
The next 50 Years in Database Indexing or: The Case for
Automatically Generated Index Structures

Jens Dittrich
Saarland University

Saarland Informatics Campus
jens.dittrich@bigdata.uni-

saarland.de

Joris Nix
Saarland University

Saarland Informatics Campus
joris.nix@bigdata.uni-saarland.de

Christian Schön
Saarland University

Saarland Informatics Campus
christian.schoen@uni-saarland.de

ABSTRACT
Index structures are a building block of query processing and com-
puter science in general. Since the dawn of computer technology
there have been index structures. And since then, a myriad of index
structures are being invented and published each and every year.

In this paper we argue that the very idea of “inventing an index”
is amisleading concept in the �rst place. It is the analogue of “invent-
ing a physical query plan”. This paper is a paradigm shift in which
we propose to drop the idea to handcraft index structures (as done
for binary search trees over B-trees to any form of learned index)
altogether. We present a new automatic index breeding framework
coined Genetic Generic Generation of Index Structures (GENE). It
is based on the observation that almost all index structures are
assembled along three principal dimensions: (1) structural building
blocks, e.g., a B-tree is assembled from two di�erent structural node
types (inner and leaf nodes), (2) a couple of invariants, e.g., for
a B-tree all paths have the same length, and (3) decisions on the
internal layout of nodes (row or column layout, etc.). We propose a
generic indexing framework that can mimic many existing index
structures along those dimensions. Based on that framework we
propose a generic genetic index generation algorithm that, given a
workload and an optimization goal, can automatically assemble and
mutate, in other words ‘breed’ new index structure ‘species’. In our
experiments we followmultiple goals. We reexamine some good old
wisdom from database technology. Given a speci�c workload, will
GENE even breed an index that is equivalent to what our textbooks
and papers currently recommend for such a workload? Or can we
do even more? Our initial results strongly indicate that generated
indexes are the next step in designing index structures.

PVLDB Reference Format:
Jens Dittrich, Joris Nix, and Christian Schön. The next 50 Years in Database
Indexing or: The Case for Automatically Generated Index Structures.
PVLDB, 15(3): 527 - 540, 2022.
doi:10.14778/3494124.3494136

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/BigDataAnalyticsGroup/GENE.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 3 ISSN 2150-8097.
doi:10.14778/3494124.3494136

1 INTRODUCTION
1.1 Problem 1: Indexes are considered

monolithic entities
When we database researchers talk about indexes, we use the term
index like referring to an entity of its own. But is that the case?
Let’s look at our good old B-tree: A B-tree index consists of two
di�erent node types: inner nodes and leaves. Inner nodes keep point-
ers to other nodes. The main purpose of an inner node is to route
incoming lookups to other nodes. In addition, a B-tree index al-
gorithmically preserves a couple of invariants, e.g. all paths from
the root to a leaf have the same lengths, each node only has one
parent node (i.e. nodes are structurally organized into a tree), and
so forth. In addition, all nodes keep data in a speci�c layout (row or
column layout, cache-and SIMD-e�cient layouts, etc.) and de�ne
which search algorithm to use inside a node (binary search, interpo-
lation, prediction, etc.). Since the publication of the original B-tree
paper [6] almost 50 years ago, the physical organization of B-trees
has been improved in a zillion di�erent ways, e.g. [30, 42, 43, 46].

But what concretely is the entity “the index” in here? So far
we only de�ned two di�erent node types pointing to each other,
we added a couple of constraints (fan-outs, tree-structure, concrete
physical organization of inner nodes and leaves). We may also add
heuristics for invariant maintenance (split and merge). But, if we
change any aspect of this, do we receive a completely di�erent
index? When is it just a variant of an existing index? And when
is it a new index? For instance, if we change constraints to allow
nodes to have more than one parent, would that be a completely
di�erent index entity? Or is it just that one constraint that changes
(with possible implications to other features of the index)?

In this paper, we will introduce the idea of logical and physical
indexes. We will show that most existing indexes can be expressed
as a speci�c con�guration in a generic logical and physical indexing
framework1 including B-trees, radix-trees, learned indexes, and
even extendible hashing. And those con�gurations can be combined
almost arbitrarilywithin the same con�guration. This opens the book
for a myriad of hybrid “indexes”. For instance, in our framework,
one extreme of an index (say a single hash table) can smoothly be
morphed into another extreme (say a B-tree style index with all
kinds of di�erent layouts and search algorithms inside its nodes).

1Note that we will not introduce this as a software framework as done in [11, 23] but
rather on a conceptual level.

527

https://www.acm.org/publications/policies/artifact-review-and-badging-current

1.2 Problem 2: Two completely di�erent
methodologies to solve a similar problem

It is remarkable that there is quite a divide in databases when it
comes to designing e�cient components of a database system like
index structures as opposed to designing query plans. For index
structures, the historic and state-of-the-art approach is to de�ne
some performance goals, reason about complexities, design some-
thing on a blackboard, and then implement it. Like that an index
(much like any other system component) has to be designed from
scratch and then implemented. Eventually, we receive a piece of
software that then (hopefully) serves the original purpose. In sharp
contrast to this, since the 70s and the seminal Selinger paper [48]
database researchers follow a completely di�erent, and rather suc-
cessful, design path when it comes to designing query plans: we
automatically assemble complex plans from logical and physical
operators.

So why follow two completely di�erent design approaches if at
the core these are similar problems? Once we are in the position
to express an “index” as a con�guration in a generic logical and
physical indexing framework, there is one question left:Why should
we con�gure indexes by hand anyways? Why should we handcraft
which node type to use, which node-internal search algorithm to
use, which data layout, tree-levels to use, etc.?

If we have di�erent components of an index which can be inter-
changed freely, plus options to play with, well, then we have an
optimization problem!

For this reason, in this paper, we will propose a genetic algorithm
that, given a dataset and workload, will automatically determine a
suitable logical and physical index con�guration.

1.3 Problem Statement
We summarize the two principal problems discussed above into the
following problem statement that we will investigate in this work:

(1) How can we generalize the most important index structures
into a common conceptual indexing framework?
(2) How can we automatically breed index structures using (1).

1.4 Contributions
In this paper we make the following contributions:

(1) We introduce a generic index structure framework that makes
a clear di�erence between a logical and a physical indexing frame-
work. This is inspired by the split into logical and physical operators
in relational and physical algebras/operators.
(2) We present a genetic algorithmwhich allows us to automatically
generate (breed) e�cient index con�gurations (aka indexes).
(3) We present an extensive experimental evaluation of our ap-
proach demonstrating that we can both rediscover existing, previ-
ously handcrafted indexes as well as new types of hybrid indexes.

The paper is structured as follows: in Section 2, we introduce
our logical generic indexing framework. After that, in Section 3, we
introduce our physical generic indexing framework. Both serve as
the basis for Section 4 where we introduce our index breeding ap-
proach. Section 5 contrasts our approach to related work. Section 6
presents our experimental evaluation. We will conclude and point
out a couple of exciting future research directions in Section 7.

2 GENERIC LOGICAL INDEXING
FRAMEWORK

In this section we introduce our generic logical indexing framework.
The physical indexing framework is explained in Section 3.

Descriptions of index structures tend to mix up logical (what
is done) and physical aspects (how is that achieved). For instance,
consider the following sentence taken from a popular textbook:

“A sorted �le, called the data �le, is given another �le, called the
index �le, consisting of key-pointer-pairs. A search key K in the
index �le is associated with a pointer to a data-�le record that
has search key K" [21, Section 13.1].

In this sentence the logical aspects of the index (black underlines,
e.g. sorted, key, record) and the physical aspects of the index (red
underlines, e.g. �le, pointer) are introduced at the same time and
thus mix up both aspects in the same explanation. In a way this
violates physical data independence of the index structure. We want
to clearly separate the logical and physical aspects of an index.
Basic De�nitions. Any expression f% (') where % is a predicate
de�ned on a relational schema ['] : {[�1 : ⇡1, . . . ,�= : ⇡=]}, i.e.,
a function % : ['] 7! {true,false}, is called a query on '. The result
of a query is f% (') ✓ '. Given ['] with an attribute �8 with a
corresponding non-categorical one-dimensional domain ⇡8 , and
two constants ;,⌘ 2 ⇡8 , ;  ⌘, f;�8 ⌘ (') is a range query on '. It
selects all tuples C = (01, ..,08 , ..,0=) 2 ' where 08 is contained in
the interval [; ;⌘]. A range query with ; = ⌘ is called a point query.

2.1 Logical Nodes and Logical Indexes
De�nition 2.1. Logical Node. A logical node is a tuple (p, RI,DT):

(1) p : ['] ! ⇡ is a partitioning function on the schema ['] of
the dataset to index, (p may be unde�ned),
(2) RI is the routing information. It is a function '� : ⇡ ! P(#)
where # is a set of nodes and P(#) is the power set of # . In other
words, each element of ⇡ (the target domain of p) is mapped to
a subset of the nodes in # . For each outcome of the partitioning
function p we can �nd a set of associated nodes or the empty set.
Notice that the routing information does neither imply nor assume
a speci�c physical organization including a sort order on its entries
(like in B-trees). RI may be unde�ned. In the following, we use
nodes(RI) for the set of nodes mapped to by RI.
(3) DT is the data. It is a set of tuples with relational schema ['],
DT may be empty2.

Figure 1 visualizes the principal structure of a logical node. The
partitioning function ? computes C .4 mod 5 which yields a domain
⇡ = {0, 1, 2, 3, 4}. Here, only a subset of ⇡ is shown in the visu-
alization of RI, i.e. 3 is not shown as it maps to the empty set. In
addition, RI maps 2 and 0 to the same node. Moreover, the data part
DT contains two tuples (2,�) and (1,⌫).

