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Recently, the novel concept of database-returning SQL queries (DRQs) was introduced. Instead of a single,
(potentially) denormalized result table, DRQs return an entire subdatabase with a single SQL query. This
subdatabase represents a subset of the original database, reduced to the relations, tuples, and attributes that
contribute to the traditional join result. DRQs offer several benefits: they reduce network traffic in client-server
settings, can lower memory requirements for materializing results, and significantly simplify querying hierar-
chical data. Currently, two state-of-the-art algorithms exist to compute DRQs: (1.) ResultDBgem;.join builds
upon Yannakakis’ semi-join reduction algorithm by adding support for cyclic queries. (2.) ResultDBpecompose
computes the standard single-table result and projects the result to the base tables to obtain the resulting
subdatabase.

However, multiple issues can be identified with these algorithms. First, ResultDBsemi-join €mploys simple
heuristics to greedily solve the underlying enumeration problems, often leading to suboptimal query plans.
Second, each algorithm performs best under different conditions, so it is up to the user to choose the appropriate
one for a given scenario. In this paper, we address these two issues. We propose two enumeration algorithms
for ResultDBgemi-join to handle the Root Node Enumeration Problem (RNEP) and the Tree Folding Enumeration
Problem (TFEP). Further, we present a unified enumeration algorithm, TDgesu1tDB, to automatically decide
between plans generated by our new enumeration algorithms for ResultDBgem;-join and ResultDBpecompose-

Through a comprehensive experimental evaluation, we show that the enumeration time overhead introduced
by our methods remains minimal. Furthermore, by effectively solving the RNEP and TFEP, we achieve up to a
6x speed-up in query execution time for ResultDBsemi-join, Whereas TDRegyipp consistently selects the best
available plans.
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1 Introduction

In their recent work, Nix and Dittrich [26] introduced the RESULTDB operator, implementing the
thrilling concept of a database-returning query (DRQ). DRQs return a reduction of the original
database, which contains only the relations, tuples, and attributes that would take part in the
traditional join result. An example is given in Figure 1, which shows that the returned subdatabase
shown in Figure 1d is just a reduction of the original database from Figure 1a. Note that Figure 1d
contains no redundancies, unlike the single-table result from Figure 1b. This becomes especially
important for N:-M queries with a heavy workload, substantially reducing output sizes, which can
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owners [ l cars
owners > cars ‘
id name id | color | oid name color
0 | Person A 0 | black | 0 Person A | black
1 | Person B 1 | black Person B | black
2 | Person C 2 red 2

(a) Exemplary database. (b) Single-Table Result.

| SELECT RESULTDB o.name, c.color | owners | | cars |
2 FROM owners o, cars c name color
.id <
s WHERE o lc,j 2 AND Person A black
4 c.oid = o.id
Person B
(c) RESULTDB query. (d) Resulting subdatabase.

Fig. 1. RESULTDB Example.

significantly reduce network traffic in diverse client-server setups, such as distributed DBMSs [6].
Note that one would need to post-join the result database on the client side, i.e., join all returned
tables, in case a denormalized result was required. In that case, required join keys would also
need to be transmitted, independently of whether the keys are part of the projection. Beyond this
application, DRQs also offer additional benefits, such as potential memory overhead reductions for
large intermediate results, preventing relational information loss, and simplifying the process of
querying hierarchical data [26].

Naturally, this idea has far-reaching implications for query processing and optimization. So
far, the state-of-the-art [26] to compute DRQs consists of two algorithms for the same problem:
ReSultDBSemi_Jom and ResultDBDecompose.

ResultDBgemi-join utilizes a modified version of Yannakakis’ semi-join reducer [33]. It interprets
the query graph as a tree, initially applying semi-join reductions from the leaf nodes to a designated
root node, followed by another round of semi-join reductions from the root back to the leaves. This
ensures that all relations contain only the tuples required for the regular join. However, these tree
reductions are only feasible if the graph is acyclic [5]. To still be able to deal with cyclic graphs,
the concept of folding is introduced, where a cyclic query is joined until it has an acyclic join
graph, allowing for the execution of Yannakakis’ base algorithm again. Therefore, ResultDBsemijoin
modifies the established query processing, and by that, introduces new optimization problems in
the context of DRQs, specifically the Root Node Enumeration Problem (RNEP) and the Tree Folding
Enumeration Problem (TFEP) [26]. The RNEP deals with the optimal root node choice for semi-
join reductions, given that the root heavily influences the overall runtime due to the tree shape’s
dependency on the root. For example, the different trees shown in Figure 2 could result in vastly
different query execution times. The goal of the TFEP, on the other hand, is to find the most efficient
way to transform a cyclic graph into an acyclic one. For example, multiple ways exist to resolve the
cycle in Figure 3a.

ResultDBpecompose differs from ResultDBsemi join by computing the regular single-table results,
followed by a projection on all base tables, a process coined decomposing. For this reason, its optimiza-
tion solely depends on state-of-the-art single-table optimizers [12, 16, 24]. In [26], ResultDBpecompose
was used as a naive baseline for evaluating ResultDBgsemi.join against, however, it proved to be highly
efficient for queries with low redundancies.

Problem Statement. Two major issues can be identified with the state-of-the-art. First,
ResultDBsemi-j0in uses for both the RNEP and the TFEP a simple heuristic selecting nodes with
the highest number of neighbors, and by that, does not utilize any enumeration. In the case of
the RNEP, these nodes stem from the projection set only. Naturally, the created join plans can
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Table 1. Table of Acronyms

Acronym Definition
DRQ Database-Returning Query
RNEP Root Node Enumeration Problem
TFEP Tree Folding Enumeration Problem
BEP Block Enumeration Problem
BEP Set Block Enumeration Problem Set
FP Folding Problem Set
cC Connected Component
DFS Depth-First Search
TvVC Two-Vertex Cut
SC Solution Class for TDggq
CCp Connected-Complement Pair
GHD Generalized Hypertree Decomposition

be arbitrarily bad, raising the need for an enumeration-based solution. Second, ResultDBsemi-join
performs well when there is high redundancy in large result sets, whereas ResultDBpecompose €xcels
under opposite conditions. However, both methods exist in isolation, i.e., there is no algorithm
deciding which method to use for a query, leaving the decision up to the user. To the best of our
knowledge, both issues remain unaddressed in the context of DRQs.

Contributions. This work contributes the following to the optimization of DRQs:

(1) A unified top-down enumeration algorithm for DRQs (TDgesuipp) that evaluates whether
to use plans generated by our new enumeration algorithms for ResultDBsemijoin OF
ResultDBpecompose- (Section 3)

(2) A new top-down enumeration algorithm (TDgoot) utilizing dynamic programming to solve
the RNEP. (Section 4)

(3) A new top-down enumeration algorithm (TDp.)q) approximating optimal solutions for the
TFEP. (Section 5 and Section 6)

(4) An extensive evaluation using an implementation in the state-of-the-art query execution
engine mutable [17] to show the potential of our contributions compared to the existing
baseline for DRQs [26] as well as state-of-the-art heuristics based on Generalized Hypertree
Decompositions [1, 32]. (Section 8)

Related work is discussed in Section 7.

2 Preliminaries
This section summarizes the two algorithms ResultDBsemijoin and ResultDBpecompose [26]. Both

compute the result of a DRQ, i.e., a subdatabase only containing the base relations, tuples, and
attributes contributing to the regular single-table query result.

2.1 ResultDBsemijoin

We will first present ResultDBgemi-join for acyclic queries, followed by its adaptation for cyclic
queries. It is important to mention the different definitions of acyclicity used in [26] and this paper:

Definition 2.1 (a-Acyclicity and JG-Acyclicity). Let Q be a query, and let G(Q) = (V, E) be the join
graph of Q, where V is the set of relations and E is the set of join edges. Q is called a-acyclic if it
can be transformed into an equivalent query Q” where G(Q’) is a tree [11]. By contrast, Q is called
JG-acyclic if G(Q) is a tree [26].
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(a) Root node A (b) Root node B

Fig. 2. Exemplary ResultDBsemi-join €xecution for two different root nodes of the same join graph. Red arrows
indicate bottom-up semi-joins, whereas blue arrows indicate top-down semi-joins.

We adapt the notion from [26], referring to acyclicity as JG-acyclicity. Note that an JG-acyclic
query is always a-acyclic, but not vice versa.

2.1.1  Acyclic Queries. As shown in Figure 2, ResultDBgemi join Works in three different phases for
acyclic queries:
P1: Pick a root node based on a heuristic.
P2: Perform bottom-up semi-joins from the leaves to the root.
P3: Perform top-down semi-joins from the root to the leaves. This phase can stop early once all
nodes in the projection set have been fully reduced.

