of DRQs due to the decomposing overhead. Still, certain techniques from

the full reducer problem are related to our work, which we will discuss in the following.

Generalized Hypertree Decompositions (GHDs). Because Yannakakis’ algorithm [33] is not

applicable to cyclic queries, existing full reducer algorithms often make use of GHDs [1, 13, 14, 32] to

transform cyclic queries into trees by putting connected vertices into so-called bags while adhering

to certain properties to ensure the eventual acyclicity. All vertices within a bag are subsequently

joined. However, existing state-of-the-art optimizers [1, 32] use the AGM bound [2] to minimize the

fractional hypertree width of a given GHD, i.e., the highest theoretical number of tuples within any

bag, ignoring the actual cardinalities of joins. Further, GHDs enumerate invalid decompositions

that would not resolve the cycles and have to be filtered out, and also consider joins outside of

cycles.

Diamond Hardened Joins. In [7], Birler et al. proposed their diamond-hardened join frame-

work, which avoids the creation of large intermediate results by splitting up joins into multiple

suboperators. By doing this, the work also mitigates the overhead caused by the index structures

commonly used in worst-case optimal joins [25] and reduces the need of factorization methods

[27, 28] in intermediate results. We believe a combination of our approach with the method de-

scribed in [7] could further improve the efficient computation of DRQs, particularly during fold

computation.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

Query Optimization for Database-ReturningQueries 353:19

Fig. 7. The query for the synthetic dataset.

8 Evaluation
This section presents the results of our benchmarks. During the evaluation, we want to answer the

following two questions regarding our new enumeration algorithms:

Q1: How fast is the enumeration compared to the state-of-the-art for DRQs and state-of-the-art

GHD heuristics? (Section 8.2)

Q2: How good is the plan quality, i.e., the actual query execution time, compared to the state-of-

the-art for DRQs and state-of-the-art GHD heuristics? (Section 8.3)

Note that early studies of DRQs were made in the context of distributed DBMSs in [26]. However,

our optimization is context-agnostic, i.e., relevant for all possible use-cases of DRQs, as we focus

on optimizing the computation of the DRQ itself. Concretely, the resulting subdatabase will always

be the same as in [26], which means that measurements for compression ratios, transfer times,

or post-join execution times would yield the same results as in [26]. Because of that, we will not

conduct any experiments based on these metrics.

8.1 Experimental Setup
We start with our experimental setup.

Hardware & Software. We utilize a MacBook Pro with an M4 Max 16-Core processor, together

with 48 GB of main memory. Further, the underlying OS is macOS Sequoia 15.1.

Database System. The algorithms described in Sections 4-6 are implemented into the state-

of-the-art query execution engine mutable [17]. At its core, mutable uses WebAssembly as the

backend, compiling SQL code into WebAssembly and finally into machine code [18]. Given that

the authors of [26] already implemented their algorithm into mutable, we were able to reuse parts

of their implementation, particularly the code generation. The implementation can be found in [3].

Analyzed Algorithms. In our benchmarks, we consider ResultDBDecompose (which uses DPCCP

for the whole enumeration) and the native ResultDBSemi-Join as baseline [26]. For acyclic queries, we

compare the baseline with TDRoot. For cyclic queries, we also compare the baseline with TDRoot, but

utilize either the folding of TDFold, or TDFold-NoTVC, where the latter is a reduced version of TDFold

which does not utilize any two-vertex cuts in its enumeration. Notice that for TDFold, we utilize a

simple O(|𝑉 | |𝐸 |) implementation to identify two-vertex cuts, which yields a better performance

for the smaller node counts we use in the experiments. Further, we also analyze the folds generated

by state-of-the-art GHD heuristics [1, 32]. Both share the fact that they first enumerate all possible

GHDs, and choose a list of candidates which are within the range of the best fractional hypertree
width [1], which is based on the AGM bound [2]. Afterward, in [1], heuristics are utilzed to decide

on the final GHD, whereas in [32], a cost model is utilized. We label the heuristic-based algorithm

as GHDHeuristic and the cost model-based algorithm, which additionally estimates the join and semi-

join costs, as GHDCostModel. We optimized both GHD enumerations to ignore plans with Cartesian

Products to increase their performance. Whenever we refer to TDFold, TDFold-NoTVC, GHDHeuristic,

or GHDCostModel, we consider them in their combination with TDRoot. Further, for all queries, the

baseline is compared with TDResultDB.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

353:20 Simon Rink and Jens Dittrich

Datasets & Workloads. To evaluate the overall query execution times, we utilize three datasets.