De�nition 2.2. Complete Logical Index. Let !# be a set of logical
nodes with 8=2!# : =>34B (=.'�) ✓ !# . Then the graph _ = (!#)
is called a complete logical index.
2In principle, DT could also be de�ned as a similar function as RI the di�erence being
that RI maps to nodes whereas DT maps to tuples.Also note that the DT-�elds can
be used to very naturally support bu�er-tree-style indexes [3], bulkloading mecha-
nisms [12] as well as any form of recursive partitioning algorithm.

528

…

logical node
routing information RI data DT

{(2,A),(1,B)}

… …

partitioning function p
p(t) := t . e mod 5

set of nodes N

…

4 2 0 3 1

…

node
routing table RI data DT

{42, 9, 4, 8}

… … …

partitioning function p
p0(t) := t . a mod 5

set of nodes N

…

old version:

{4, 2, 0, 1}

…

Figure 1: An example of a logical node with a hash-style par-
titioning function, fourmappings in the routing information
RI, and two tuples in the data part.

RI DT
{}

p
t . e {(- ;6), [6;11), [11;+)}� �

b-tree with ISAM

{(1,B), (2,A)}{[6;+)}��
p RI DT

{(7,B), (6,C)}{(- ;6),[11;+)}� ��
p RI DT

{(11,C), (12,Z)}{- ;11)}��
p RI DT

(a) B-tree with ISAM: Here the partitioning function returns C .4 . The routing
information maps ranges to nodes on the next level. This induces a B-tree-style
partitioning. Notice that the common textbook explanation of B-trees showing :
pivots and : + 1 pointers is already a speci�c physical implementation of this logical
index. In addition, this index contains entries on the leaf-level for backward and
forward chaining of leaves as in ISAM.

RMI

RI DT
{}

p
 div 3t . e {0,2,3,4}

RI DT
{(1,B), (2,A)}

p
{}�

RI DT
{(7,B), (6,C)}

p
{}�

RI DT
{(11,C)}

p
{}�

RI DT
{(12,Z)}

p
{}�

old:

1
3 � t . e 0 1 2 3 4

floor(p(t))
p RI DT

{}

{(1,B), (2,A)}�
p

{}
RI DT

{}�
p

{}
RI DT

{(7,B), (6,C)}�
p

{}
RI DT

{(11,C)}�
p

{}
RI DT

{(12,Z)}�
p

{}
RI DT

(b) RMI: Here the partitioning function is a linear function ? (C) = 1
3 · C .4 + 0 that

squeezes the data into a smaller range ([0;12]! [0;4]). This is equivalent to a linear
regression over the key space. RI groups the data into bins (corresponding to nodes
on the next level). However, ? and RI can be set to use any form of regression method
and for any node independently.

extensible hashing

(2,A),(7,B),(1,B),(6,C), (12,Z),(11,C)

(0010,A),(0111,B),(0001,B),(0110,C), (1100,Z),(1011,C)

data:

binary:

(0010,A),(0111,B),(0001,B),(0110,C), (1100,Z),(1011,C)

(0010,A), (0110,C) (0001,B)

 & 0x7t . e {001,010,011,100,110,111}

{(0111,B) (1011,C)}

local depth = 2
 local depth = 2
 local depth = 3
 local depth = 3

global depth = 3

p RI DT

{}

�
p

{}
RI DT

{(0010,A), (0110,C)}�
p

{}
RI DT

{(0001,B)}�
p

{}
RI DT

{(1100,Z)}�
p

{}
RI DT

(c) extendible hashing: Here the partitioning function only considers a su�x of the
lowest three bits (&0x7) of C .4 . This implies that it partitions exactly like an extendible
hashing [16] directory with global depth of three. Note that there is no need to create
entries for empty ‘buckets‘.

radix tree

(1100,Z)

 & 0xCt . e {00,01,10,11}

(0001,B)

(0110,C)

(1011,C))

(0010,A)

(0111,B)

{01,10}
p RI DT

{} & 0x3t . e

p RI DT
{}

{10,11}
p RI DT

{} & 0x3t . e {(1011,C)}�
p

{}
RI DT

{(1100,Z)}�
p

{}
RI DT

{(0001,B)}�
p

{}
RI DT

{(0010,A)}�
p

{}
RI DT

{(0110,C)}�
p

{}
RI DT

{(0111,B)}�
p

{}
RI DT

(d) radix tree: Here the partitioning functions partition the dataset on two adjacent
bits each: the root-node partitions on the �rst two bits of the pre�x, the next level
on the next two bits. This induces a radix-partitioning. Note that in this example
the index is con�gured to keep at most one tuple per leaf. This can of course be
con�gured. So alternatively, we could force a two-level tree just partitioning on the
�rst two bits. The second level would then keep multiple entries in their DT-�elds.

Figure 2: The modeling power of our logical indexing frame-
work for traditional indexes. Four special cases of possible
logical indexes for the running example. All examples mimic
existing and handcrafted (physiological) index structures.

In other words, only if all routing information in the nodes of
!# points to nodes contained in !# , we call !# a complete logical
index. At �rst, this de�nition sounds a bit trivial, but this de�nition
makes an important observation that is frequently overlooked: a
logical index is-a graph of logical nodes — and nothing else.

Running Example. Figure 2 illustrates the modeling power of our
framework and shows four possible logical indexes for ['] = {[4 :
int,6 : char]} and ' = {(2,A), (7, B), (1, B), (6,C), (12,Z), (11,C)}.
Note that in these examples the DTs are empty for inner nodes. The
implications of non-empty DTs are future work. Figure 3 demon-
strates how we can model arbitrary ‘hybrid’ logical indexes.

B-tree-style index

hybrid logical index

t . e {(- ;6), [6;11), [11;+)}� �
p DT

{}
RI

radix-style index

t . g {A, B}
RI DT

{}
p

{(2,A)}�
p

{}
RI DT

{(1,B)}{}
RI�

p DT

extendible hashing-
style index

 & 0x7t . e {110,111}
RI DT

{}
p

{(0111,B)} �
p

{}
RI DT

{(0110,C)}� {}
RIp DT

RMI-style index

DT
{}

1
3 � t . e 0 1 2 3 4

floor(D)
RIp

{(11,C)}�
p

{}
RI DT

{(12,Z)}{}
RI

�
p DT

Figure 3: The modeling power of our logical indexing frame-
work for any form of ‘hybrid’ index. The example combines
properties from four di�erent traditional index structures.
Notice that there are countless examples: any node in this
logical index may be exchanged by any other suitable logical
node as long as the data in the index is partitioned in a way
that all possible queries on the logical index return the cor-
rect result set. On this abstraction level it is still unde�ned
how data is represented in the di�erent nodes and in partic-
ular in the RI-function and the DT-set and how we search.

2.2 Logical Queries
De�nition 2.3. RQ: Result of a Range Query on a Logical Index.

Given a range query with predicate % := ;  �8  ⌘, a logical index
_ build upon a relation ' and a non-empty start node-set (# ✓ !# ,
the result set of the range query is given by:

RQ(%,(#) :=–=2(#

✓
f% (=.⇡))| {z }

data in =

[RQ
⇣
%,
–

C2',;C .�8 ⌘ =.RI
�
=.? (C)

� ⌘◆

Notice that the set semantics will implicitly remove duplicates
which in a physical graph-structured index (possibly not obeying
set semantics) may result from visiting nodes multiple times.

Also note that this query will recursively traverse the graph
for all qualifying nodes in the RI-�elds. This is �ne for a strictly
tree-structured index, however, as soon as we do not have a tree-
structure anymore but a more general DAG, it may become possible
that, given a set of start nodes (# , certain nodes are reachable via
multiple paths. For a general graph, the implementing algorithm
has to be modi�ed to not visit nodes multiple times.

De�nition 2.4. Correctness of a Logical Index. Let _ = (!#) be a
complete logical index. Let (# be an arbitrary non-empty subset
of start nodes: (# ✓ !# . Let ⇡)_: =

–
=2!# =.⇡) be the data

contained in _. Let f% :=;�8 ⌘ (') be a range query on '. If

8;,⌘ : f;�8 ⌘ (⇡)_) = RQ(%, (#),
then _ is called a correct logical index w.r.t (# .

529

p RI DT
{(1,B), (2,A)}� {}

p RI DT
{(7,B), (6,C)}� {}

p RI DT
{(11,C), (12,Z)}� {}

logical
index

RI DT
{}

p
t . e {(- ;6), [6;11), [11;+)}� �

RI DT

{}

p

t . e {(- ;6), [6;11), [11;+)}� �
DL: col, sorted
SAlg: binS

p
DL: col, unsorted

RI DT

SAlg: expS
{(1,B), (2,A)}� {}

p
DL: row, sorted

RI DT

SAlg: expS
{(7,B), (6,C)}� {}

p
DL: row, unsorted

RI DT

SAlg: hashS
{(11,C), (12,Z)}� {}

physical
index

RI DT

{}

p

t . e {(- ;6), [6;11), [11;+)}� �
DL: col, sorted
SAlg: scan

p
DL: col, unsorted

RI DT

SAlg: scan
{(1,B), (2,A)}� {}

physical
index

p
DL: row, sorted

RI DT

SAlg: expS
{(7,B), (6,C)}� {}

p
DL: row, unsorted

RI DT

SAlg: hashS
{(11,C), (12,Z)}� {}

specifyspecify

Figure 4: The arrows show some possible transitions from a logical to a physical index (we specify an algorithm and/or a data
layout). Notice that neither the partitioning tree nor the assignment of data to nodes are changed in this process.