For instance, in Figure 2a, we start by reducing C with D to obtain the reduced node C’, which is
then used to reduce A to obtain A’. Afterward, A’ is reduced by B to obtain the fully reduced A”.
However, given that only the root is fully reduced at this point, the top-down pass is required to
also fully reduce the remaining relations. During this process, we differentiate between two kinds
of semi-join orders: vertical and horizontal.

The vertical order refers to the order in which relations of different depths in the graph are
reduced. For example, in Figure 2a, Step 1 must precede Step 2. This order is fixed by the root node.
On the other hand, the horizontal order refers to the sequence in which parents are reduced by
their children. Unlike the prior order, this order is not determined by the root and can be chosen
freely. For example, for correctness, it does not matter whether Steps 2 or 3 are performed first.
Note that in Figure 2b, the horizontal order is fixed, as every node has only at most one parent or
child. Thus, the choice of the root node also impacts the possibilities regarding the horizontal order,
motivating the Root Node Enumeration Problem:

Definition 2.2 (Root Node Enumeration Problem). Let G = (V, E) be an acyclic join graph, and let C
be a cost function. Find the best root node v € V for ResultDBgem;-join according to C.

The state-of-the-art selects the node from the projection set with the highest number of neighbors
as the root. The quality of this choice is completely random, as no enumeration is involved in
this process. Our solution, TDgeet, Will implement a dedicated cost function, together with the
corresponding enumeration approach based on dynamic programming.

2.1.2  Cyclic Queries. Yannakakis’ base algorithm is not feasible for queries which are not a-acyclic
[5, 26]. To mitigate this, the concept of tree folding was introduced in [26]. The idea is that certain
relations are folded (i.e., joined) together, thus merging the corresponding vertices and edges of the
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O@ 6
’ ®

Cycle (b) 2- Jom Solution. (c) 1-Join Solution.

Fig. 3. A cycllc join graph, together with ways to fold a cycle such that the resulting graph is acyclic.

join graph, effectively removing all cycles such that Yannakakis’ semi-join reducer can be applied
again. We call a set of nodes that are folded together a fold. For example, Figure 3b shows one way
to solve the cycle presented in Figure 3a by folding A and B, as well as C and D. An alternative
solution, folding only C and B, is shown in Figure 3c. Note that after the semi-join reduction has
been applied, we need to decompose these folds into the corresponding base relations again. For
that, the algorithm tracks what attributes belong to which base relation. The decomposing step
can become computationally expensive with highly redundant data, as shown in Section 8. This
motivates the need to minimize the computational cost caused by the folding as much as possible.
For that, the Tree Folding Enumeration Problem is introduced:

Definition 2.3 (Tree Folding Enumeration Problem). Let Q be a query with a cyclic join graph

= (V,E) and let C be a cost function. A subset S C 2" is called a solution for G, when all S € S
are mutually disjoint, and when folding all elements of each S € S will resolve all cycles in G. S is
called optimal w.r.t C if S has the lowest cost according to C out of all possible solutions.

For example, Figure 3c is the result of applying the solution {{A}, {C, B}, {D}} to Figure 3a.
If a join graph is cyclic, the state-of-the-art approach joins nodes with the highest number of
neighbors, as they are more likely to be part of a cycle. This approach has two issues. First, there is
no guarantee that the joined relations are part of a cycle. Second, this does not consider the plan
quality.

In this paper, we will present a solution, TDg4, tackling these issues. Different ways of how to
solve the cycle via folding are enumerated, and in the end, the best solution found is chosen.

2.2 ResultDBpecompose

This algorithm has the following approach: the regular single-table result is computed, which
is then projected (or decomposed) to the required base relations and attributes. Normally, when
computing a single-table result, semi-join reducers tend to increase the runtime tremendously
compared to usual query processing [7, 26]. However, due to the need to eliminate duplicates, the
final decomposition step becomes particularly costly in scenarios with many redundant tuples. This
makes a case for ResultDBgemi-join, especially when optimized, which can shine in these scenarios.

3  TDResulibb - Find the Best DRQ Plan

The primary goal of our contribution TDgeguipp is to answer the difficult question whether the
optimized variant of ResultDBsem;-join OF ResultDBpecompose Yield lower overall costs. For that, cost
estimations of both algorithms are required. To determine optimized cost estimates and query
plans for ResultDBsemi-join, We will first compute the best folding strategy according to TDgolq
and use the resulting graph to find the optimal root node according to TDget. The costs of both
phases are then simply added to obtain the costs of ResultDBgemi-join- On the other hand, cost
estimations for ResultDBpecompose Simply involve estimating the costs of creating and decomposing
the single fold containing all relations. Section 6 will discuss the cost estimations required for
folds, which can simply be reused here. Naturally, subplans and costs can be shared between

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 353. Publication date: December 2025.



353:6 Simon Rink and Jens Dittrich

enumerations for ResultDBpecompose and ResultDBgemijoin. Therefore, the following sections focus
on the cost estimation and enumeration strategies for ResultDBsemi join. Given that TDggg will
require knowledge of TDggot, we will start by introducing TDgoot.

4 TDReot - Find the Best Root Node

This section introduces our new enumeration algorithm to optimize acyclic query processing in
ResultDBgemi-join by addressing the RNEP.

4.1 Intuition and Core Idea

While the root node choice does not affect the correctness of the results [5, 33], it significantly
impacts the algorithm’s efficiency in terms of memory and CPU usage. To enhance efficiency, we
prioritize horizontal semi-joins with higher selectivity during Phase 2 of ResultDBsemi-join. This
approach reduces the number of tuples in parent nodes as early as possible, yielding a more efficient
overall execution.

Importantly, this selectivity-based horizontal order also introduces a deterministic execution
sequence. This allows a cost estimation of a complete run for a fixed root node. Given the roots’
impact on the overall runtime, it makes sense to enumerate each possible root node to choose the
best one.

Existing methods for single-table results [32], to the best of our knowledge, simulate the whole
tree traversals from both phases to estimate the resulting costs for each root. However, this approach
leads to unnecessary computations, given that some parts of the executions (and thus their costs)
will stay the same for different root nodes. For example, as seen in Figure 2, the overall structure of
the tree heavily changes between the different root nodes. However, there are two elements that
both have in common. First, in Step 1, C is reduced by the original D. Second, in Step 6, D is reduced
by the maximally reduced C. Therefore, we can observe that the semi-join reductions below node
A, i.e., in the subtree with root C will not change between the presented tree structures, both in
Phases 2 and 3, implying that we should utilize dynamic programming to reuse the costs that would
result from these reductions. To identify these situations, we can make use of the following lemma:

Lemma 4.1. Let G = (V, E) be a connected, acyclic join graph, let T,,, T,, be trees of G with roots
ri,r2 € V,letu € V where u ¢ {ry,r;}, and let T,, be a subtree of T,, and T,, with root u. Further,
assume that the selectivity-based horizontal semi-join order is used in T,,. If u has the same parent
in both T;, and T, then the semi-joins happening in T, are the same in T, and T,,

PRrROOF. Proof via induction over u.

Base Case: u is a leaf in T;,. As u is a single node, the corresponding subtree only consists of one
node. Therefore, no semi-joins happen in T,,, meaning the semi-joins in T,, are the same for both T;,
and T,,.

Induction Hypothesis. For a subtree T, of T,, and T,,, the semi-joins happening in T,, are the
same for both T, and T,,, if u has the same parent in both T, and T,,.

Induction Step. u is an internal node in T,,. Let v be the parent of u in both T,, and T;,. Given that
u always has v as parent, the children C, of u are the same in both T, and T;,. From our induction
hypothesis, we know that the semi-joins happening in the subtrees T, induced by all ¢ € C, will
stay the same since u is their parent in both T,, and T,,. Given that the selectivity-based order
yields a fixed horizontal order in T,,, the children of u will reduce u in a fixed order, regardless
of the root. After u has been reduced with all its children, we are left with v’. v’ is then used to
reduce v. In Phase 3, we then reduce v’ with the maximally reduced v to obtain u”’. Afterward, u”’ is
used to reduce its children C, in the same horizontal order as in Phase 2. The top-down semi-joins
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happening in each T; for all ¢ € C, will again be the same according to our induction hypothesis.
Concluding, the semi-joins happening in T, are the same for both T, and T,,,. O

In other words, the costs occurring in a subtree of G are uniquely identified by the root of the
subtree, and the root’s parent. The idea of the algorithm is then to traverse all nodes v € G and
compute the costs of the subtree rooted at v, while using dynamic programming to reuse the costs
of subtrees that have already been evaluated.

Algorithm 1 Find the best root node in G.

1: function TD_ROOT(G)

2 (best_root, best_costs, pt) = (NULL, oo, PlanTable())

3 for root € G.nodes do > Traverse all nodes
4: root_costs = SUBTREE_cosTs(G, NULL, root, pt)

5 if root_costs < best_costs then

6 (best_root, best_costs) = (root, root_costs) > Update best root
7 return Plan(best_root, best_costs)

Algorithm 2 Estimate the costs of a subtree.