For all these workloads, we make use of pre-generated cardinality estimations to prevent suboptimal

plans because of inaccurate estimations.

Synthetic Schema. This dataset consists of a table 𝐹 with attributes 𝑓 , 𝑑1, and 𝑑2, two tables 𝐷𝑖 ,

𝑖 ∈ {1, 2}, with attributes 𝑓 and 𝑎, and five additional tables 𝐴𝑖 , 𝑖 ∈ {1, 5}, with attributes

𝑎1, 𝑎2, and 𝑎3. 𝐹 contains the tuples {(𝑗, 𝑖, 𝑖) |0 ≤ 𝑖, 𝑗 ≤ 1999}, 𝐷1 and 𝐷2 contain the tuples

{(𝑗, 𝑗 mod 10) | 𝑗 ≤ 1999} and the remaining tables contain the tuples {(𝑖, 𝑖, 𝑖) |0 ≤ 𝑖 ≤ 9}. All
previously mentioned attributes are 4 byte integers. Each table also has an additional attribute

𝑤 , which is a 100 byte char. This dataset is then utilized in a so-called TVC query. A TVC query

supports the application of TVC cuts and is defined as follows:

Definition 8.1 (TVC Query). A query 𝐺 = (𝑉 , 𝐸) is called a TVC query, when 𝑉 = {0, . . . , |𝑉 | − 1},
|𝑉 | > 4, and 𝐸 = 𝐸1 ∪ 𝐸2, where

𝐸1 =
{
{𝑖, 𝑖 + 1}|0 ≤ 𝑖 < |𝑉 | − 1

}
∪ {|𝑉 | − 1, 0}, and

𝐸2 =
{
{𝑖, |𝑉 | − 1 − 𝑖}|1 ≤ 𝑖 ≤

⌈
|𝑉 |
2

⌉
− 2

}
The exact query is shown in Figure 7. In the query, we project upon all attributes.

JOB.We evaluated a subset of queries from the Join Order Benchmark (JOB) [22] benchmark,

based on the IMDb dataset. We chose the same queries presented in [26]. Like in [26], we limited

all attribute sizes to 100 bytes. This is because mutable only supports fixed attribute sizes, and

greater sizes would quickly exhaust the linear memory allocator deployed by mutable due to

WebAssembly’s limitation to 16 GiB ofmemory. Additionally, many queries in JOB extensively utilize

LIKE-operations, which are evaluated in quadratic time only in mutable. As this can potentially

greatly alter the relative performances of the different algorithms, we decided to utilize pre-

filtered data. Lastly, we removed aggregations, since DRQs currently only support simple SPJ

queries. We primarily utilize JOB to evaluate the performances of TDFold and TDRoot compared to

ResultDBSemi-Join. For that, we utilize two benchmarks, one where all queries (which are actually

𝛼−acyclic) are treated as cyclic queries, and one where GYO reductions [4, 34] were used to

transform each JOB query into an equivalent acyclic query.

CE. We also evaluated a subset of queries from the CE benchmark [8]. Originally, the CE bench-

mark was designed to test the performance of query optimizers, particularly the cardinality estima-

tors, of graph databases and consists of both acyclic and cyclic queries [7]. The authors of [7] then

translated the CE benchmark into SQL. From these translated queries, we utilize all queries from

the query template dblp_cyclic_q8. In each query, we project upon all attributes. To mitigate the

memory limitations of mutable, we reduced the size of all input tables by 50%, while ensuring a

minimum amount of 100,000 tuples per table.

8.2 Enumeration Time
This subsection presents our enumeration time benchmarks, presented in Figure 8, where we report

the median runtime of 20 executions (using a log scale) for four important query shapes while

varying the number of vertices in the graph.