Notice that the correctness of an index depends on whether
data is placed into the di�erent DT-sets according to the properties
of the di�erent partitioning functions used at the various nodes.
Furthermore, the start nodes (# must be chosen such that all qual-
ifying data can be reached by the range query. For instance, in a
tree-structured index picking the start node is trivial: we call it
‘the root node’. In a general graph structure, which may even be
disconnected, things can become more complex, i.e. we might have
multiple ‘root nodes’, i.e. all nodes that cannot be reached from any
other node of the index, or even no root nodes (in case of a cyclic
graph). This discussion is beyond the scope of this paper and there-
fore in the following, we will only consider correct, DAG-structured
indexes and assume that (# is chosen accordingly.

3 GENERIC PHYSICAL INDEXING
FRAMEWORK

As we just have de�ned logical indexes (our counterparts to the
logical relational algebra operators), now, we can proceed to devise
physical indexes (our counterparts to physical operators).

For each logical node and for each of its RI and DT-part we even-
tually have to specify how to realize it. We do this by making a
physical decision on the search algorithm (Section 3.1) and the
data layout to use for that set (Section 3.2). Or, we delegate those
decisions by using a nested index (Section 3.3).

Any index where for all its nodes the data layouts and algorithms
are su�ciently speci�ed, is called a physical index.

3.1 Specify Search Algorithm
We decide which search algorithm to use for searching (key/value)-
pairs in RI and/or DT. Note that all search algorithms stop once a
qualifying key was found, i.e. we found the corresponding entry in
RI or we have an exact key match in DT. The principal options are
as follows: (1) scan: linear search through all entries, for each key
check if it quali�es, (2) binS: binary search (3) intS: interpolation
search, iteratively compute slope and intercept, i.e. a linear function,
for left and right key, predict key location pred and reduce search
area to [left, pred] or (pred, right] respectively until key quali�es.
(4) expS: exponential search, start with the �rst entry, increase ex-
ponent 8 for key position speci�ed by 28 until key is greater than the
search value, use binary search (or any other suitable method) inside
range [28�1, end]. (5) hashS: chained hashing (or any other suitable
hashing variant), use the underlying hash function to compute the
location of the key (and its associated mapping). (6) linregS: linear
regression (or any other form of approximation and/or learning),
compute slope and intercept, i.e. linear function, for all data points,

compute error bounds, predict key location pred and use linear
search (or any other suitable error correction method) inside [pred
- lower error bound, pred + upper error bound]. (7) hybridS: any
suitable hybrid algorithm (i.e. a composite of the former options).

3.2 Specify Data Layout
We decide which data layout to use for representing the data from RI
and/or DT. To de�ne a data layout, we have to specify the following:
(1) col vs row: key/value-pairs are in row or col layout. (2) func:
we use a function to specify the RI and/or DT-mapping, thus we do
not need to represent pivots and/or data and therefore do not need
a data layout. As discussed in De�nition 2.1 already, we assume
the DT-�elds to be actual sets even though they could be modeled
as a more general mapping as well. (3) unsorted vs sorted: the
entries are (or are not) sorted by their key. (4) comp: the entries
are compressed (and how exactly, i.e. which compression method).
(5) hybridDL any suitable hybrid data layout (i.e. any composite of
the former options). Notice that some of these data layout decisions
cannot be made independently from the search algorithms to use,
e.g. binary search implies a sorted data layout. Figure 4 shows an
example of a logical index that by specifying the search algorithms
and data layouts may be transformed into di�erent physical indexes.

3.3 Specify by Nested Logical or Physical Index
Wemake a decision to specify RI and DT by a nested physical index.
Notice that this is not equivalent to the recursively reachable set of
nodes pointed to by one particular RI. Nesting is about representing
the key/value-lookup search algorithms and data layout inside a
node by another index. For instance, consider a physical binary
search tree (BST). If we use such BST to represent and search RI,
we basically have a nested physical index in our node. However,
this is just a special case, so in theory we can allow for arbitrary
nested indexes at this point.

4 GENETIC INDEX BREEDING
As we just have de�ned our logical and physical generic indexing
frameworks, we proceed to present our genetic algorithm allowing
us to automatically generate indexes. This is structured as follows:
(1) Core algorithm (Section 4.1),
(2) Initial population generation (Section 4.2),
(3) The set of applicable mutations describing possible changes to
individual logical and physical index structures (Section 4.3), and
(4) The �tness function used to measure the performance of indi-
vidual physical index structures (Section 4.4).

The major challenge with a generic indexing framework pre-
sented in Section 3 is the intractable search space. Therefore, we

530

Algorithm 1 Genetic Search Algorithm of GENE
1: function I���P���������(⇡(, Binit)
2: ⇧ = ; ù initialize population with empty set
3: for (8 = 0; 8 < Binit; 8 + +) do ù create Binit initial indexes
4: c = buildAndPopulateRandomIndex(⇡() ù build and populate index
5: ⇧ = ⇧ [{c } ù add index to population ⇧
6: end for
7: return ⇧ ù return population ⇧
8: end function

9: function T���������S��������(⇧, BT,,)
10:) = sample_subset(⇧, BT) ù draw random subset) ✓ ⇧ of size BT
11: cmin = arg minc2) 5 (c,,) ù select �ttest individual cmin in) under,
12: C̃ = median_�tness()) ù compute median �tness of all c 2)
13: return (cmin , C̃) ù return �ttest individual cmin and median �tness C̃
14: end function

15: function G������S�����(6max, Binit, Bmax, B⇧, B) , Bch,⇡(,"⇡,#⇡,,)
16: ⇧ = InitPopulation(Binit,⇡() ù initialize population
17: for (8 = 0; 8 < 6max; 8 + +) do ù perform Amax iterations/generations
18: (cmin, C̃) = TournamentSelection(⇧, B) ,,) ù run tournament selection
19: for (9 = 0; 9 < Bmax; 9 + +) do ù create Bmax mutations
20: < = draw_mutation("⇡) ù draw from mutation distribution
21: = = draw_node

�
#⇡ (cmin,<)

�
ù draw from node distribution

22: ?⌘ = draw_phys
�
%⇡ (<,=)

�
ù draw from phys distribution

23: cmut =< (cmin,=,?⌘) ù perform mutation
24: if 5 (cmut,,)  C̃ then ù add cmut to ⇧ if �tter than median C̃
25: if |⇧ | � B⇧ then ù if capacity exceeded
26: ⇧ = ⇧ \ arg maxc2) 5 (c,,) ù remove un�ttest individual
27: end if
28: ⇧ = ⇧ [{cmut } ù add index to population
29: end if
30: end for
31: end for
32: cmin = arg minc2⇧ 5 (c,,) ù return �ttest individual of �nal population
33: return cmin
34: end function

need an optimization method that can cope with such a huge search
space. Notice that an intractable search space does not imply that
we cannot �nd a good solution. In fact, entire research communities
work on these kind of problems including: planning, reinforcement
learning, and genetic optimization. We decided to design our search
algorithm based on genetic optimization. Genetic optimization al-
gorithms have been developed for more than 40 years [24], but
recently gained a lot of attention due to growing computational re-
sources. They allow researchers to e�ectively explore larger search
spaces. Recent surprising, and not widely-known, results include:
genetic algorithms can rediscover state-of-the-art machine learning
algorithms(!) [44]. Furthermore, they can devise yet unknown math-
ematical equations [9]. Genetic optimization tasks are very domain
speci�c as possible mutations and the performance measure depend
heavily on the concrete task.

4.1 Core Algorithm
The general design for our algorithm follows the principal of evo-
lution which is known from nature: We start with the main func-
tion G������S����� (line 15). We start by initializing a population
of individuals (line 16), in our case a set of physical index struc-
tures ⇧ := {c |c is a physical index} (see function I���P���������,
line 1). To create the initial population, we build and populate Binit
physical index structures (line 4) and add them to the population ⇧
(line 5). This build process is described in more detail in Section 4.2.
Now, we enter the central iteration: we perform 6max iterations
in genetic search (lines 17–31). We start by tournament selection
(line 18), see function T���������S�������� (line 9). We select a

Table 1: Symbols used.
Symbol Meaning
_ logical index
c physical index
⇧ population
Binit initial size of the population
B⇧ maximum number of indexes in population
6max number of generations
Bmax number of mutations created and evaluated in a single iteration
BT size of sample in tournament selection
Bch maximum length of a mutation chain applied in one iteration
⇡(dataset
cmin best individual in tournament selection
cmut mutated element
C̃ median �tness
"⇡ probability distribution of mutations
< a single mutation
#⇡ (c,<) probability distribution of nodes
%⇡ (<,#) probability distribution of physical implementations
, workload of queries
5 (c,,) �tness of a physical index

sample of size BT of the current population ⇧ (line 10) from which
we select the �ttest index cmin (line 11). We keep a trace of the
�tness of physical indexes to never evaluate indexes multiple times.
We compute the median �tness C̃ of sample) (line 12) and return
both cmin and C̃ (line 13) to the GeneticSearch function (line 18).
Then, we enter the mutation loop (line 19). The core idea is to
compute Bmax � 1 mutations for index cmin. We draw a random
mutation < from a precomputed distribution of mutations "⇡
(line 20). For the mutation < we draw a start node = to be used
for this mutation (line 21) as well as a physical implementation ?⌘
(line 22). The mutations and distributions are described in detail in
Section 4.3. Then, we perform the actual mutation on cmin (line 23)
and receive cmut. We originally also experimented with applying
chains of mutations (lines 20 and 23) but it did not show any bene-
�ts. We check, whether the mutated index cmut has a better �tness
than the median C̃ (line 24). If it has a better �tness, we check if
⇧ exceeds its capacity of maximum allowed physical indexes B⇧
(line 25). If that is the case, we remove the physical index with the
worst �tness from ⇧ (line 26). Then we add cmut to the population
⇧ (line 28). Once the outer loop terminates, we determine the �ttest
index from ⇧ (line 32) and return it.