1: function SUBTREE_cosTs(G, parent, root, pt)
2 if parent # NULL and (parent, root) in pt then
3 return pt[parent, root]
4: costs = 0
5: for child € selectivity_order(G, parent, root) do > Bottom-up phase
6: costs += SUBTREE_COSTS(G, root, child, pt)
7 costs += semi_join_costs(root, child)
8: root = estimate_reduction(root, child) > Reduce root with child
9: if parent # NULL then > Top-down phase
10: root = estimate_full_reduction(root) > Reduce root with parent
11: for child € selectivity_order(G, parent, root) do
12: if reduction_required(child) then
13: costs += semi_join_costs(child, root)
14: if parent # NULL then
15: pt[parent, root] = costs
16: return costs

4.2 The Algorithm

Building on the previous subsection’s intuition, we now formally present our algorithm TDgeot
in Algorithm 1. The function takes the current join graph G as input. In line 2, we first define the
required variables and data structures. The plan table pt maps subtrees, identified by (parent, child)
pairs, to costs. In line 3, we traverse each possible root node, estimate its costs using our new cost
function (line 4), and update the best root found thus far in lines 5-6. We then return the final plan
in line 7.

Algorithm 2 defines the cost estimation for the subtree rooted at a given node. Before discussing
the actual algorithm, we first define some auxiliary functions:

o selectivity_order(G, p, r): Iterates over the children of 7 in the order they should be traversed.
The current parent of r, p, will be ignored. It is precomputed once for each node and stored
for reuse. The precomputation requires O(|V|*log|V|) time at worst. It utilizes predetermined
cardinality estimations and assumes selectivity independence. Each returned child is reduced
by all its descendants. The iteration requires O(|V) time.

e semi_join_costs(r, s): Estimates the costs of reducing r with s via a semi-join. Takes into
account the current amount of tuples in r and s and requires O(1) time.

o estimate_reduction(r, s): Returns the state (i.e. remaining tuples) of node r after being
reduced with s and requires O(1) time.
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e reduction_required(r): Checks whether any node in the subtree starting with r is in the
projection set, and thus needs to be reduced in the top-down phase. The check requires O(1)
time and utilizes precomputed results, that require O(|V|) time once.

o estimate_full_reduction(r): Returns the state of r after being fully reduced and requires
O(1) time.

Algorithm 2 takes the join graph G, the root of the subtree, the parent of root in G, and pt as input,
while returning the costs occurring in the subtree. In lines 2-3, it starts by checking whether the
current (parent, root) pair already exists in the table and returns the respective costs if that is
the case. In line 5, we traverse each child in the selectivity order to account for the bottom-up
semi-join costs and the recursive child costs. During the traversal, we start with a recursive call to
Algorithm 2 (line 6), where the current root takes the role of the new parent and the child the role
of the new root. Note that this call will return the costs from both the bottom-up and top-down
phases. Line 7 adds the estimation of the semi-join costs between the root and the child, where the
utilized child node is assumed to be reduced by all its descendents. Afterward, line 8 updates the
current root by estimating its reduction with the child. This leaves the costs of the third phase to be
explored. Here, we start in lines 9-10 by fully reducing the root with the parent (if a parent exists).
Afterward, we again traverse each child in line 11 and compute the costs to reduce them (lines
12-13). A reduction is only required, when the child or any of its descendants is in the projection
set. Afterward, the overall costs for the respective subtree are final. Therefore, we can update our
plan table and return our results.

4.3 Time Complexity Analysis

In the following, a node visitation refers to any instance where a node is iterated by
selectivity_order(G, p, r) (both bottom-up and top-down), or when evaluated as root. During
a call to Algorithm 2, we visit each node at most once, and each visitation requires O(1) time, thus
Algorithm 2 runs in O(|V|) time. TDgqo evaluates Algorithm 2 O(|V|) times, meaning lines 3-6
require O(|V|?) time. Due to the required precomputations, the overall worst-case complexity is
O(|V|?log|V|) time. Note that several graph structures offer much better performance, depending
on how well they can profit from dynamic programming.

5 TDrgold - Find the Best Folding Strategy

Section 4 discussed optimizing queries on tree-shaped join graphs. However, this excludes the
important class of cyclic queries [7, 8], for which we must first solve the TFEP in order to apply
Yannakakis’ base algorithm. To this end, we propose the TDgo)q algorithm, which has the primary
objective of identifying cost-effective strategies for eliminating cycles through folding, and consists
of two phases:

Phase 1: Create a so-called folding problem set 7% of enumeration problems for each cycle within
the graph. This functionality will be implemented by create_folding_problem_set(G).

Phase 2: Enumerate different solutions for each enumeration problem, and estimate the cost of
each solution based on a new cost function to choose the best solution. This functionality will be
implemented by enumerate_folding_problem_set(G, ¥, PT), where PT is a plan table.

Afterward, the chosen solution will be applied to G. This section will focus on the first phase,
i.e., the implementation of create_folding_problem_set(G), whereas the second phase will be
discussed in Section 6.

5.1 General Ildea

The main goal of TDg,q is to optimize queries with large N-M joins by minimizing redundancies. It
does so by reducing the number of relations per fold, achieved by only considering joins within
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(a) A cyclic join graph. Each distinct color represents (b) The block-cut forest for the given graph. Note that
a block. this is not a join graph.

Fig. 4. A cyclic graph, and the corresponding block-cut forest.

cycles. Still, within a cycle, various folding strategies with different relations per fold are explored.
For that, we define sets of enumeration problems, where each enumeration problem is tied to a
cycle in the join graph. The sets should satisfy the following properties:

P1: Within each enumeration problem, we are able to find at least one solution to the TFEP of
the subgraph induced by the corresponding cycle.
P2: All enumeration problems are mutually disjoint.

These properties ensure that different cycles can be solved independently. For example, in Figure 4a,
you can see a join graph with three different cycles, colored in orange, purple, and green. One

example for an enumeration problem set for these cycles would be { {H L] }, {A, B,C, D, E}, {F, G} }

Within each of these mutually disjoint enumeration problems, we can find at least one solution to
resolve the corresponding cycle. Having independent enumeration problems is highly desirable, as
this simplifies the enumeration, avoids unnecessary joins between different cycles, and enables
parallelization in query engines with multi-threading [23].

However, ensuring disjoint enumeration problems while guaranteeing a solution for the cycle of
each enumeration problem is challenging due to overlapping cycles. The next sections address how
to handle this.

5.2 Independent Enumeration Problems

In the previous subsection, we motivated why we want to create disjoint enumeration problems
for each cycle. In order to do that, we first have to identify all cycles. While various methods exist
[30, 31] for finding cycles, we opt for blocks [19], as they naturally partition the join graph into
distinct cycles.

Definition 5.1 (Block). Let G = (V,E) be a join graph. A connected subgraph G’ = (V',E’) C G
is called biconnected if there is no vertex v’ € V’ such that removing v" disconnects G’. G’ is
called a block if it is a maximal biconnected subgraph, i.e., there is no other biconnected subgraph
G” = (V",E"”) € G with V' c V”. In this paper, a block B is solely defined by its vertices for
simplicity reasons, i.e., B=V".

For example, in Figure 4a, each block is illustrated using a distinct color. However, not every
block corresponds to a cycle; only those with at least three vertices form a cycle [19]. Intuitively,
since removing any node from the block does not disconnect it, there must be at least two distinct
paths between any pair of nodes, implying the presence of a cycle. For example, in Figure 4a, every
color except blue represents a cyclic block. We denote the set of blocks with three vertices by
B:. Consequently, identifying the cycles of a graph is equivalent to finding B¢ [21, 29]. Now, to
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motivate our idea for create_folding_problem_set(G), as a simplification, we want to create a
single set P, which contains a so-called block enumeration problem (BEP) for each block B € Bg,
where a BEP is defined as follows:

Definition 5.2 (Block Enumeration Problem (BEP)). Let B € B¢ be a block. A set of vertices P C B is
called a BEP of B, if there is a subset S C 2P, such that S is a solution to the TFEP of the induced
graph G[B], i.e., a subgraph of G limited to the nodes of B.

For example, P’ = {A, B, C, D} is a BEP for the purple block in Figure 4a, since S” = {{A, B,C, D}}
is a solution to the TFEP of the purple subgraph. However, P’ = {A, B,C} is not a BEP because
even folding all relations in P”” would not resolve the cycle in the purple subgraph. Therefore, using
a BEP ensures property P1 of Section 5.1. The BEP P of a block B will later be used to enumerate
different solutions S C 2F for G[B]. Following property P2, we want each P € Pg,, to be disjoint.
If P, adheres to both properties P1 and P2, we formally define it as a BEP set:

Definition 5.3 (BEP Set). Let G be a join graph, and let 8 C B be a set of blocks. Then Pg is called
a BEP set of B, if it contains a BEP for each B in B¢, and all P € Pg are pairwise disjoint.