Acyclic Queries. The results for both acyclic graphs are very similar. ResultDBSemi-Join delivers

the overall fastest enumeration time, closely followed by TDRoot, which has a slight overhead

of up to 50% only. On the other hand, since ResultDBDecompose utilizes DPCCP as enumeration

algorithm, it is much slower than TDRoot and ResultDBSemi-Join, especially for star queries. However,

this also means that the combined scheme TDResultDB has no meaningful runtime overhead to

ResultDBDecompose.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

Query Optimization for Database-ReturningQueries 353:21

5 10 15 20

10−2

10−1

100

101

102

R
un

ti
m

e
[m

s,
lo

g-
sc

al
ed

]

Star

5 10 15 20

10−2

10−1

Chain

5 10 15 20
Number of Vertices

10−2

10−1

100

101

R
un

ti
m

e
[m

s,
lo

g-
sc

al
ed

]

Cycle

5 10 15 20
Number of Vertices

10−2

10−1

100

101

102

TVC

ResultDBDecompose

ResultDBSemi-Join

GHDHeuristic

GHDCostModel

TDFold

TDFold-NoTVC

TDResultDB

TDRoot

Fig. 8. Enumeration times for different query shapes.

Cyclic Queries. As you can see, ResultDBSemi-Join offers the fastest enumeration by creating two

separate folds using a heuristic, enumerated independently using DPCCP. Conversely, our proposed

algorithms and ResultDBDecompose enumerate the entire graph, leading to an increased enumeration

time compared to ResultDBSemi-Join. Also, we can see that TDFold introduces a noticeable overhead

compared to ResultDBDecompose in Cycle and TVC queries, caused by computing 𝐶Decompose and

Algorithm 3. However, the relative overhead is significantly reduced by increasing the number

of vertices. Further, we can see that including the greedy TVC folds in the TVC query does not

meaningfully change the runtime of TDFold compared to TDFold-NoTVC, given that only one greedily

folded graphwill be created for each graph size. Additionally, one can see that GHD-based algorithms

require much more enumeration time than the remaining algorithms. Overall, we can deduce that

also in cyclic graphs, TDResultDB introduces only little overhead compared to ResultDBDecompose,

especially for larger graphs.

Concluding, regarding Q1, our enumeration schemes only add small overheads to the existing

baselines. For acyclic queries, TDRoot can almost match the runtime of ResultDBSemi-Join. For cyclic

queries, TDFold only introduces a visible overhead compared to ResultDBDecompose for small graphs,

whereas in larger graphs the overhead is negligible. Lastly, TDResultDB can unify all enumeration

algorithms at very little additional cost, and beats GHD-based algorithms by a factor of up to 55x.

8.3 Query Execution Time
In this subsection, we present query execution time results for the queries from the synthetic, JOB,

and CE datasets. In all experiments, we report the median execution time of five runs.

Synthetic Dataset. The results for varying selectivities of the attribute 𝐹 .𝑓 are presented in

Figure 9. The graph shows the importance of enumeration to decide on the best folds. Joining the

table 𝐹 with any other relation causes significant redundancies, which severely hurts the perfor-

mances of ResultDBSemi-Join and ResultDBDecompose. Both TDFold and TDFold-NoTVC manage to find

better folds, namely the ones where 𝐹 is not joined at all. We can also see that the plans generated

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

353:22 Simon Rink and Jens Dittrich

0.1 0.3 0.5 0.7
Selectivity

103

R
un

ti
m

e
[m

s,
lo

g-
sc

al
ed

]

ResultDBDecompose

ResultDBSemi-Join

GHDHeuristic

GHDCostModel

TDFold

TDFold-NoTVC

TDResultDB

Fig. 9. Query execution times for the TVC query.

q1b q2a q3c q4a q5c q7a q8a q9c
q10

c
q11

c
q12

a
q14

a
q15

d

Job Query

102

R
un

ti
m

e
[m

s,
lo

g-
sc

al
e)