4.2 Initial Population Generation
What is a good start population ⇧ for the genetic algorithm? In
Algorithm 1, function InitPopulation (line 1), we need to de�ne an
initial population of individual index structures. There are several
possible dimensions to consider. First, we can change the initial
number Binit of indexes in ⇧. This basically de�nes how diverse the
initial set of indexes may be. Second, we should determine how
to actually build and populate the initial physical index with data
from dataset DS (line 4). There are several options:
(1) We start with a single physical node that does not contain data,
mutate it, and only then insert the actual data. We experimented
with this approach initially but discarded it quickly due to its high
training costs. Thus we do not support it in our algorithm anymore.
(2) We start with a single physical node containing all data. For
data layout/search method we either randomly pick it or we pick
one that we believe works well for the given workload.
(3) We use bottom-up bulkloading with the di�erence that for all
nodes the search algorithms and data layouts are picked randomly.

531

In our current version we exclude hash nodes for inner nodes as we
have not de�ned a radix-partition search method on this data layout
yet. We will integrate this in future versions of our optimization
framework. The resulting tree is logically similar to a standard
B-Tree, the physical nodes however di�er considerably.
(4) We start with a population containing a physical index that
resembles a state-of-the-art hand-tuned index, i.e. we de�ne the
logical index (including its partitioning functions) as well as the
physical nodes. Then we check whether we can still improve that
index through our genetic algorithm.

Notice that for options from (1) to (4) increasing, we postulate
that we take away load from GENE, using it increasingly as a re�ne-
ment tool: The more we start with something already representing
a very e�cient (or �t, however �tness is de�ned) index, the more
we expect that only small mutations will be performed by GENE.
At least that is what we would believe. In fact, even if we (non-
randomly) specify an initial physical index to start with, recall, that
GENE has all degrees of freedom to pick mutations, and may sur-
prise us by taking unexpected turns and make di�erent decisions.

4.3 Mutations and their Distributions
In this section we introduce a suitable set of mutations and discuss
how they are used in our algorithm.
Mutation. In our framework, a mutation is a function< : Index!
Index. A mutation takes a single index as input, mutates it, and
returns a modi�ed index. By ‘Index’ we mean, that either a logical
index (_) or a physical index (c) is given and a mutated index is
returned (_mut or cmut). _mut and cmut must preserve the correct-
ness of _ and c . This is inspired by rewrite rules in classical query
optimization: there we also only consider rules that are guaranteed
to not change the query result. We will only consider mutations
on tree-structured indexes. This is not a restriction of our generic
framework but makes the following mutations a bit more digestible.
Mutation distributions. We use a probability distribution"⇡ al-
lowing us to assign di�erent probabilities to the di�erent mutations
(line 20), e.g. we can prioritize certain mutations. Given a mutation
< and a physical index cmin we draw from a second distribution
#⇡ (cmin,<) to determine the nodes # for this mutation (line 21).
Now, we draw from a third distribution %⇡ (<,#) to determine
which physical implementation to use for this mutation and nodes.
Setting probabilities to zero within this distribution %⇡ (<,#) ex-
cludes invalid combinations of physical data layout and search
method, e.g. binary search on unsorted data layouts. Note that
these distributions can be created based on microbenchmarks.
Fundamental Mutations. Our goal is to implement a minimal set
of mutations allowing to create a huge variety of physical indexes.
M1 Change data layout: From =, we randomly select either its RI-
or DT-part. Then we create a new physical node =0 with data layout
=0.3; < =.3; drawn from %⇡ (<,#) with the same data and routing
information as =: =0.⇡) = =.⇡) ^=0.'� = =.'� . The options for data
layouts are described in Section 3.2. If = contains child partitions,
we enforce the additional condition =.3; 0 < hash, as our software
framework does not (yet) support child partitions in nodes with a
hash layout. In c , we replace = by =0. If =0.B is incompatible with
=0.3; , we draw a new method from %⇡ (<,#) to ensure correctness.
Figure 5(a) shows an example: the input node = has a sorted column-
layout. In the index, we replace = by =0 which has a tree-layout.

M2 Change search method: From =, we randomly select either
its RI- or DT-part. Given the existing search method =.B , we draw
an B 0 < B from %⇡ (<,#). Then we create a new physical node =0
with the new search method B 0 with the same data and routing
information as =: =0.⇡) = =.⇡) ^ =0.'� = =.'� . Figure 5(b) shows
an example: the input node = uses a scan as search method. In the
index, we replace = by =0 which uses binary search.
M3 Merge sibling nodes horizontally:We set node =parent := =
whose RI maps to at least one other node in c , if not we abort
this mutation. From the set of nodes mapped to by =parent we
randomly select a child node =target 2 nodes(=parent.RI). We se-
lect a non-empty subset #sources ✓ nodes(=parent.RI) of nodes
to merge into =target using the following restrictions: =target 8
#sources ^ 8=2#sources =.? = =target .? . This implies that the source
domain of the routing information function ⇡ is equal for all nodes
in #sources [{=target}. We then need to perform updates on two
levels of the index: The node =target that we merge with and the
parent node =parent. We start by describing the updates to the node
=target. First we update the data =target.DT and set it to the union
of all data within the merged nodes:

=0target .DT = =target .DT [
ÿ

=2#sources

=.DT.

In the following, we also update the routing information function
=target .RI such that

832⇡=0target .'� (3) = =target .RI(3) [
ÿ

=2#sources

=.RI(3),

where ⇡ is the common domain of the RIs in #sources [{=target}.
This ensures that our target node =target now maps to all child
nodes that any node = 2 #sources previously mapped to, i.e. we can
still reach all child nodes. For the parent node =parent we have to
update the routing information =parent.RI such that

832=⇡parent
8=2#sources = 2 =parent .'� (3)

) =parent .'� (3) = {=target} [=parent .'� (3) \ {=}.
In other words: We remove all mappings to merged nodes = 2
#sources and replace them with a new mapping to the node =target.
Notice that the merge operation performed in B-trees is essentially
just a specialized version of this general merge mutation. In a B-tree
the number of merged nodes : is typically set to : = 2 and the nodes
must be directly neighboring due to the sorted key domain. For
our actual implementation, we also restrict ourselves similarly to
merges where |#sources | = 1. Merge operations with larger source-
sets can easily be achieved by recursively executing the merge
operation on the same node. Figure 5(c) shows an example: the set
#sources contains a single leaf that we want to merge into =target.
To achieve this we �rst merge all data contained in #sources.DT into
=target.DT. As #sources.RI is empty, we do not have to do anything
here. In =parent.RI, we need to remove the mapping to all nodes in
#sources, in this case the key-range [2; 6) ⇢ ⇡ must be changed
to map to =target. For this example this is equivalent to merging
the old entry (�1; 2) with [2; 6) into (�1; 6). Now, all nodes in
#sources can be removed from the index.
M4 Split child node horizontally into k nodes: This is the in-
verse mutation of M3. Figure 5(c) shows an example.

532

RI DT

{}

p

t . e {(- ;6), [6;11), [11;+)}� �
DL: col, sorted
SAlg: scan

M1

n
RI DT

{}

p

t . e {(- ;6), [6;11), [11;+)}� �
DL: tree, sorted
SAlg: scan

n’

mutate M1

(a) M1 Change node type: change data layout of RI.

RI DT

{}

p

t . e {(- ;6), [6;11), [11;+)}� �
DL: col, sorted
SAlg: scan

n
RI DT

{}

p

t . e {(- ;6), [6;11), [11;+)}� �
DL: col, sorted
SAlg: binS

n’

mutate M2

M2

(b) M2 Change search method: change search of RI.

RI DT

{}

p

t . e {(- ;6), [6;11), [11;+)}� �
DL: col, sorted
SAlg: scan

mutate M4

p
DL: row, sorted

RI DT

SAlg: expS

{(7,B), (6,C)}� {}

p
DL: row, unsorted

RI DT

SAlg: hashS

{(11,C), (12,Z)}� {}

p
DL: row, sorted

RI DT

SAlg: expS

{(7,B), (6,C)}� {}

p
DL: row, unsorted

RI DT

SAlg: hashS

{(11,C), (12,Z)}� {}

p
DL: col, unsorted

RI DT

SAlg: scan

{(2,A)}� {}

p
DL: col, unsorted

RI DT

SAlg: scan

{(1,B), (2,A)}� {}

p
DL: col, unsorted

RI DT

SAlg: scan

{(1,B)}� {}

RI DTp

t . e {(- ;2), [2,6), [6;11), [11;+)}� �
DL: col, sorted
SAlg: scan {}

nparent
mutate M3

ntarget Nsources

(c) M3 & M4 Merge or split nodes horizontally: merge left & middle child node (M3) or split leftmost child node (M4).