Unfortunately, we cannot simply set the BEP of each block equal to itself, as this would conflict
with property P2, given the presence of so-called cut vertices, which are a special case of vertex
cuts [19]:

Definition 5.4 (Vertex Cut). A subset V' C V of a connected graph G = (V, E) is called a vertex cut
if removing V' from G disconnects G. If |V’| = 1, the single node from V"’ is called a cut vertex
(sometimes referred to as articulation point), whereas for |V’| = 2, V' is called a two-vertex cut.

For instance, E is a cut vertex in Figure 4a as removing it will disconnect the remaining
graph. To solve the problem of intersecting BEPs, we want to assign each cut vertex to exactly

one P € Pg_, such that Pg, is a BEP set. For example, { ,{A, B,C, D, E}, {FG}} and

{ s {A, B, C,D}, {E F, G}} would be BEP sets for 8. However, looking at these assign-

ments, we can already see that our simplification to keep one BEP set per graph is suboptimal, due
to two reasons. First, some BEPs are completely independent from other BEPs, like the BEP for the
orange block, given that the orange block does not intersect with any other block. Second, multiple
BEP sets can be created for the same set of blocks, requiring an enumeration to decide which one
to use. Therefore, what we want to do is to create BEP sets for sets of intersecting blocks, i.e., the
following set %, which we coin a folding problem set:

BEP Set BEP Set BEP Set

{{{W}} {{{A, B,C.D,E}, {F, G}}, {{A, B.C.D}, {E. F,G}}}}

——— —_———  ——
BEP BEP BEP BEP BEP

This leaves us with the question of how to create 7% during create_folding_problem_set(G).
5.3 Creating BEP Sets

The previous section introduced the concept of BEP sets, which consist of disjoint BEPs. Specifically,
we motivated that we aim to create BEP sets for sets of intersecting blocks. Therefore, this section
will introduce our method for this.

In a first step, we want to identify the sets of connected blocks. To achieve this, we utilize
so-called block-cut forests, adapted from block-cut trees [19]:
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Definition 5.5 (Block-Cut Forest). Let G = (V, E) be a connected join graph, and let C C V be the cut
vertices of G which are part of at least two blocks B € B. Then the block-cut forest BCg of G is
defined as an undirected graph (Vc, Epc), where Ve = B U C and (U,v) € Epc iff U € Bg, v €
Candov e U.

The forest consists of nodes for both blocks and cut vertices shared by at least two blocks. A
cut vertex node is connected to a block node if it’s part of that block in the join graph. Figure 4b
illustrates this with three block nodes and one shared cut vertex node, E. A forest is needed (rather
than a single tree) because we only consider blocks with at least three vertices, which may form
multiple connected components (CCs) in the block cut forest. For example, the orange block node
in Figure 4b is disconnected from the remaining forest. Therefore, these CCs correspond to the
block sets we want to form separate BEP sets for. This raises the question: how do we create a BEP
set for a CC of the block cut forest?

Each BEP set must satisfy properties P1 and P2. Property P2 is met by assigning each cut vertex
to exactly one BEP. To ensure P1, we rely on the fact that for any block B and any node v € B, the
set {B \ v} is always a solution for G[B], as folding the set yields two nodes, resolving the cycle in
B [26]. For example, {{F, G}} is a solution for the green block in Figure 4a. This guarantees that
{P} is always a solution for a BEP P of B as long as |P| > |B| — 1.

While {P} isn’t necessarily the only solution, if P # B, however, a solution S, where |S| > 2
may not exist. For instance, P = {F, G} has only one solution in Figure 4a. Further, solutions may
still exist after losing multiple cut vertices, but we ignore these assignments since they do not
guarantee a possible solution. Therefore, within a BEP set, we assign each cut vertex to only one
BEP and ensure each BEP loses access to at most one cut vertex. To create a BEP set for a CC in the
block cut forest, we follow the approach below.

Given the acyclicity of the CC [19], we treat the CC as a tree and choose a block node R from
the CC as a root. We then set the BEP of R equal to R, whereas the BEP of all other blocks of that
CC loses access to its cut vertex parent in the tree. This will yield a BEP set, as each block obtains a
BEP, each cut vertex is assigned to the BEP of exactly one block (its parent in the tree), and the
BEP of each block loses access to at most one cut vertex (again its parent in the tree). For example,

when choosing R = {A, B,C, D, E} as root in Figure 4b, then {{A, B,C, D, E}, {F, G}} would be the
resulting BEP set, as the root node got access to the whole block, whereas the green block lost
access to its’ parent in tree, E. Afterward, we repeat this procedure for all possible block root nodes

in the CC. Performing these assignments for all CCs will result in the folding problem set ¥,
which we can express using the following formula:

Definition 5.6 (Folding Problem Set Formula). Let G = (V, E) be a join graph, let BCg = (Va¢, Epc)
be the block-cut forest of G, let C C 2V8¢ be the set of CCs of BCg, and let BI(CC) be the set of block
nodes in a CC € C. Further, when a CC € C is interpreted as a tree with root R € BI(CC), then the
set only containing the parent of B € BI(CC) within that tree can be referenced by parent(CC, B, R).
The folding problem set ¥ is then given by

CQC{REBLI(JCO{{R} u( J {B\parent(cc.B, R)})}}

BeBI(CC),
B#R
Algorithmically, that means, that during create_folding_problem_set(G), we must first com-
pute the blocks and cut vertices using the method from [21]. Then, we use them to construct the
block-cut forest. Both can be done in O(|V| + |Bg|). In order to assign cut vertices for a given root
within a CC, we can use a depth-first search (DFS) [30], which can also be done in O(|Bg|) time. In
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the worst case, we have |Bg| — 1 possible assignments with our approach, and since |Bg| < |V],
we know that the assignment can be computed in O(|V|?) time. After the assignment has been
completed, we know that every set in #% only contains BEP sets, shown by the following lemma.

Lemma 5.7. Let G = (V, E) be a cyclic, connected join graph, let BCg = (Vp¢, Epc) be the block-cut
forest of G, and let C C 2"B¢ be the set of CCs in BCg. Further, for a CC € C, let BI(CC) denote
the block nodes in CC, and let FP(CC) be the set of BEP sets associated with BI(CC). Then for the
folding problem set ¥ it holds that, VCC € C.VP € FP(CC).P is a BEP set for BI(CC).

Proor. Obviously, for each CC € C, a set of BEP sets is created for BI(CC). That means, we
need to show that for any arbitrary CC, it holds that any $ € FP(CC) is a BEP set for BI(CC). Let
R € BI(CC) denote the chosen root to create P, and let P(B) € P denote the BEP associated with a
block B € BI(CC). For each B € BI(CC), there will be exactly one set P € P, such that P = P(B), as
each block is traversed in Defintion 5.6 exactly once. Lastly, for each B € BI(CC), P(B) is a BEP,
because |P(B)| > |B| — 1, since P(B) only has lost access to its parent in BCg and by that, a possible
solution to the TFEP of G[B] would be {P(B)}. O

At this stage, we have demonstrated how to create different BEP sets for each CC in the block
cut forest. Therefore, we are left with enumerating solutions within % in order to find the best
solution (w.r.t. the given cost function) for each CC in the block cut forest. The next section will
discuss our algorithm for that.

6 Enumerating Folding Problem Set Solutions

In the previous section, we discussed how to create a folding problem set #% containing different
BEP sets for each CC in the block cut forest of a join graph. Building on this, in this section we will dis-
cuss the algorithm used to enumerate the solutions of ¥#: enumerate_folding_problem_set(G,
F P, PT). We start by presenting its general idea. Starting with the solution of a single BEP P, let
S(P) C 2% be the best solution of P, and let C(P) be the costs of S(P). Given that BEP sets consist
of independent BEPs (property P2), we can simply combine all their solutions. That means that the
costs C(P) of a BEP set P are defined as ) pcp C(P), and the solution S(P) of P as Upep S(P).
Then, the algorithm will identify for each FP € ¥ the BEP set ' € FP with the lowest costs,
and set the costs C(FP) and solution S(FP) of FP equal to C(P’) and S(P’). Now, we know that
each FP € P stems from a different CC of the block-cut forest, and by that, they are mutually
independent, so we can simply combine their solutions again. The costs and solution of F will
then be equal to Y ppc p C(FP) and | Jppe #p S(FP). For instance, a solution for the folding problem

set from Section 5.2 would be { , {A, B, C}, {D, E} {F G}}

This leaves one remaining question: how can we find the best solution and costs for a given
BEP? We start by introducing our cost model in the next subsection.

6.1 The Cost Model for BEP Solutions

Algorithm 3 Exemplary Hash-Based Semi Join Heuristic.