Query execution time for JOB queries when treated as acyclic queries

q18
c

q19
a

q21
a

q22
c

q23
a

q24
a

q25
b

q26
a

q27
a

q28
c

q30
c

q31
a

q33
c

Job Query

101

102

103

R
un

ti
m

e
[m

s,
lo

g-
sc

al
e)

Query execution time for JOB queries when treated as acyclic queries

q1b q2a q3c q4a q5c q7a q8a q9c
q10

c
q11

c
q12

a
q14

a
q15

d

Job Query

102

R
un

ti
m

e
[m

s,
lo

g-
sc

al
e)

Query execution time for JOB queries when treated as cyclic queries

q18
c

q19
a

q21
a

q22
c

q23
a

q24
a

q25
b

q26
a

q27
a

q28
c

q30
c

q31
a

q33
c

Job Query

101

102

103

R
un

ti
m

e
[m

s,
lo

g-
sc

al
e)

Query execution time for JOB queries when treated as cyclic queries

ResultDBDecompose

ResultDBSemi-Join

TDRoot

TDResultDB

GHDHeuristic

GHDCostModel

TDFold

TDFold-NoTVC

Fig. 10. Query execution time for JOB queries.

by TDFold-NoTVC are slightly worse than those generated by TDFold, showing the importance of con-

sidering TVC folds during enumeration. Additionally, plans generated by our optimized algorithms

have a faster performance than both GHD-based algorithms, demonstrating the significance of our

new cost model CFold. Further, TDResultDB always manages to find the best plans in each scenario.

JOB. We start by analyzing the results of acyclic JOB queries as shown in the two upper graphs

of Figure 10. As visible, TDRoot can find better plans than ResultDBSemi-Join for almost every query.

The highest speed-up factor is at 1.7x in q26a, whereas we achieve an average speedup of 1.14x.

Due to the small output sizes, ResultDBDecompose consistently produces the best plan in every query,

which TDResultDB successfully identifies. The results for cyclic queries are shown in the two lower

graphs of Figure 10. Again, TDFold is able to outperform ResultDBSemi-Join for almost all queries,

up to a factor of 6x in q26a, and averaging at about 1.5x. Since no TVCs are in any JOB query,

TDFold cannot perform any better than TDFold-NoTVC. We can also see that GHD-based algorithms

perform better than TDFold for most queries as they consider joins with relations outside of cycles

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

Query Optimization for Database-ReturningQueries 353:23

q8 1 q8 2 q8 3 q8 4 q8 5 q8 6 q8 7 q8 8 q8 9 q8 10 q8 11 q8 12
Selectivity

102

6× 101

2× 102

R
un

ti
m

e
[m

s,
lo

g-
sc

al
ed

]

ResultDBDecompose

ResultDBSemi-Join

GHDHeuristic

GHDCostModel

TDFold

TDFold-NoTVC

TDResultDB

Fig. 11. Query execution time for the CE template dblp_cyclic_q8.

and TDFold is aimed at redundancy-heavy queries, which JOB is not. Further, plans generated by

GHDCostModel are on average better than those generated by GHDHeuristic, aligning with results from

[32]. Still, ResultDBDecompose always produces the best plans, whereas TDResultDB can detect this.

CE.When looking at the CE benchmark in Figure 11, we can see that there are queries (q8_2

and q8_8) where TDFold performs better than ResultDBDecompose. This is an important result, as

it underlines the importance of our new enumeration approach. Further, for q8_2, this was only

made possible via optimizations, as ResultDBSemi-Join performs worse than ResultDBDecompose for

this query. Further, plans generated by GHDHeuristic and GHDCostModel have the same quality than

the plans generated by TDFold, demonstrating that even though TDFold considers less plans, the

heuristic chosen to prune this search space, namingly only considering folds within cycles, is

effective for cyclic queries with redundancies. Other than that, the CE benchmark shows similar

results to JOB. TDFold can almost always produce a better plan than ResultDBSemi-Join, up to a factor

of 1.6x in q8_12, and averaging at 1.2x. Again, no TVCs were present, and by that, TDFold and

TDFold-NoTVC perform equally well. For all queries (except q8_4), TDResultDB can detect the best

plans.