RI DT

{}

p

t . e {(- ;6), [6;11), [11;+)}� �
DL: col, sorted
SAlg: scan

p
DL: row, sorted

RI DT

SAlg: expS
{(7,B), (6,C)}� {}

p
DL: row, unsorted

RI DT

SAlg: hashS
{(11,C), (12,Z)}� {}

p
DL: col, unsorted

RI DT

SAlg: scan
{(1,B), (2,A)}� {}

mutate M6

RI DT

{}

p

t . e {(- ;6), [6;11), [11;+)}� �
DL: col, sorted
SAlg: scan

p
DL: row, sorted

RI DT

SAlg: expS
{(7,B), (6,C)}� {}

p
DL: row, unsorted

RI DT

SAlg: hashS
{(11,C), (12,Z)}� {}

p
DL: col, unsorted

RI DT

SAlg: scan
{(1,B), (2,A)}� {}

nparent

p
DL: col, unsorted
RI DT

SAlg: scan
{}� {(- ,6)}�

mutate M5

nchild

(d) M5 & M6 Merge or split nodes vertically: merge top-level node’s left child (M5) or split it (M6).

Figure 5: Performing the mutations described in Section 4.3 on actual physical indexes.

M5 Merge sibling nodes vertically: We set node =parent := =
whose RI maps to at least one other node in c , if not we abort this
mutation. From the set of nodes mapped to by =parent we randomly
select a child node =child 2 nodes(=parent.RI) using the following
restriction: =child .? = =parent .? . To merge =child into =parent, we
then need to perform the following updates: First we need to move
all data in =child .DT to the parent node:

=parent .DT = =parent .DT [=child .DT

In the following we need to move potential child nodes =0 of =child
to the parent node =parent:

832⇡parent =child 2 =parent .RI(3)
) =parent .RI(3) = =parent .RI(3) \ {=child} [=child .RI(3)

where ⇡parent is the domain of =parent .RI. In other words: We re-
move all mappings to the merged node =child and replace them with
mappings to the child nodes of =child. For our actual implementa-
tion, we restrict ourselves to the merge of a single parent-child-pair
during a single mutation. Merge operations for longer chains of
nodes can easily be achieved by recursively executing the merge
operation on the same node. Figure 5(d) shows an example: We
select the root node as =parent and its left child node as =child which
we want to merge into the root node. To achieve this we �rst
merge all data contained in =child.DT into =parent.DT. In =parent.RI,
we need to remove the mapping to =child and replace them with
mappings to the children of =child. In this case, we remove the key-
range (�1; 6) ⇢ ⇡ and replace it with the corresponding entries
of =child.RI. For this example this is equivalent to re-inserting the
entry (�1; 6) into =parent.RI.

M6 Split child node vertically into k nodes: This is the inverse
operation of M5. Figure 5(d) shows an example.

4.4 Fitness Function
The �tness function is used to measure the performance of a single
physical index and describes what to optimize by the genetic algo-
rithm (either by minimizing or maximizing its value). Its de�nition
can be chosen freely depending on the optimization goal. We have
chosen to optimize our index structures for the runtime given a spe-
ci�c workload consisting of point and range queries. We therefore
de�ne the �tness function 5 : Physical Index ⇥ Workload! í to
be minimized in the following way: 5 (c,,) = A (c,,)2 . c denotes
the physical index (the individual) to evaluate,, is a sequence
of queries and denotes the workload of the speci�c experiment.
A (c,,)2 is the median runtime measured for this physical index
on the workload over 2 runs. The �tness function can also easily
be adapted to factor in other optimization goals like memory- or
energy-e�ciency. Other interesting extensions include regulariza-
tion, i.e. index complexity could be punished (similar to model
complexity in ML). Furthermore we could punish or incentivize the
�lling grade of leaves, e.g. if leaves are fully packed, this is bene-
�cial for read-optimized indexes but for inserts can quickly lead
to structural modi�cations of the tree. However, if leaves are only
partially �lled, many inserts can be handled by leaf-local changes.
All these requirements can be modeled into the �tness function.

5 RELATEDWORK
Handcrafted Indexes. Since the original B-tree-paper [6] in 1972,
B-trees have become a workhorse in database systems. Since then

533

a myriad of B-tree-variants and -improvements have been pro-
posed [30, 42, 43, 46]. Other classes of handcrafted index structures
include radix-trees like Judy-arrays [4] and its modern SIMDi�ed
incarnation ARTful [37]. Moreover, considerable work has been
done in the past years to better understand the performance of hash
tables which are widely used in query processing [2, 45].
Learned Indexes. The core task of a learned index [36] is to pro-
vide an index on a densely packed, sorted array. The main idea
is to manually de�ne an (outer) B-tree-like structure, typically a
two-level tree (coined RMI by the authors). Then, inside each node,
rather than performing a binary search on the keys contained in
that node — as done in a textbook B-tree — a learned regression
function is used to predict the position in the sorted array. Care has
to be taken to avoid prediction errors. This is done through an error
correction method: the prediction actually de�nes a range which
must be post-�ltered through a di�erent algorithm like binary or
interpolation search. The biggest advantage of a ‘learned index’
is that no space is required to store pivots in internal nodes thus
allowing for high branching factors. Like our work, the original
work was a read-only index. It bulkloaded the index top-down, but
as with any other B-tree like structure, bottom-up bulkloading up
is also possible [32] and actually easier. Later on di�erent proposals
were made to use di�erent regression techniques [31] and support
inserts and deletes [14, 17]. Also note that the RMIs make a couple
of other assumptions that may not always hold in practice [10]. As
illustrated in Figure 2(b) already, an RMI is just one special con-
�guration in GENE: an RMI is (1) a logical index: classical B-tree
(however, �xed number of layers, balancing enforced, high fan-out),
(2) a physical index: node internal search constrained to use some
form of linear regression. In other words, an RMI handcrafts its
logical structure. Then, inside its nodes it uses a �xed physical
regression method to learn a CDF. In contrast, we allow for opti-
mizing the structure and the search methods and data layouts used
inside nodes. Thus, we fully embrace the orthogonality of learning
a model only inside a node vs optimizing the entire index structure.
Our approach aims at optimizing the entire index structure not
only learning weights in a handcrafted structure.
Periodic Tables and Data Calculator. The work by Stratos Idreos
et.al. on semi-automatic data structure design is truly inspiring. In
their vision paper [27] they aim at a complete dissection and classi-
�cation of the individual primitives used to design data structures.
They sketch the huge design space of indexes and conclude that
many quadrants in that space are still unexplored. They also phrase
the high-level vision to synthesize an index from a declarative
speci�cation. Their main idea is to use a �ne-grained learned cost
models to be able to cost the physical individual index primitives
(like scans, binary search, etc.). However, they go not further to
show how this can be achieved concretely. In addition, no split into
logical and physical indexes is given which is the key enabler in our
approach. The follow-up work [28] is another vision paper which
goes into somewhat more detail in describing the problem space of
this endeavor and proposing a workbench like “‘Data Alchemist’
architecture” which is a semi-automatic design tool. However, again
no experiments and/or results are shown. Then, [29] explores a
large set of physical index design primitives, benchmarks them,
and uses the results to learn cost models for physical primitives.
This is used to build synthesized cost models for the expected cost

of a combination of those physical primitives. The authors show
several indexes where these cost estimates match the actual run-
times very well. At the same time the paper emphasizes that many
physical design primitives and their cost models are missing includ-
ing compression, concurrency, updates, etc. In their most recent
work [25], they present the concept of design continuums, which
unify di�erent data structure designs by introducing common pa-
rameters, rules, and domains necessary to describe the underlying
individuals. Using this design continuum, they show how to transi-
tion between known data structures, exposing also hybrid designs,
and how to extend the continuum by new designs. Their focus lies
on the semi-automated construction of these design continuums
which are supposed to support researchers and engineers in �nding
a close to optimal data structure for a given problem composed of
workload and hardware by using it as an inference engine.

There are four important di�erences to our work: we focus on
(1) fully automatic index structure construction, (2) we provide a
clear separation into logical and physical index components, (3) we
believe that the index design space is simply too big for a practical
system to be comprehensively modeled by (learned) cost models
one reason being that costs models of di�erent physical primitives
are often non-additive and hence not usable for an optimization
process. (4) Optimization time is important but not as critical as in
standard query optimization: recall that the creation of an index
structure is an o�ine process (in contrast to the creation of an index
instance at query time!). And therefore, it makes a lot of sense to
de�ne �tness via actual observed runtime measurements rather
than cost models whenever possible.
Generic Frameworks. A couple of generic indexing frameworks
have been proposed in the past, most notably GIST [23] andXXL [11].
Those frameworks also aimed at generalizing presumably di�erent
index structures into a common software framework. This in turn
allowed architects to implement important database algorithms for
the generic index. The specialized indexes could then relatively
easily be adapted to use the generic algorithms. Prominent exam-
ples include generic bulkloading [13] and concurrency control [33].
Though that work was inspiring to us, we stress that in our paper
we argue on a conceptual level rather than an object-oriented-level.
Moreover, we are primarily inspired by the analogue separation
into logical and relational operators without immediately specify-
ing how physical operators get implemented (ONC, vectorization,
SIMD, whatever) or even how software interfaces need to be de�ned,
as that is a tertiary concern.
DQO. Recently, we proposed Deep Query Optimization [15]. The
core idea is to break operators into smaller components which can
then possibly be optimized using traditional query optimization
technique. This paper is another inspiration of our work. However,
that work does not go into any detail on how such an idea can
be realized in the context of indexing. It neither details how tra-
ditional operators can be split nor how this can be turned into an
optimization problem for automatic index creation. We �ll that gap.
Index Selection. Index Selection [35, 38] operates on a completely
di�erent level as our approach. Instead of coming up with a con-
crete index structure, in index selection the goal is to determine a
suitable set of attributes to index in order to improve the runtime
of a workload. In contrast, in our work we consider how to devise