1: function sem1_joIN_HEURISTIC(G, P, F)

2: (curr_costs, root) = (0, F.node)

3 for child € selectivity_order(G, P, NULL, root) do > Bottom-Up
4 curr_costs += root.number_of _tuples

5: root = estimate_reduction(root, child)

6: for child € selectivity_order(G, P, NULL, root) do > Top-Down
7: if reduction_required(child) then

8 curr_costs += root.number_of_tuples

9 return curr_costs
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(a) Using the folded node as root. (b) Using a different node as root.
Fig. 5. Two possible subtrees for the node created by folding {B, D} from Figure 4a.

Since a solution S C 2F of a BEP P always consists of disjoint folds, we define a cost model at the
level of individual folds. The total cost of S can be then be computed as the sum of the fold costs.
Consequently, our cost function to estimate the query processing costs of a fold F € 2F consists of
three component cost functions:

(1) The costs of the join order to join all relations in F.
(2) The costs of decomposing the fold into its base relations after the semi-join reductions
have been completed.
(3) The costs of the semi-join reductions in the final acyclic tree involving the node created
by folding F.
To estimate the costs for (1), we can simply reuse well-established cost functions (e.g. Coy [9]). To
estimate the costs for (2), we examine the decomposing operation: for each tuple in the maximally
reduced fold (i.e., after the semi-join reductions), we need to project it onto the attributes of each
relation of the fold that is part of the final projection. When a fold consists of only a single relation,
no decomposition is required, so the associated costs can simply be set to 0. Therefore, to estimate
the decomposing costs of a fold F, we use the cost function Cpecompose (F):

Definition 6.1 (Cpecompose)- Let G = (V, E) be a join graph, let k € N be an implementation-specific
factor, let F C V be a fold storing n tuples after being fully reduced, and let F’ C F be the set of
relations participating in the final join result. Then:

0, IF| =1

n-k-|F’| otherwise

CDecompose (F) = {

However, estimating (3) is especially challenging, as efficient cost computations are critical. The
difficulty lies in the fact that during TDg14, the parent nodes of the folded node Fyo4e (i.e., the node
created by folding F) are not yet known. Ideally, we would evaluate the cost for all possible parents
of Fpode, but this is computationally expensive. To address this, we use a heuristic: we assume Fyoge
will become the root of the final tree and estimate the number of tuples from Fyo4. that will be
processed during the semi-join reduction. A specific example for hash-based semi-joins is shown
in Algorithm 3.

This algorithm closely follows Algorithm 2, but only estimates the processed tuples at the
root. The function selectivity_order(G, P, NULL, r) is modified to include the BEP P, using the
optimal horizontal order of Poq. across all folds under the assumption of independent selectivities.
Neighbors of P that are not neighbors of F are ignored, while neighbors in P \ F are added
dynamically. Additionally, if a set of connected neighbors N belongs to the same cyclic block, it
is replaced by a single node representing the join of N to maintain acyclicity. For instance, in
Figure 5a, the subtree considered for the fold {B, D} of Figure 4a is shown. Here, neighbors of the
purple block are replaced with their join. These replacements do not affect the estimation, as the
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(a) A graph with TVCs. (b) Using both TVCs. c) Using only one TVC.

Fig. 6. An example containing TVCs, and two resulting folded graphs when two or only one TVC(s) are folded.
Colored vertices represent blocks, whereas colored edges represents two-vertex cuts within blocks.

heuristic focuses only on by which neighbors a folded node is reduced. Overall, Algorithm 3 runs in

O(|V]) time per fold, with a preliminary sorting step per BEP requiring O(|V|log|V]) time. While

this approach underestimates the true costs, e.g., when Fyo4e is not the root, as in Figure 5b, it helps

to avoid particularly inefficient plans, especially in cases of large differences in (intermediate) result

sizes. Note that Algorithm 3 is only used within TDgq, i.e., when deciding for the best folds, and is

discarded in favor of the actual semi-join costs when creating the final tree with TDgeot-
Therefore, we define our cost model Cggiq to estimate the costs of a fold F as:

Definition 6.2 (Cryq). Let G = (V, E) be a join graph, let P C V be a BEP, let F C P be a fold, and
let Cjoin (F) be any cost function determining the cost of joining all relations of F. Cro1d(G, P, F) is
then defined as:

Cyoin (F) + Cpecompose (F) + semi_join_heuristic(G, P, F)

Concluding, different solutions for a BEP can now be evaluated using the new cost model Cgojq.
Note that, given a join graph G = (V, E), the costs of evaluating ResultDBpecompose is simply equal
to Crold(G, V, V), as Algorithm 3 just returns 0 in that case. This leaves us with the discussion of
how to enumerate the different solutions of a given BEP.

6.2 Enumerating BEP Solutions

Algorithm 4 Greedily apply TVCs and return the resulting graph.

1: function GET_GREEDY_JOIN_GRAPH(G, P, B)

2: G’ =G|[B]

3 tves = get_two_vertex_cuts(G, P)

4: tves.sort_by_number_of_intersections_ascendingly()
5: applied_folds = 0
6
7
8
9

: for tvc € tves do > Traverse all TVCs
: if tve & applied_folds # 0 then > Only apply non-intersecting TVCs
: continue
: G’ = G’ fold(tvc)

10: applied_folds = tvc U applied_folds

11: return G’ > Return the folded subgraph

The previous subsection demonstrated how to evaluate the costs of a given fold, and by that, the
entire solution of a BEP. Therefore, this section will discuss how we plan to enumerate various
solutions of a BEP. There is already a significant body of research on various join enumeration
algorithms [12, 16, 24], so our approach aims to leverage these existing methods to take advantage
of their strengths and efficiencies. In the following, we will discuss three different solution classes
(SCs) that we intend to enumerate for each BEP P of a block B.

SCir: Folding until one fold is left, which will trivially always resolve the cycle. For that, we
need to evaluate Cpo1q(G, P, P) once. To enumerate all possible join orders, we will utilize the
well-established bottom-up join enumerator DPccp.
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Algorithm 5 Enumerate different solutions for a BEP.

1: function ENUMERATE_BEP(G, P, B, PT)

2: if PT.has_folding_plan(P) then

3 return PT.folding_plan[P]

4: if 'PThas_join_plan(P) then

5: dp_cep(G, P, PT, c_out)

6 > Join all relations in the BEP

7 PT.update_folding_plan(P, c¢_fold(G, P, P), {P})
8: > Join until two folds are left if possible

9: if P = B then

10: for CCPs (P, P,) € 2P x 2P where P, UP, = P do
11: costs = c_fold(G, P, P;) + c_fold(G, P, P;)
12: PT.update_folding plan(P, costs, {P;, P,})

13: > Try to create smaller blocks with TVCs
14: G’ = (V',E’) = get_greedy_join_graph(G, P, B)

15: if G’ == G[B] then

16: return PT[P].folding_plan > No TVCs were found
17: FP” = create_folding_problem_set(G’, B — P)

18: > Recursively enumerate new blocks

19: (folds, costs) = enumerate_folding_problem_set(G’, FP"’, PT)

20: > Not all nodes in V' are part of a BEP in FP"’, but part of the solution
21: forv € (V' \ (B — P)) that are not an element of any BEP of ¥#"" do
22: costs += c_fold(G’, {v}, {v})

23: folds.add({v})

24: PT.update_folding_plan(P, costs, translate(folds, G))

25: return PT[P].folding_plan

SCs,p: Folding until two folds are left, which will always resolve the cycle [26]. This is only
guaranteed to be possible when B = P, as discussed in Section 5.2, so we will only consider
SCzr when B = P. To obtain these final two folds, we need to enumerate pairs of subproblems
(P, P,) € 2P x 2P, where P, U P, = P,P; N P, = 0, and both P; and P, are connected. In
other words, we seek to identify all top-level connected complement pairs (CCPs) [24] of P. To
accomplish this, we can utilize the top-down join enumeration algorithm TDpincutBranch [12],
which allows us to avoid re-enumerating all possible bottom-up join orders. Therefore, we need
to evaluate Cgolq for both pair elements of each top-level CCP.

SCrvc: Using two-vertex cuts (TVCs) to divide blocks into smaller blocks, which can then be
recursively enumerated.

Since SCrvc is more complex than the other two, we explain it in more detail. Before showing
how TVCs help split blocks, we briefly outline why this works. A TVC is a node pair whose removal
disconnects the graph. For example, {B, F}, {B, G}, and {C, G} are TVCs in Figure 6a. Joining a
TVC within a block effectively merges its connectivity into a single cut vertex, producing smaller
blocks and requiring fewer joins to resolve the cycle than SCir and SCyr alone.

Lemma 6.3. Let G = (V, E) be a connected join graph, and let C C V be a vertex cut in G, with
|C| > 2. Then the node f’ € V' resulting from folding C is a cut vertex in the folded join graph
G’ = (V',E).