Conclusively, regarding Q2, one can say that our algorithms can increase the generated plan

quality significantly compared to ResultDBSemi-Join. However, for queries with low join cardinalities,

ResultDBDecompose always generates the best plans. That being said, our new cost model is strong

enough such that TDResultDB can always determine the best presented plans, and always beat or

match the plans generated by state-of-the-art GHD heuristics.

9 Conclusion and Future Work
The current state-of-the-art [26] to compute DRQs consists of two isolated algorithms,

ResultDBSemi-Join and ResultDBDecompose. We propose the new enumeration algorithms TDRoot

and TDFold to greatly enhance plans for ResultDBSemi-Join. These are unified together with

ResultDBDecompose into TDResultDB, allowing to decide between plans generated by TDRoot, TDFold,

and ResultDBDecompose for a given query.

Our experiments demonstrate the efficiency of our proposed algorithm(s). The enumeration time

required by TDResultDB introduces only a small overhead over the state-of-the-art for DRQs. More im-

portantly, the plans generated by TDResultDB vastly outperform those generated by ResultDBSemi-Join

by up to 6x. Further, the cost models used for TDResultDB are precise enough to decide between the

different generated plans, and can even beat state-of-the-art GHD heuristics while offering smaller

enumeration times.

However, there is still much work ahead. It is a very interesting direction for future work to

study the intersection of the novel DRQ problem and the classical full reducer problem, and how

both problems could benefit from each other. For example, one could analyze the enumeration

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

353:24 Simon Rink and Jens Dittrich

approach from TDFold in the context of full reducers. Furthermore, one should investigate how an

increased search space for cycle resolutions (as present in, e.g., GHDs [1, 32]) might help in our

approach. For example, different TVC choices in TDFold, as well as joins outside of cycles could be

considered. To mitigate the effects of these increased search spaces, one could also analyze pruning

opportunities for TDResultDB. In particular, branch-and-bound pruning [10] can be used to reduce

the number of enumerated trees, join orders, and cycle solutions, especially when evaluating new

subblocks during the folding of TVCs. For example, when all solutions for a BEP of a subblock are

more expensive than the best plan for the original block, then all BEP sets containing said BEP can

be ignored.

Further, one could investigate optimizations for DRQs depending on their use case. For example,

an interesting optimization problem involves deciding, in distributed DBMSs, whether to send the

query result as a single table, or as a database. The solution to that problem would be non-trivial

given the high number of influencing factors, e.g., the achieved compression ratios, the overhead

caused by the post-join and the DRQ computation itself, network conditions, and the available

client system(s). This might be especially relevant when considering a batch of different queries,

whose results could be compressed into a single database, while utilizing classical multi-query

optimization techniques to speed up the DRQ computation. Another interesting use case would be

to investigate optimization potential in the context of data provenance, where both the single-table

result as well as a DRQ have to be computed. Again, one could analyze the benefits of having

multiple queries share the same result database.

Finally, one could extend the scope of our optimizations and DRQs in general to also deal with

more complex queries, e.g., semi-joins, outer-joins and data transformations, building upon the

ideas already presented by Nix and Dittrich [26]. While semi-joins are straightforward to realize

in the context of DRQs, outer-joins are more difficult as you also have to consider the order in

which reductions are to be applied to prevent changing the result database. Data transformations

would also require heavy modifications, as Nix and Dittrich [26] envisioned arbitrary transforma-

tions, meaning the creation of completely new tables alongside aggregations, opening up a new

optimization area, as folds would now be required for acyclic queries too.

Acknowledgments
We thank Luca Gretscher, Marcel Maltry, and Joris Nix for their feedback and help preparing this

paper. We also want to thank the anonymous reviewers for their valuable and constructive feedback.

ChatGPT was utilized to help with spelling, grammar, and overall refinement of the writing of this

work.