534

e�cient index structures in the �rst place — which could then be
leveraged in index selection algorithms.
Adaptive Indexing. As index selection is NP-hard, an interesting
strategy is to not consider indexing a binary decision but rather
allow indexes to become more and more �ne-grained over time.
That is at the heart of adaptive indexing [26]. Several interesting
proposals have been made in this space, see [47] for a survey. How-
ever, all these indexes are still handcrafted indexes. In future work,
we are planning to revisit some of these techniques, as the DT-�eld
of our logical nodes can be used to mimic many of those techniques.
Genetic Algorithms. Genetic algorithms are a long known search
method for an infeasible search space and have been used in our
database community for decades. Early work by Bennett et al. [7]
applied a genetic algorithm to search for e�cient plans in a query
optimizer. Other papers used similar approaches to improve data-
base testing [5] or to perform index selection [20, 34, 40]. We are
however not aware of papers tackling the problem of index creation
using a genetic algorithm and therefore try to further extend the
application area of these algorithms.
Decoupling Logical and Physical Indexes. Early work on parti-
tioning schemes was done by Hellerstein et al. [22]. They represent
data as a set of partitions where each partition is then (redundantly)
mapped to at least one physical replica. In contrast to our work,
they do not consider partitioning trees as in our logical indexes and
they also do not further detail how to physically implement each
partition. In the �eld of structural indexing [1, 19, 41] introduce the
idea to co-partition (or cluster) tuples in a relational schema using
graph partitioning. These graph partitions can then be exploited
to answer structural queries which could be di�cult to compute
using foreign key indexes only. Their work has a completely dif-
ferent goal: while we strive to create a single physical index, they
strive to create a graph partitioning which can then be mapped to
suitable existing indexes. Extending our logical index partitions to
their graph co-partitions could be an interesting future extension
to GENE. The GMAP project by Tsatalos et al. [49, 50] is another in-
teresting work in the area of physical data independence and index
design. In contrast to their work, we focus on the clear di�erence
between a logical and physical index and not the schema and a
physical index. Moreover, we automatically generate e�cient index
structures, while their work only allows the choice of one concrete
physical index.

6 EXPERIMENTAL EVALUATION
In our experiments, we �rst determine a suitable set of hyperparam-
eters for our genetic framework. Based on those hyperparameters,
we then carefully evaluate GENE. We highlight the cost for training
and the ability to automatically reach a certain performance base-
line. Finally, we show the capability of GENE to match and even
beat the performance of several state-of-the-art index structures.
System. All experiments were executed on a machine with an
AMD Ryzen Threadripper 1900X 8-Core processor with 32 GiB
memory on Linux. Our framework and the respective experiments
are implemented in C++ and compiled with Clang 8.0.1, -O3. All
experiments are run single-threaded and in main-memory.
Datasets. We use three types of datasets. All datasets consist of
unique 64-bit uint keys and a 64-bit payload. In the following, we
refer to the keys as data.keys. The payload represents the o�set of

the corresponding key into a sorted array. Therefore, we refer to
the payload as data.o�set. The datasets exhibit a variety of di�erent
characteristics like distribution, density, domain, and size. The �rst
dataset unidense contains keys that are uniformly distributed in a
dense domain. Concretely,D=8dense contains keys in the range [0, n)
where = is the size of the dataset. The other two datasets, books and
osm, represent real-world datasets with complex distributions and
are taken from [31]. The datasets are sampled-down to our speci�c
data size by uniformly drawing elements without duplicates. We
have two main dataset sizes 100K and 100M, depending on the
concrete experiment. Table 2 gives an overview of the datasets.

Table 2: Datasets used in the experiments.
Dataset CDF Properties

unidense
= := # elements (100K, 100M)
64-bit unique unsigned integers

books
= := # elements (100K, 1M, 10M, 100M)

64-bit unique unsigned integer
Dataset taken from [31]

osm
= := # elements (100K, 100M)
64-bit unique unsigned integers

Dataset taken from [31]

Workloads.We use three classes of workloads: point, range, and
mixed point and range query workloads. For the moment, all our
workloads are read-only, i.e. we do not consider insert, delete, or up-
date statements. Note however, that our generic framework still sup-
ports insertions and deletions. In addition, update statements would
not alter the structure of the index so we could easily integrate
them into our framework. Table 3 summarizes the basic workload
types. Point(data, idxmin, idxmax) represents a point query workload
where the keys to lookup are taken from the keys in the dataset data
by selecting indices in the subdomain [idxmin, idxmax) ✓ [0,=) with
a uniform distribution. Likewise, RangeB4; (data, idxmin, idxmax) de-
scribes a range query workload consisting of pairs specifying the
lower bound and upper bound of the query. The lower bound is
drawn with a uniform distribution in the index domain [idxmin,
idxmax - data.size * sel) ✓ [0,=) and the upper bound is set based
on the dataset size and the given selectivity sel. If the domain is
not explicitly speci�ed, we assume it to cover the whole dataset.
Mix(data, % , ') represents a mix of point and range queries with %
and ' being sets of point and range query workloads, respectively,
based on data. Note, that in contrast to the datasets, our workloads
may contain duplicates.

As already showcased in Sections 3 and 4, there is a huge search
space in designing physical index structures. Consequently, in our
experiments, we focus on the most important data layouts and
search algorithms. We use the data layouts depicted in Table 4.
As search algorithms, we use scan, binS, intS, expS, and hashS
described in more detail in Section 3.1.

6.1 Hyperparameter Tuning
We use a D=8dense dataset of size 100K and vary �ve di�erent pa-
rameters within this experiment: (1) number of mutations per

535

Table 3: Workloads used in the experiments.
Workload Characteristics Parameters

Point(data, idxmin, idxmax)

point queries in index
domain [idxmin, idxmax)
with uniform distribu-
tion

[idxmin, idxmax) ✓ [0,=)

RangeB4; (data, idxmin, idxmax)

range queries in index
domain [idxmin, idxmax)
with uniform distribu-
tion and selectivity B4;

[idxmin, idxmax) ✓ [0,=)
sel 2 [0, 1]

Mix(data, % , ')

mix of point and range
query workloads with
% and ' being sets
of respective workloads
based on data

% := {? |? is Point(data, idxmin, idxmax)}
' := {A |A is RangeB4; (data, idxmin, idxmax)}

Table 4: Data layouts used in the experiments.
Data Layout Characteristics Implementation Detail

sorted_col
RI and DT have columnar lay-
out for both keys and values.
Sorted according to keys.

C++ standard library container
std::vector<Key> and
std::vector<Value>

hash
DT represents hash table map-
ping keys to their values. RI
empty.

C++ standard library container
std::unordered_map<Key,
Value>

tree

RI and DT represent tree data
structure mapping keys to
their values. Sorted according
to keys.

C++ standard library container
std::map<Key, Value>

(a) PQ, unidense (b) RQ, unidense (c) Mixed, unidense

(d) PQ, books (e) RQ, books (f) Mixed, books

(g) Upscaling, PQ, books (h) Upscaling, RQ, books (i) Upscaling, Mixed,
books

Figure 6: (a-f): GENE approaching handcrafted baselines on
three di�erent workloads: A point query only workload (PQ),
a range query only workload (RQ) and a mixed workload
consisting of 80% point and 20% range queries. (g-i): Relative
improvement compared to the initial index structure after
upscaling to dataset sizes of 100K to 100M.

generation (Bmax): Bmax 2 {10, 50}, (2) maximum population size
(B⇧): B⇧ 2 {50, 200, 1000}, (3) tournament selection size (B)): B) 2
{10%, 50%, 100% of population size}, (4) initial population size (Binit):
Binit 2 {10, 50}, (5) population insertion criterion (@): Instead of tak-
ing the median of the subset drawn during tournament selection,

we de�ne a percentile @ to be reached for a mutated individual
to be inserted into the population: @ 2 {0%, 50%, 100%}. For the
0% percentile, we always insert the mutated individual, for the
100% percentile we only add it if it is better than the previous best
individual within the tournament selection subset.
Table 5: Best Genetic Search Con�gurations (over 5 runs)

Rank Bmax B⇧ B) Binit @ median runtime [s] mean runtime [s]

1 10 200 100% 50 0% 13.72 91.72
2 10 1000 50% 50 50% 14.58 26.10
3 10 1000 100% 10 50% 16.71 24.94
4 10 1000 100% 50 0% 16.87 94.48
5 10 1000 50% 10 50% 18.21 158.49

Table 5 shows the best con�gurations (based on the median of
the 5 runs executed per con�guration). Given a total number of
mutationswewant to perform,we conclude that it is more bene�cial
to use a smaller number of mutations per generation combined
with a larger number of generations. As the population size has
a limited in�uence, we decided to keep it very small to reduce
the overhead to maintain the population. We therefore used the
following default parameters for the experiments in the following
sections: Bmax = 10, B⇧ = 50, B) = 25, Binit = 10 and @ = 50%.