Proor. From the definition of a vertex cut, we know that removing C splits G into a set of
disjoint connected subgraphs S’. Let E¢ be the edges connecting C with V' \ C. During the folding,
we copy G to G’, remove C and E¢ from G’, and add a new node f’ to V’, that represents the fold
of C. Finally, we add Ey = {{f’, v’}o’ is an unfolded node in G’, that connected V \ C with C in
G} to E’. It follows that each subgraph S” € S’ is connected to f’ only via edges from Ef, thus all
S € 8 in G’ are now connected via f” only. Therefore, removing f would split G’ into S’ again.
Thus, f” is a cut vertex in G’. O
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As shown in Figure 6b, joining {B, F} and {C, G} creates three new blocks, enabling recursive
enumeration. To avoid the exponential cost (O(2") for n TVCs) of evaluating all combinations
of which TVCs to apply, we greedily apply as many TVCs as possible to reduce the number of
relations per fold. However, care is needed: folding {B, G} instead, as shown in Figure 6c, results
in only two blocks, as {B, G} intersects with both other TVCs and alters their connectivity when
joined. We therefore prioritize TVCs with minimal overlap and only join non-intersecting TVCs
simultaneously.

This greedy folding strategy is given by Algorithm 4. Here, we first copy the induced
subgraph G[B] to the new graph G’ in line 2. Afterward, we compute all two vertex
cuts limited to P in line 3 using the strategy described in [15, 20]. Afterwards, in line 4,
sort_by_number_of_intersections_ascendingly() will sort all TVCs in ascending order ac-
cording to their pairwise intersections, which will be done using Counting Sort. Afterward, we
greedily apply non-intersecting TVCs to G’ in lines 6-10, prioritizing TVCs appearing earlier in the
TVC list. Finally, we return the folded graph G’. Algorithm 4 runs in O(|V| + |E|) time [15, 20].

Next, we want to utilize create_folding_problem_set(G’, B — P) to construct a new folding
problem set FP” for G’. The function now takes an additional input: B — P, i.e., the set only
containing the removed cut vertex from P, v, if any. After creating an intermediate set ¥’
according to Definition 5.6, the function additionally removes v from all BEPs in ¥ #’. Any BEP sets
of FP’ that violate property P1 as a result are discarded. This is necessary to maintain isolation
with other BEPs of G, as Definition 5.6 only considers the assignments local to G’, and because of
that, ignores that P might not have access to v. Note that there will always be at least one BEP set
per CC in G’, as you can always choose a block B’ containing v as root for Definition 5.6. As B’
then still only looses one vertex, the corresponding BEP still fulfills property P1, whereas others
BEPs are unaffected.

Crucially, join and decomposition costs must still be estimated with respect to the vertices
from the original graph G, not the folded graph G’. For instance, for the BEP {C >« G, D, H} in
Figure 6b, the enumeration happens on G’, possibly yielding {{C = G,D}, {H }} as a potential
solution. Since {C >« G, D} corresponds to {C, G, D} in Figure 6a, the join and decomposition cost
estimation must use the original fold, with the cost model handling this translation automatically.
Finally, we will utilize a plan table PT to store various plans and costs. Let P’ be a BEP of a
block B’ of any (potentially folded) graph G’. For P’, it will store the best solution to resolve the
cycle in G’[B’], as well the corresponding costs (PT.folding_plan[P’]). Further, for subproblems
P C P’, it will store the best join order and costs (PT.join_plan[P”’]). To allow reusability between
different folded graphs, these will be stored and looked up using the fold corresponding to P” in
the original graph G. Lastly, for P”, the value of Cgo1q(G’, P/, P"") will be stored. For convenience,
calling PT.c_fold(G’, P/, P"") will return the corresponding costs, if already evaluated, and compute
and store them first otherwise. With all these ideas in place, we will now present Algorithm 5.

The algorithm gets a join graph G, a block B, the BEP P of B, and a plan table PT as input. In lines
2 and 3, we first check whether P has been evaluated already, and if so, return the corresponding
folding plan entry. If not, we check whether the best join order for P has been computed already,
and if not, compute it using the well-known DP¢cp [24] algorithm. Afterward, in line 7, we estimate
the costs of SCyF, followed by the costs of SCyr in lines 9-12. Finally, in lines 14-24, we apply SCtvc
as described above. In particular, we create a greedily folded (sub-)graph G’ in line 14. If G’ # G[B],
G’ is utilized to create a new folding problem set #P"’ in line 17, which is recursively enumerated
in line 19. Note that some folded TVCs might not belong to any blocks in G’, thus we have to
manually account for these in lines 21-23, as they still have to be folded to obtain a valid solution.
Further, the folds contained in folds are based on the nodes in G’, thus we need to translate them
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back into equivalent folds of G, which is done by translate(folds, G) in line 24. Finally, we return
the best folding entry from our plan table.

Theorem 6.4. Let G = (V, E) be a cyclic join graph, let B € V be a block of G, and let P C Bbe a
BEP of B. Then, the solution returned by Algorithm 5 is a solution for the TFEP of G[B].

PRroOOF SKETCH. Proof via induction over G[P].

Base Case: There is no TVC in G[P]. Then the solutions of SCir and, if B = P, SCyF are a solution
for the TFEP of G[B] [26].

Induction Hypothesis. The solution returned by Algorithm 5 is a solution for the TFEP of G[B].
Induction Step. There is at least one TVC in G[P]. Then, the solutions of SCir and SCyr are still
valid solutions for the TFEP of G[B]. That means, we need to show that SCtyc produces a solution
for the TFEP of G[B]. Let G’ = (V', E’) be the folded graph created in line 14, and let B C 2V
denote the set of blocks in G’. Following that, we know from Lemma 5.7 that the intermediate set
F P’ produced by create_folding_problem_set(G’, B — P) is a folding problem set for G’. Further,
from Definition 5.6, we know that in the BEP sets of ¥ #’, there is one BEP P’ for each B’ € Bg
where P’ = B’. This means that removing v € B — P from P’ will not change the fact that P’ is a
BEP. Therefore, ¥ P will contain at least one BEP set for each CC of Bgs/. Let U’ denote the set of
nodes v’ € (V' \ (B — P)), which are not an element of any BEP of the BEP sets of ¥%”'. Following
the induction hypothesis, Algorithm 5 will return for each B’ € B¢ a solution for B’, labelled as
S(B’). Line 19 will then return the set So' = Up g, S(B’). Since Sg’ contains a solution for each
B’ € B/, Sg is a solution for G’. Let Sg = (Uy e {{v’}}) U S¢'- Since S is a solution for G’,
we know that translated(Sg, G) is a solution for the TFEP of G[B]. O

It follows directly, that the solutions by enumerate_folding_problem_set(G, ¥ P, PT) are
also a solution to the TFEP of G. Thus, we are left with the time complexity analysis of enumer-
ate_folding_problem_set(G, ¥ P, PT), which we will show in the upcoming subsection.

6.3 Time Complexity Analysis

This section discusses the time complexity of enumerate_folding_problem_set(G, ¥ %, PT). For
simplicity, we ignore SCtyc and will focus on the enumeration of one block first. We know from
Section 5, that for each block B, there might be multiple BEPs for B, namely B¢ + 1, where B¢ is the
number of cut vertices of B. For simplicity, we assume |V| as an upper bound of B¢, which will not
change the overall complexity. Each of these BEPs must be solved once only due to the plan table. For
a BEP P of B with P = B, we must enumerate all possible join orders, which can be done in O(3!8!)
time [24]. Further, for each top-level CCP (Py, P;), we additionally must evaluate Cgolq for both Py
and P,, which can be done in O(2!8!|V|) time [12], as Cpolq must be evaluated for each connected
subset of B. For a BEP P’ of B with P’ # B, we do not have to enumerate anything anymore, as
Crold (P’) is already known from the enumeration of P, thus can be estimated in O(1) time. Looking
at all blocks, the solution of all BEPs can be computed in O(3 e 5., 31Bly < 0(31) time. Afterward,
we simply have to combine the costs and solutions of all BEP sets for each FP € ¥, done in
O(|V|?) time.

Now we also account for SCyc, again starting with considering a single block B. We need to
consider |B| initial subgraphs, one for each possible BEP of B, depending on which cut vertex
has been removed. For each of these |B| initial subgraphs, we might have to consider at most
|Eg| differently folded graphs, where Ejp is the set of edges in B, as you could apply TVCs |Ep|
times in the worst case. Therefore, we have at most |B||Ep| different subgraphs to consider per
block. Creating all these folded graphs will require O(|B||Eg| * (|V| + |E|)) time. Afterward, we
need to create a folding problem set for each of the resulting subgraphs, each requiring O(|B|?)
time to create, thus overall O(|Eg||B|?). For each of these, we have to solve SC;r and SCyr again.
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However, we no longer need to compute the join orders, and need to compute Colq at most O(2!8))
times, requiring O(2B1|V|) time in the worst case per block. Regardless, we must evaluate the
costs of the best folds in SCyr for each of the |B||Eg| different subgraphs. The evaluation for one
subgraph can be done in O(2!) time, thus requiring O (2/B!|B||Eg|) < O(2!B!|V||E]) for the entire
block. Consequently, choosing the best assignment for each subgraph can be done in O(|B|*|Ep|).
Therefore, looking at all blocks, we have O(X pc g, 21BIIV||E|) < O(2!V!|V||E|) additional overhead.