References
[1] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. 2016. EmptyHeaded: A Relational Engine for

Graph Processing. In Proceedings of the 2016 International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016, Fatma Özcan, Georgia Koutrika, and Sam Madden (Eds.). ACM,

431–446. https://doi.org/10.1145/2882903.2915213

[2] Albert Atserias, Martin Grohe, and Dániel Marx. 2013. Size Bounds and Query Plans for Relational Joins. SIAM J.
Comput. 42, 4 (2013), 1737–1767. https://doi.org/10.1137/110859440

[3] Anonymous Author(s). 2025. Query Optimization for Database-Returning Queries. (2025). https://anonymous.4open.

science/r/mutable-QO-ResultDB-D324

[4] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. 1983. On the Desirability of Acyclic Database

Schemes. J. ACM 30, 3 (1983), 479–513. https://doi.org/10.1145/2402.322389

[5] Philip A. Bernstein and Dah-Ming W. Chiu. 1981. Using Semi-Joins to Solve Relational Queries. J. ACM 28, 1 (1981),

25–40. https://doi.org/10.1145/322234.322238

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

https://doi.org/10.1145/2882903.2915213
https://doi.org/10.1137/110859440
https://anonymous.4open.science/r/mutable-QO-ResultDB-D324
https://anonymous.4open.science/r/mutable-QO-ResultDB-D324
https://doi.org/10.1145/2402.322389
https://doi.org/10.1145/322234.322238

Query Optimization for Database-ReturningQueries 353:25

[6] Philip A. Bernstein, Nathan Goodman, Eugene Wong, Christopher L. Reeve, and James B. Rothnie Jr. 1981. Query

Processing in a System for Distributed Databases (SDD-1). ACM Trans. Database Syst. 6, 4 (1981), 602–625. https:

//doi.org/10.1145/319628.319650

[7] Altan Birler, Alfons Kemper, and Thomas Neumann. 2024. Robust Join Processing with Diamond Hardened Joins. Proc.
VLDB Endow. 17, 11 (2024), 3215–3228. https://www.vldb.org/pvldb/vol17/p3215-birler.pdf

[8] Jeremy Chen, Yuqing Huang, Mushi Wang, Semih Salihoglu, and Kenneth Salem. 2022. Accurate Summary-based

Cardinality Estimation Through the Lens of Cardinality Estimation Graphs. Proc. VLDB Endow. 15, 8 (2022), 1533–1545.
https://doi.org/10.14778/3529337.3529339

[9] Sophie Cluet and Guido Moerkotte. 1995. On the Complexity of Generating Optimal Left-Deep Processing Trees with

Cross Products. In Database Theory - ICDT’95, 5th International Conference, Prague, Czech Republic, January 11-13, 1995,
Proceedings (Lecture Notes in Computer Science), Georg Gottlob and Moshe Y. Vardi (Eds.), Vol. 893. Springer, 54–67.

https://doi.org/10.1007/3-540-58907-4_6

[10] David DeHaan and Frank Wm. Tompa. 2007. Optimal top-down join enumeration. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Beijing, China, June 12-14, 2007, Chee Yong Chan, Beng Chin Ooi, and

Aoying Zhou (Eds.). ACM, 785–796. https://doi.org/10.1145/1247480.1247567

[11] Ronald Fagin. 1983. Degrees of Acyclicity for Hypergraphs and Relational Database Schemes. J. ACM 30, 3 (1983),

514–550. https://doi.org/10.1145/2402.322390

[12] Pit Fender and Guido Moerkotte. 2011. A new, highly efficient, and easy to implement top-down join enumeration

algorithm. In Proceedings of the 27th International Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover,
Germany, Serge Abiteboul, Klemens Böhm, Christoph Koch, and Kian-Lee Tan (Eds.). IEEE Computer Society, 864–875.

https://doi.org/10.1109/ICDE.2011.5767901

[13] Jörg Flum, Markus Frick, and Martin Grohe. 2002. Query evaluation via tree-decompositions. J. ACM 49, 6, 716–752.

https://doi.org/10.1145/602220.602222

[14] Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. 2016. Hypertree Decompositions: Questions

and Answers. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, Tova Milo and Wang-Chiew Tan (Eds.). ACM, 57–74.

https://doi.org/10.1145/2902251.2902309

[15] Carsten Gutwenger and Petra Mutzel. 2000. A Linear Time Implementation of SPQR-Trees. In Graph Drawing, 8th
International Symposium, GD 2000, Colonial Williamsburg, VA, USA, September 20-23, 2000, Proceedings (Lecture Notes in
Computer Science), Joe Marks (Ed.), Vol. 1984. Springer, 77–90. https://doi.org/10.1007/3-540-44541-2_8