6.2 Rediscover Suitable Baseline Indexes
In this experiment, we will demonstrate that our genetic algorithm
is capable of reproducing the performance of various baseline index
structures as known from textbooks. We consider two di�erent
datasets: D=8dense and books of sizes 100K, 1M, 10M and 100M. We
combine each of those two datasets with three di�erent workloads
of 10,000 queries each: Point(unidense), Range0.001 (unidense) and
a Mix(unidense, % , ') workload, with P := {Point(unidense)} and
R := {Range0.01 (unidense)} consisting of 80% point and 20% range
queries. For each workload, we de�ne a baseline within our generic
framework of which we believe it has a decent performance: For
the point query only workload, we assume a simple hash table to
perform best which is implemented as an index structure with a
single node having the hash data layout. For the range query only
and mixed workload, we assume a B-tree-like structure to o�er a
decent performance. We initialize the tree to have 100 fully �lled
leaves, each containing 1,000 elements and a fan-out of 10 for the
internal nodes. Each node is con�gured to use the sorted_col
layout and binS. We con�gured GENE to allow nodes to contain up
to 100,000 key-value-pairs or 100,000 child partitions (potentially
leading to solutions consisting of a single node or solutions with
one node per element assembled under a single root node). In the
initial population trees were bulkloaded with 100 equally �lled
leaves and a fan-out of 10, but with randomized data layouts and
search methods. Each experiment is conducted for 8000 generations.
The genetic search was run on the smallest sample size of 100K
elements. Each time we found a new, best individual, we checked if
the results carry over to the larger datasets, i.e. we created new index
structures using the same routing information and data layouts and
search methods as found by GENE (i.e. using the exact same index
structure), but bulkloaded them with the larger dataset, increasing
leaf capacities if necessary. We then evaluated them using the exact
same workload as used in the genetic search.

Figure 6 shows the results. Each plot in the �rst two lines com-
pares the performance of the baseline to the performance of the

536

genetic algorithm where we plotted the best individual of each gen-
eration. We plot the curves up to the point of the last improvement.

As we can clearly see, GENE rapidly approaches the baseline.
This is mostly due to the fact that GENE can rather easily improve
by mutating very ine�cient nodes in the beginning. After getting
close to the baseline, GENE only �nds slight improvements, e.g. by
changing search algorithms within nodes, which are hardly visible
on the plot. The index structures found by GENE are very similar
to the baselines: On the D=8dense dataset, GENE always returned a
single node index structure. For the point query only workload, it
came up with a single hash node containing all entries, i.e. exactly
the baseline we de�ned beforehand. For the range query only as
well as mixed workload, GENE also reduced the index to a single
node, but with sorted_col data layout and intS search method.
This di�erence is due to the fact that range queries can not be
executed e�ciently on a hash node. This result is reasonable as a
uniformly distributed, dense dataset can easily be modeled by an
array with a linear model as search method. Considering the books
dataset, the point query workload resulted in a tree with 68 nodes
in total, 66 of them being leaves. All but one leaf are direct children
of the sorted_col root node, the remaining leaf has a single tree
node between itself and the root. With 48 nodes, the vast majority
of the leaves has a hash data layout. The remaining leaves are of
sorted_col (15) or tree data layout (3). The dominating search
method for non-hash nodes is binS, with only 3 exceptions that
use expS. The resulting index structure reminds of a partitioned
hash map, indicating that GENE indeed approached the expected
baseline. For the range query workload, we obtained an index with
similar size, having 44 nodes with sorted_col data layout in total,
40 of them being leaves. The index has a height of three with the
majority of the leaves (38) situated at depth two and only two leaves
being one level below. BinS is again the dominating search method
for the leaves, with four nodes using intS and two using expS
instead. The resulting index structure reminds of a shallow B-tree,
indicating that GENE again approached the expected baseline. For
the �nal mixed workload, the results are similar to the range only
workload. We obtained an index of height three with 41 nodes in
total (all with sorted_col data layout), 35 of them being leaves.
The majority of the leaves is at depth two, with three leaves being
one level above and one leaf being a level below. The dominating
search method is again binS, with only 7 leaves using an intS
instead. As for the range query only workload, GENE approached a
shallow B-tree like index to match the performance of the baseline.
The last line in Figure 6 shows the improvements of the scaled index
structures for the books dataset. Each line represents the relative
improvements compared to the best index structure of GENE’s
initial population, upscaled to the indicated dataset sizes of 100K
(the size on which the search was conducted) up to 100M. We can
clearly see that an improvement in the solid line representing the
training data nearly always results in a very similar improvement
for the upscaled index structures. The overall, relative improvement
becomes even bigger with increasing dataset size, indicating that is
most likely su�cient to run GENE on a sample of the data to obtain
a decent index structure, highly reducing the necessary search time.
If best possible performance is the ultimate goal, then GENE can
again be applied to the upscaled index structure resulting from the
sample to perform further �ne tuning.

We also experimented with an additional, mixed workload again
consisting of 10,000 queries with a 80% / 20% point to range query
ratio, based on the D=8dense dataset. However, this time we chose
the queries to be normally distributed around key 75,000 with a
standard deviation of 10,000, i.e. the queries were mainly focused
on the upper half of the key domain. Our GENE algorithm again
decided to shrink the initial index structures considerably, however
it stopped after 3500 generations returning a tree with 4 levels and
25 nodes in total, 17 of them being leaves. The nodes containing
the upper half of the key domain were again using the sorted_col
layout and either intS or binS. The total runtimes of GENE heavily
depend on the concrete datasets and workloads. The fastest execu-
tion for D=8dense with point query only workload took less than 3
minutes until the last improvement was found. The longest run on
the same dataset with range query only workload took about 122
minutes. Performing the additional upscaling steps further in�u-
enced the runtimes, leading to execution times of up to 30 hours for
the books dataset in combination with range query only workload.

6.3 Optimized vs Heuristic Indexes
In this section, we will compare the performance of a GENE index
with representatives of di�erent prevalent heuristic index types.
Table 6 gives an overview of the di�erent index types and respec-
tive representatives. For the B+tree implementation we use the
commonly used TLX baseline implementation by Bingmann [8]. In
particular, we use the specialized B+tree template class btree_map
implementing STL’s map container. The ART implementation is
taken from the SOSD benchmark [39] by Marcus et al. and con-
cretely, we use the implementation ARTPrimaryLB that supports
lower bound lookups. PGM [18] by Ferragina et al. providesmultiple
implementations that support a variety of di�erent functionalities
like insertion and deletion support or compression to reduce space
usage. Since we are only interested in the lookup performance, we
use the default PGMIndex implementation. We purposely exclude
hash tables since they do not support range queries e�ciently.

Table 6: Overviewof di�erent index types and representatives
of each category.

Type Index Details
Tree B-tree TLX btree_map [8]
Radix ART SOSD ARTPrimaryLB [39]
Learned PGM PGM PGMIndex [18]

We conduct our performance evaluation on the three di�erent
datasets, unidense, books, and osm, each with a size of = = 100M data
points. As for the workload, we are going to use a mixed workload
consisting of multiple point and range query workloads. Concretely,
the workload consists of 1M queries, divided in three point query
workloads and one range query workload: Mix(data, % , '), with % :=
{Point(data, 0, 0.1 · n), Point(data, 0.1 · n, 0.85 · n), Point(data, 0.85 ·
n, n)} and ' := {Range(data, 0.1 · n, 0.85 · n)}, where data 2 {unidense,
books, osm}. With that, the queried key domain is essentially split
into three partitions at 10% and 85% of the data based on the di�erent
workloads. The �rst partition [0, 0.1 · =) exclusively receives point
queries representing 20% of the total workload size. The second
partition [0.1 · =, 0.85 · =) receives a mix of both, 10% point and 20%
range queries, and the third partition [0.85 · =,=) 50% point queries.
Figure 7 illustrates the workload based on the osm dataset. Since
each data point maps a key to its position in a sorted data array,

537

Figure 7: Visualization of the experimental setup. The osm
dataset is shown as CDF while the point and range queries
are illustrated as a stacked histogram. The red vertical lines
highlight the partition borders.

Figure 8: Average index lookup time comparison between
three representative state-of-the-art index structures and
our GENE index on three di�erent datasets and workloads
described in subsection 6.3. The small black bars indicate the
standard deviation of �ve runs, which is negligibly small.

RI DT

{}

p DL: col, sorted
SAlg: binS

{[0,0.1 � n), [0.1 � n,0.85 � n), [0.85 � n, n)}data . offset

p
DL: row, unsorted

RI DT

SAlg: hashS
{…}� {}

p
DL: row, unsorted

RI DT

SAlg: hashS
{…}� {}

B-tree-style

Index

…

p
DL: col, sorted

RI DT

SAlg: binS
{}{…}

p
DL: col, sorted

RI DT

SAlg: binS
{…}{}

p
DL: col, sorted

RI DT

SAlg: binS
{…}{}

Figure 9: Physical index structure of the GENE index based
on the workload partitioning.

range queries can be translated to �nding the position of the lower
bound in the index and subsequently scanning the data array. This
scan is independent of the underlying index type and can therefore
be neglected. Thus, a range query in our evaluation is equivalent
to a lower bound lookup in the index. Our generic implementation
allows us to easily replace speci�c parts of a physical index structure
like the data layout or search method. However, this leads to a non-
negligible performance overhead mainly due to repeated dynamic
dispatches. To be competitive with the other baselines and state-of-
the-art index structures, we provide an additional implementation
that speci�cally contains the concrete physical index structures
used in this experiment. Figure 9 shows the physical structure of
our GENE index. Since the workload domain is split into three
partitions with two exclusive point query regions, we bulkload our

index structure accordingly. The �rst and third partition are hash
nodes while the second partition represents a B-tree-style index.
The root is a sorted array using binary search. We randomly shu�e
the workload before each execution to avoid caching e�ects.

Figure 8 shows the results of the index structures for di�erent
datasets. We report the average index lookup time. Independent
of the underlying dataset, the TLX B-tree requires around 700 ns
and is not able to compete with the other indexes. On the uniform
dense dataset, ART and PGM both achieve a lower lookup time
than GENE. However, for both, a uniform dense dataset is close
to the optimal use case. For the two real-world skewed and sparse
datasets, our GENE index achieves a competitive or even faster
lookup time than the other index structures of around 350 ns.