Therefore, the overall complexity is given by O(3!1), the same complexity as DPccp.

7 Related Work
This section presents selected works that are closely related to our proposals.
7.1 Blocks and Cut Vertices

The concepts of blocks and cut vertices have been utilized for various purposes. For example,

n [10], DeHaan and Tompa utilized cut vertices in their Biconnection Tree to ensure that only
CCPs are enumerated in their top-down enumeration approach. Their biconnection tree resembles
a block-cut tree but includes additional nodes that are not necessarily cut vertices. Further, the
biconnection tree is used during the enumeration itself, whereas our work merely uses blocks
and vertex cuts to prepare certain enumeration problems, which are then enumerated using other
methods. Another interesting work stems from Mancini et al. [23], which uses blocks to create
smaller enumeration problems, whose CCPs are then enumerated in a multi-threaded system that
allows for a faster enumeration time for large queries. That multi-threaded approach would also be
perfectly usable for our approach but is beyond the scope of this paper.

7.2 Full Reducer Problem

Naturally, the classical full reducer problem, where relations are first reduced before eventually
being joined, is related to the DRQ problem. However, the most important difference is the fact
that both problems have different objectives, and by that, approaches that are beneficial to one
problem might not be beneficial to the other. For example, avoiding joins like we do might decrease
the performance of full reducer algorithms [1, 32], however, adding joins like, e.g., in [32] might
decrease the performance of DRQs due to the decomposing overhead. Still, certain techniques from
the full reducer problem are related to our work, which we will discuss in the following.

Generalized Hypertree Decompositions (GHDs). Because Yannakakis’ algorithm [33] is not
applicable to cyclic queries, existing full reducer algorithms often make use of GHDs [1, 13, 14, 32] to
transform cyclic queries into trees by putting connected vertices into so-called bags while adhering
to certain properties to ensure the eventual acyclicity. All vertices within a bag are subsequently
joined. However, existing state-of-the-art optimizers [1, 32] use the AGM bound [2] to minimize the
fractional hypertree width of a given GHD, i.e., the highest theoretical number of tuples within any
bag, ignoring the actual cardinalities of joins. Further, GHDs enumerate invalid decompositions
that would not resolve the cycles and have to be filtered out, and also consider joins outside of
cycles.

Diamond Hardened Joins. In [7], Birler et al. proposed their diamond-hardened join frame-
work, which avoids the creation of large intermediate results by splitting up joins into multiple
suboperators. By doing this, the work also mitigates the overhead caused by the index structures
commonly used in worst-case optimal joins [25] and reduces the need of factorization methods
[27, 28] in intermediate results. We believe a combination of our approach with the method de-
scribed in [7] could further improve the efficient computation of DRQs, particularly during fold
computation.
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F.dy =D;.f

F.dy = Dy.f
Dl. a = A3. asg

2. = A3.a1

Fig. 7. The query for the synthetic dataset.

8 Evaluation

This section presents the results of our benchmarks. During the evaluation, we want to answer the
following two questions regarding our new enumeration algorithms:

Q1: How fast is the enumeration compared to the state-of-the-art for DRQs and state-of-the-art
GHD heuristics? (Section 8.2)

Q2: How good is the plan quality, i.e., the actual query execution time, compared to the state-of-
the-art for DRQs and state-of-the-art GHD heuristics? (Section 8.3)

Note that early studies of DRQs were made in the context of distributed DBMSs in [26]. However,
our optimization is context-agnostic, i.e., relevant for all possible use-cases of DRQs, as we focus
on optimizing the computation of the DRQ itself. Concretely, the resulting subdatabase will always
be the same as in [26], which means that measurements for compression ratios, transfer times,
or post-join execution times would yield the same results as in [26]. Because of that, we will not
conduct any experiments based on these metrics.

8.1 Experimental Setup

We start with our experimental setup.

Hardware & Software. We utilize a MacBook Pro with an M4 Max 16-Core processor, together
with 48 GB of main memory. Further, the underlying OS is macOS Sequoia 15.1.

Database System. The algorithms described in Sections 4-6 are implemented into the state-
of-the-art query execution engine mutable [17]. At its core, mutable uses WebAssembly as the
backend, compiling SQL code into WebAssembly and finally into machine code [18]. Given that
the authors of [26] already implemented their algorithm into mutable, we were able to reuse parts
of their implementation, particularly the code generation. The implementation can be found in [3].

Analyzed Algorithms. In our benchmarks, we consider ResultDBpecompose (Which uses DPccp
for the whole enumeration) and the native ResultDBgemi-join as baseline [26]. For acyclic queries, we
compare the baseline with TDge,t. For cyclic queries, we also compare the baseline with TDgqot, but
utilize either the folding of TDglq, or TDrod-NoTvC, Where the latter is a reduced version of TDge1q
which does not utilize any two-vertex cuts in its enumeration. Notice that for TDg.)q, we utilize a
simple O(|V||E|) implementation to identify two-vertex cuts, which yields a better performance
for the smaller node counts we use in the experiments. Further, we also analyze the folds generated
by state-of-the-art GHD heuristics [1, 32]. Both share the fact that they first enumerate all possible
GHDs, and choose a list of candidates which are within the range of the best fractional hypertree
width [1], which is based on the AGM bound [2]. Afterward, in [1], heuristics are utilzed to decide
on the final GHD, whereas in [32], a cost model is utilized. We label the heuristic-based algorithm
as GHDpeyristic and the cost model-based algorithm, which additionally estimates the join and semi-
join costs, as GHDcostModel- We optimized both GHD enumerations to ignore plans with Cartesian
Products to increase their performance. Whenever we refer to TDgoq, TDrold-NoTvC; GHDHeuristics
or GHDcstModel, We consider them in their combination with TDgget. Further, for all queries, the
baseline is compared with TDgesyltDB-
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Datasets & Workloads. To evaluate the overall query execution times, we utilize three datasets.
For all these workloads, we make use of pre-generated cardinality estimations to prevent suboptimal
plans because of inaccurate estimations.

Synthetic Schema. This dataset consists of a table F with attributes f, di, and ds, two tables D;,
i € {1,2}, with attributes f and a, and five additional tables A;, i € {1,5}, with attributes
aj, az, and as. F contains the tuples {(j,5,1)[0 < i,j < 1999}, D; and D, contain the tuples
{(j, jmod 10)|j < 1999} and the remaining tables contain the tuples {(i,7,i)|0 < i < 9}. All
previously mentioned attributes are 4 byte integers. Each table also has an additional attribute
w, which is a 100 byte char. This dataset is then utilized in a so-called TVC query. A TVC query
supports the application of TVC cuts and is defined as follows:

Definition 8.1 (TVC Query). A query G = (V,E) is called a TVC query, when V = {0, ..., |V| -1},
|V| > 4, and E = E; U E,, where

Er={{iji+1}0 < i < |[V|-1}U{|[V|] - 1,0},and
4

-2

2 }

The exact query is shown in Figure 7. In the query, we project upon all attributes.

JOB. We evaluated a subset of queries from the Join Order Benchmark (JOB) [22] benchmark,
based on the IMDb dataset. We chose the same queries presented in [26]. Like in [26], we limited
all attribute sizes to 100 bytes. This is because mutable only supports fixed attribute sizes, and
greater sizes would quickly exhaust the linear memory allocator deployed by mutable due to
WebAssembly’s limitation to 16 GiB of memory. Additionally, many queries in JOB extensively utilize
LIKE-operations, which are evaluated in quadratic time only in mutable. As this can potentially

E={{ilvl]-1-i}1 <ix<

greatly alter the relative performances of the different algorithms, we decided to utilize pre-
filtered data. Lastly, we removed aggregations, since DRQs currently only support simple SPJ
queries. We primarily utilize JOB to evaluate the performances of TDpolq and TDgeot compared to
ResultDBsemi join. For that, we utilize two benchmarks, one where all queries (which are actually
a—acyclic) are treated as cyclic queries, and one where GYO reductions [4, 34] were used to
transform each JOB query into an equivalent acyclic query.

CE. We also evaluated a subset of queries from the CE benchmark [8]. Originally, the CE bench-
mark was designed to test the performance of query optimizers, particularly the cardinality estima-
tors, of graph databases and consists of both acyclic and cyclic queries [7]. The authors of [7] then
translated the CE benchmark into SQL. From these translated queries, we utilize all queries from
the query template dblp_cyclic_q8. In each query, we project upon all attributes. To mitigate the
memory limitations of mutable, we reduced the size of all input tables by 50%, while ensuring a
minimum amount of 100,000 tuples per table.