[16] Immanuel Haffner and Jens Dittrich. 2023. Efficiently Computing Join Orders with Heuristic Search. Proc. ACM Manag.
Data 1, 1 (2023), 73:1–73:26. https://doi.org/10.1145/3588927

[17] Immanuel Haffner and Jens Dittrich. 2023. mutable: A Modern DBMS for Research and Fast Prototyping. In 13th Confer-
ence on Innovative Data Systems Research, CIDR 2023, Amsterdam, The Netherlands, January 8-11, 2023. www.cidrdb.org.

https://www.cidrdb.org/cidr2023/papers/p41-haffner.pdf

[18] Immanuel Haffner and Jens Dittrich. 2023. A simplified Architecture for Fast, Adaptive Compilation and Execution of

SQL Queries. In Proceedings 26th International Conference on Extending Database Technology, EDBT 2023, Ioannina,
Greece, March 28-31, 2023, Julia Stoyanovich, Jens Teubner, Nikos Mamoulis, Evaggelia Pitoura, Jan Mühlig, Katja Hose,

Sourav S. Bhowmick, andMatteo Lissandrini (Eds.). OpenProceedings.org, 1–13. https://doi.org/10.48786/EDBT.2023.01

[19] Frank Harary. 1969. Graph Theory. Addison-Wesley Publishing Company, New York.

[20] John E. Hopcroft and Robert Endre Tarjan. 1973. Dividing a Graph into Triconnected Components. SIAM J. Comput. 2,
3 (1973), 135–158. https://doi.org/10.1137/0202012

[21] John E. Hopcroft and Robert Endre Tarjan. 1973. Efficient Algorithms for Graph Manipulation [H] (Algorithm 447).

Commun. ACM 16, 6 (1973), 372–378. https://doi.org/10.1145/362248.362272

[22] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2015. How

Good Are Query Optimizers, Really? Proc. VLDB Endow. 9, 3 (2015), 204–215. https://doi.org/10.14778/2850583.2850594

[23] Riccardo Mancini, Srinivas Karthik, Bikash Chandra, Vasilis Mageirakos, and Anastasia Ailamaki. 2022. Efficient

Massively Parallel Join Optimization for Large Queries. In SIGMOD ’22: International Conference on Management of
Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM,

122–135. https://doi.org/10.1145/3514221.3517871

[24] Guido Moerkotte and Thomas Neumann. 2006. Analysis of Two Existing and One New Dynamic Programming

Algorithm for the Generation of Optimal Bushy Join Trees without Cross Products. (2006), 930–941. http://dl.acm.

org/citation.cfm?id=1164207

[25] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2012. Worst-case optimal join algorithms: [extended abstract].

In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2012,
Scottsdale, AZ, USA, May 20-24, 2012, Michael Benedikt, Markus Krötzsch, and Maurizio Lenzerini (Eds.). ACM, 37–48.

https://doi.org/10.1145/2213556.2213565

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

https://doi.org/10.1145/319628.319650
https://doi.org/10.1145/319628.319650
https://www.vldb.org/pvldb/vol17/p3215-birler.pdf
https://doi.org/10.14778/3529337.3529339
https://doi.org/10.1007/3-540-58907-4_6
https://doi.org/10.1145/1247480.1247567
https://doi.org/10.1145/2402.322390
https://doi.org/10.1109/ICDE.2011.5767901
https://doi.org/10.1145/602220.602222
https://doi.org/10.1145/2902251.2902309
https://doi.org/10.1007/3-540-44541-2_8
https://doi.org/10.1145/3588927
https://www.cidrdb.org/cidr2023/papers/p41-haffner.pdf
https://doi.org/10.48786/EDBT.2023.01
https://doi.org/10.1137/0202012
https://doi.org/10.1145/362248.362272
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1145/3514221.3517871
http://dl.acm.org/citation.cfm?id=1164207
http://dl.acm.org/citation.cfm?id=1164207
https://doi.org/10.1145/2213556.2213565

353:26 Simon Rink and Jens Dittrich

[26] Joris Nix and Jens Dittrich. 2025. Extending SQL to Return a Subdatabase. In ACM SIGMOD International Conference
on Management of Data (SIGMOD), June 2025. https://bigdata.uni-saarland.de/publications/Nix,%20Dittrich%20-

%20Extending%20SQL%20to%20Return%20a%20Subdatabase.pdf

[27] Dan Olteanu and Jakub Zavodny. 2012. Factorised representations of query results: size bounds and readability. In

15th International Conference on Database Theory, ICDT ’12, Berlin, Germany, March 26-29, 2012, Alin Deutsch (Ed.).

ACM, 285–298. https://doi.org/10.1145/2274576.2274607

[28] Dan Olteanu and Jakub Závodný. 2015. Size Bounds for Factorised Representations of Query Results. ACM Trans.
Database Syst. 40, 1 (2015), 2:1–2:44. https://doi.org/10.1145/2656335

[29] Jens M. Schmidt. 2013. A simple test on 2-vertex- and 2-edge-connectivity. Inf. Process. Lett. 113, 7 (2013), 241–244.
https://doi.org/10.1016/J.IPL.2013.01.016

[30] Robert Endre Tarjan. 1972. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1, 2, 146–160.
https://doi.org/10.1137/0201010

[31] Robert Endre Tarjan. 1974. A Note on Finding the Bridges of a Graph. Inf. Process. Lett. 2, 6 (1974), 160–161.

https://doi.org/10.1016/0020-0190(74)90003-9

[32] Qichen Wanga, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin. 2025. Yannakakis+: Practical Acyclic Query

Evaluation with Theoretical Guarantees. In ACM SIGMOD International Conference on Management of Data (SIGMOD),
June 2025. https://qichen-wang.github.io/publication/SIGMOD2025

[33] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In Very Large Data Bases, 7th International
Conference, September 9-11, 1981, Cannes, France, Proceedings. IEEE Computer Society, 82–94.

[34] C. T. Yu and M. Z. Ozsoyoglu. 1979. An algorithm for tree-query membership of a distributed query. In The IEEE
Computer Society’s Third International Computer Software and Applications Conference, COMPSAC 1979, 6-8 November,
1979, Chicago, Illinois, USA. IEEE, 306–312. https://doi.org/10.1109/CMPSAC.1979.762509

Received April 2025; revised July 2025; accepted August 2025

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.

https://bigdata.uni-saarland.de/publications/Nix,%20Dittrich%20-%20Extending%20SQL%20to%20Return%20a%20Subdatabase.pdf
https://bigdata.uni-saarland.de/publications/Nix,%20Dittrich%20-%20Extending%20SQL%20to%20Return%20a%20Subdatabase.pdf
https://doi.org/10.1145/2274576.2274607
https://doi.org/10.1145/2656335
https://doi.org/10.1016/J.IPL.2013.01.016
https://doi.org/10.1137/0201010
https://doi.org/10.1016/0020-0190(74)90003-9
https://qichen-wang.github.io/publication/SIGMOD2025
https://doi.org/10.1109/CMPSAC.1979.762509

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 ResultDBSemi-Join
	2.2 ResultDBDecompose

	3 TDResultDB - Find the Best DRQ Plan
	4 TDRoot - Find the Best Root Node
	4.1 Intuition and Core Idea
	4.2 The Algorithm
	4.3 Time Complexity Analysis

	5 TDFold - Find the Best Folding Strategy
	5.1 General Idea
	5.2 Independent Enumeration Problems
	5.3 Creating BEP Sets

	6 Enumerating Folding Problem Set Solutions
	6.1 The Cost Model for BEP Solutions
	6.2 Enumerating BEP Solutions
	6.3 Time Complexity Analysis

	7 Related Work
	7.1 Blocks and Cut Vertices
	7.2 Full Reducer Problem

	8 Evaluation
	8.1 Experimental Setup
	8.2 Enumeration Time
	8.3 Query Execution Time

	9 Conclusion and Future Work
	Acknowledgments
	References