8.2 Enumeration Time

This subsection presents our enumeration time benchmarks, presented in Figure 8, where we report
the median runtime of 20 executions (using a log scale) for four important query shapes while
varying the number of vertices in the graph.

Acyclic Queries. The results for both acyclic graphs are very similar. ResultDBgepm;-join delivers
the overall fastest enumeration time, closely followed by TDgoot, which has a slight overhead
of up to 50% only. On the other hand, since ResultDBpecompose utilizes DPccp as enumeration
algorithm, it is much slower than TDgeot and ResultDBgemi-join, €specially for star queries. However,
this also means that the combined scheme TDgesuitpp has no meaningful runtime overhead to
ResultDBpecompose-
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Fig. 8. Enumeration times for different query shapes.

Cyclic Queries. As you can see, ResultDBgemi-join Offers the fastest enumeration by creating two
separate folds using a heuristic, enumerated independently using DPccp. Conversely, our proposed
algorithms and ResultDBpecompose enumerate the entire graph, leading to an increased enumeration
time compared to ResultDBgemi-join- Also, we can see that TDr,q introduces a noticeable overhead
compared to ResultDBpecompose in Cycle and TVC queries, caused by computing Cpecompose and
Algorithm 3. However, the relative overhead is significantly reduced by increasing the number
of vertices. Further, we can see that including the greedy TVC folds in the TVC query does not
meaningfully change the runtime of TDgoq compared to TDgold-NoTvC, given that only one greedily
folded graph will be created for each graph size. Additionally, one can see that GHD-based algorithms
require much more enumeration time than the remaining algorithms. Overall, we can deduce that
also in cyclic graphs, TDgesuipp introduces only little overhead compared to ResultDBpecomposes
especially for larger graphs.

Concluding, regarding Q1, our enumeration schemes only add small overheads to the existing
baselines. For acyclic queries, TDgoot can almost match the runtime of ResultDBgemi-join. For cyclic
queries, TDro1q only introduces a visible overhead compared to ResultDBpecompose for small graphs,
whereas in larger graphs the overhead is negligible. Lastly, TDgesuitpp can unify all enumeration
algorithms at very little additional cost, and beats GHD-based algorithms by a factor of up to 55x.

8.3 Query Execution Time

In this subsection, we present query execution time results for the queries from the synthetic, JOB,
and CE datasets. In all experiments, we report the median execution time of five runs.

Synthetic Dataset. The results for varying selectivities of the attribute F.f are presented in
Figure 9. The graph shows the importance of enumeration to decide on the best folds. Joining the
table F with any other relation causes significant redundancies, which severely hurts the perfor-
mances of ResultDBsem join and ResultDBpecompose- Both TDrold and TDrolq-NoTVC manage to find
better folds, namely the ones where F is not joined at all. We can also see that the plans generated
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Fig. 9. Query execution times for the TVC query.
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Fig. 10. Query execution time for JOB queries.

by TDrold-NoTvC are slightly worse than those generated by TDgelq, showing the importance of con-
sidering TVC folds during enumeration. Additionally, plans generated by our optimized algorithms
have a faster performance than both GHD-based algorithms, demonstrating the significance of our
new cost model Cgolg. Further, TDresuipp always manages to find the best plans in each scenario.

JOB. We start by analyzing the results of acyclic JOB queries as shown in the two upper graphs
of Figure 10. As visible, TDgoot can find better plans than ResultDBsemi-join for almost every query.
The highest speed-up factor is at 1.7x in q26a, whereas we achieve an average speedup of 1.14x.
Due to the small output sizes, ResultDBpecompose consistently produces the best plan in every query,
which TDgesuitpp successfully identifies. The results for cyclic queries are shown in the two lower
graphs of Figure 10. Again, TDgg)q is able to outperform ResultDBgem;-join for almost all queries,
up to a factor of 6x in q26a, and averaging at about 1.5x. Since no TVCs are in any JOB query,
TDrolq4 cannot perform any better than TDgojg-NoTve- We can also see that GHD-based algorithms
perform better than TDg)q for most queries as they consider joins with relations outside of cycles
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Fig. 11. Query execution time for the CE template dblp_cyclic_qg8.

and TDglq is aimed at redundancy-heavy queries, which JOB is not. Further, plans generated by
GHDcostModel are on average better than those generated by GHDeuristic, aligning with results from
[32]. Still, ResultDBpecompose always produces the best plans, whereas TDgesuiipp can detect this.

CE. When looking at the CE benchmark in Figure 11, we can see that there are queries (q8_2
and q8_8) where TDr1q performs better than ResultDBpecompose- This is an important result, as
it underlines the importance of our new enumeration approach. Further, for q8_2, this was only
made possible via optimizations, as ResultDBgemi join performs worse than ResultDBpecompose for
this query. Further, plans generated by GHDgeyristic and GHDcostModel have the same quality than
the plans generated by TDgolq, demonstrating that even though TDgoq considers less plans, the
heuristic chosen to prune this search space, namingly only considering folds within cycles, is
effective for cyclic queries with redundancies. Other than that, the CE benchmark shows similar
results to JOB. TDgelq can almost always produce a better plan than ResultDBsemi-join, up to a factor
of 1.6x in q8_12, and averaging at 1.2x. Again, no TVCs were present, and by that, TDgeq and
TDgold-NoTve perform equally well. For all queries (except q8_4), TDgresuitpp can detect the best
plans.

Conclusively, regarding Q2, one can say that our algorithms can increase the generated plan
quality significantly compared to ResultDBgemi-join. However, for queries with low join cardinalities,
ResultDBpecompose always generates the best plans. That being said, our new cost model is strong
enough such that TDgesuitpp can always determine the best presented plans, and always beat or
match the plans generated by state-of-the-art GHD heuristics.

9 Conclusion and Future Work

The current state-of-the-art [26] to compute DRQs consists of two isolated algorithms,
ResultDBsemijoin and ResultDBpecompose- We propose the new enumeration algorithms TDgoot
and TDfolq to greatly enhance plans for ResultDBsemijoin. These are unified together with
ResultDBpecompose into TDgesultpp, allowing to decide between plans generated by TDgoot, TDrolds
and ResultDBpecompose for a given query.

Our experiments demonstrate the efficiency of our proposed algorithm(s). The enumeration time
required by TDgesuitpp introduces only a small overhead over the state-of-the-art for DRQs. More im-
portantly, the plans generated by TDgesuitpp vastly outperform those generated by ResultDBsemi-join
by up to 6x. Further, the cost models used for TDgesuitpp are precise enough to decide between the
different generated plans, and can even beat state-of-the-art GHD heuristics while offering smaller
enumeration times.

However, there is still much work ahead. It is a very interesting direction for future work to
study the intersection of the novel DRQ problem and the classical full reducer problem, and how
both problems could benefit from each other. For example, one could analyze the enumeration
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approach from TDgelq in the context of full reducers. Furthermore, one should investigate how an
increased search space for cycle resolutions (as present in, e.g., GHDs [1, 32]) might help in our
approach. For example, different TVC choices in TDgqq, as well as joins outside of cycles could be
considered. To mitigate the effects of these increased search spaces, one could also analyze pruning
opportunities for TDgesuitps. In particular, branch-and-bound pruning [10] can be used to reduce
the number of enumerated trees, join orders, and cycle solutions, especially when evaluating new
subblocks during the folding of TVCs. For example, when all solutions for a BEP of a subblock are
more expensive than the best plan for the original block, then all BEP sets containing said BEP can
be ignored.

Further, one could investigate optimizations for DRQs depending on their use case. For example,
an interesting optimization problem involves deciding, in distributed DBMSs, whether to send the
query result as a single table, or as a database. The solution to that problem would be non-trivial
given the high number of influencing factors, e.g., the achieved compression ratios, the overhead
caused by the post-join and the DRQ computation itself, network conditions, and the available
client system(s). This might be especially relevant when considering a batch of different queries,
whose results could be compressed into a single database, while utilizing classical multi-query
optimization techniques to speed up the DRQ computation. Another interesting use case would be
to investigate optimization potential in the context of data provenance, where both the single-table
result as well as a DRQ have to be computed. Again, one could analyze the benefits of having
multiple queries share the same result database.

Finally, one could extend the scope of our optimizations and DRQs in general to also deal with
more complex queries, e.g., semi-joins, outer-joins and data transformations, building upon the
ideas already presented by Nix and Dittrich [26]. While semi-joins are straightforward to realize
in the context of DRQs, outer-joins are more difficult as you also have to consider the order in
which reductions are to be applied to prevent changing the result database. Data transformations
would also require heavy modifications, as Nix and Dittrich [26] envisioned arbitrary transforma-
tions, meaning the creation of completely new tables alongside aggregations, opening up a new
optimization area, as folds would now be required for acyclic queries too.
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