We are well aware that this is a very speci�c use case, however,
it showcases that there are indeed scenarios where an optimized
GENE index can outperform a state-of-the-art (heuristic) data struc-
ture. Expanding the covered design space by GENE, i.e. the available
data structures and search algorithms, and automatically �nding
those scenarios is part of future work. In conclusion, our proof
of concept emphasizes that there are use cases in which GENE is
able to achieve a competitive or even superior performance than
state-of-the-art index structures and therefore, con�rms its validity.

7 CONCLUSION AND FUTUREWORK
Conclusions. This paper has opened the book for automatically
generated index structures. We have proposed a powerful generic
indexing framework on the logical and physical level analogue to
logical and physical operators in query processing and optimization.
We have shown that by clearly separating the logical and physical di-
mensions of an index, a huge number of existing (physical) indexes
can be represented in our generic indexing framework. Furthermore,
we introduced Genetic Generic Generation of Indexes (GENE). Given
a workload, GENE can come up with an e�cient physical index
structure automatically. Our initial experimental results outlines
the potential and e�ciency of our approach.
Future Work. This paper is obviously just a starting point and
there are many possible exciting research directions ahead:
(1) code-generation, similar to generating code for the most ef-
�cient physical plan found, generate code for the most e�cient
physical index structure found,
(2) The Index Farm: we plan to open source our framework: the goal
is that people submit a workload on a web page and the framework
emits suitable source code for an index structure,
(3) runtime adaptivity: how to mutate structurally, this can also
simulate the adaptive indexing family of index structures,
(4) updates: explore workloads with inserts, updates, and deletes,
(5) scalability: extend our scalability experiments to evaluate work-
loads only on subtrees a�ected by mutations using cost functions to
prioritize expensive partitions when drawing nodes for mutations
(6) e�ects of non-empty DT-�elds in internal nodes,
(7) extend GENE to support more data layouts, search algorithms,
and hardware acceleration (SIMD).

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their con-
structive comments.

538

REFERENCES
[1] Erik Agterdenbos, George H. L. Fletcher, Chee-Yong Chan, and Stijn Vansum-

meren. 2016. Empirical evaluation of guarded structural indexing. In Proceedings
of the 19th International Conference on Extending Database Technology, EDBT.
714–715. https://doi.org/10.5441/002/edbt.2016.101

[2] Victor Alvarez, Stefan Richter, Xiao Chen, and Jens Dittrich. 2015. A comparison
of adaptive radix trees and hash tables. In 31st IEEE International Conference on
Data Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015. IEEE Computer
Society, 1227–1238. https://doi.org/10.1109/ICDE.2015.7113370

[3] Lars Arge. 1995. The Bu�er Tree: A New Technique for Optimal I/O-Algorithms
(Extended Abstract). In Algorithms and Data Structures, 4th International Work-
shop, WADS ’95, Kingston, Ontario, Canada, August 16-18, 1995, Proceedings (Lec-
ture Notes in Computer Science), Vol. 955. Springer, 334–345. https://doi.org/10.
1007/3-540-60220-8_74

[4] D. Baskins. 2004, (accessed November 8, 2021). Judy arrays. http://judy.
sourceforge.net/

[5] Hardik Bati, Leo Giakoumakis, Steve Herbert, and Aleksandras Surna. 2007.
A genetic approach for random testing of database systems. In Proceedings of
the 33rd International Conference on Very Large Data Bases. 1243–1251. http:
//www.vldb.org/conf/2007/papers/industrial/p1243-bati.pdf

[6] Rudolf Bayer and Edward M. McCreight. 1972. Organization and Maintenance
of Large Ordered Indices. Acta Informatica 1 (1972), 173–189. https://doi.org/10.
1007/BF00288683

[7] Kristin P. Bennett, Michael C. Ferris, and Yannis E. Ioannidis. 1991. A Genetic Al-
gorithm for Database Query Optimization. In Proceedings of the 4th International
Conference on Genetic Algorithms. 400–407.

[8] Timo Bingmann. 2018. TLX: Collection of Sophisticated C++ Data Structures,
Algorithms, and Miscellaneous Helpers. https://github.com/tlx/tlx, accessed
November 8, 2021.

[9] Miles Cranmer, Alvaro Sanchez-Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer,
David Spergel, and Shirley Ho. 2020. Discovering Symbolic Models from Deep
Learning with Inductive Biases. arXiv:2006.11287 [cs.LG]

[10] Andrew Crotty. 2021. Hist-Tree: Those Who Ignore It Are Doomed to Learn. In
11th Conference on Innovative Data Systems Research, CIDR 2021, Virtual Event,
January 11-15, 2021, Online Proceedings. www.cidrdb.org. http://cidrdb.org/
cidr2021/papers/cidr2021_paper20.pdf

[11] Jochen Van den Bercken, Björn Blohsfeld, Jens-Peter Dittrich, Jürgen Krämer,
Tobias Schäfer, Martin Schneider, and Bernhard Seeger. 2001. XXL - A Li-
brary Approach to Supporting E�cient Implementations of Advanced Data-
base Queries. In VLDB 2001, Proceedings of 27th International Conference on Very
Large Data Bases, September 11-14, 2001, Roma, Italy. Morgan Kaufmann, 39–48.
http://www.vldb.org/conf/2001/P039.pdf

[12] Jochen Van den Bercken and Bernhard Seeger. 2001. An Evaluation of Generic
Bulk Loading Techniques. In VLDB 2001, Proceedings of 27th International Con-
ference on Very Large Data Bases, September 11-14, 2001, Roma, Italy. Morgan
Kaufmann, 461–470. http://www.vldb.org/conf/2001/P461.pdf

[13] Jochen Van den Bercken, Bernhard Seeger, and Peter Widmayer. 1997. A Generic
Approach to Bulk Loading Multidimensional Index Structures. In VLDB’97, Pro-
ceedings of 23rd International Conference on Very Large Data Bases, August 25-29,
1997, Athens, Greece. Morgan Kaufmann, 406–415. http://www.vldb.org/conf/
1997/P406.PDF

[14] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,
Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,
David B. Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned
Index. In Proceedings of the 2020 International Conference on Management of Data,
SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020.
ACM, 969–984. https://doi.org/10.1145/3318464.3389711

[15] Jens Dittrich and Joris Nix. 2020. The Case for Deep Query Optimisation. In
CIDR 2020, 10th Conference on Innovative Data Systems Research, Amsterdam,
The Netherlands, January 12-15, 2020, Online Proceedings. www.cidrdb.org. http:
//cidrdb.org/cidr2020/papers/p3-dittrich-cidr20.pdf

[16] Ronald Fagin, Jürg Nievergelt, Nicholas Pippenger, and H. Raymond Strong. 1979.
Extendible Hashing - A Fast Access Method for Dynamic Files. ACM Trans.
Database Syst. 4, 3 (1979), 315–344. https://doi.org/10.1145/320083.320092

[17] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic
compressed learned index with provable worst-case bounds. Proc. VLDB Endow.
13, 8 (2020), 1162–1175. http://www.vldb.org/pvldb/vol13/p1162-ferragina.pdf

[18] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic
compressed learned index with provable worst-case bounds. PVLDB 13, 8 (2020),
1162–1175. https://doi.org/10.14778/3389133.3389135

[19] George H. L. Fletcher, Dirk Van Gucht, Yuqing Wu, Marc Gyssens, So�a Brenes,
and Jan Paredaens. 2009. A methodology for coupling fragments of XPath
with structural indexes for XML documents. Inf. Syst. 34, 7 (2009), 657–670.
https://doi.org/10.1016/j.is.2008.09.003

[20] Farshad Fotouhi and Carlos E. Galarce. 1989. Genetic Algorithms and the Search
for Optimal Database Index Selection. In Computing in the 90’s, The First Great
Lakes Computer Science Conference (Lecture Notes in Computer Science), Vol. 507.

249–255. https://doi.org/10.1007/BFb0038500
[21] Hector Garcia-Molina, Je�rey D. Ullman, and Jennifer Widom. 2002. Database

Systems - the Complete Book (International Edition). Pearson Education.
[22] Joseph M. Hellerstein, Elias Koutsoupias, Daniel P. Miranker, Christos H. Pa-

padimitriou, and Vasilis Samoladas. 2002. On a model of indexability and its
bounds for range queries. J. ACM 49, 1 (2002), 35–55. https://doi.org/10.1145/
505241.505244

[23] Joseph M. Hellerstein, Je�rey F. Naughton, and Avi Pfe�er. 1995. Generalized
Search Trees for Database Systems. In VLDB’95, Proceedings of 21th International
Conference on Very Large Data Bases, September 11-15, 1995, Zurich, Switzerland.
Morgan Kaufmann, 562–573. http://www.vldb.org/conf/1995/P562.PDF

[24] John Henry Holland. 1975. Adaptation in natural and arti�cial systems: an
introductory analysis with applications to biology, control, and arti�cial intelligence.
MIT press.

[25] Stratos Idreos, Niv Dayan, Wilson Qin, Mali Akmanalp, Sophie Hilgard, Andrew
Ross, James Lennon, Varun Jain, Harshita Gupta, David Li, and Zichen Zhu.
2019. Design Continuums and the Path Toward Self-Designing Key-Value Stores
that Know and Learn. In CIDR 2019, 9th Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings.
www.cidrdb.org. http://cidrdb.org/cidr2019/papers/p143-idreos-cidr19.pdf

[26] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Database Cracking.
In CIDR 2007, Third Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 7-10, 2007, Online Proceedings. www.cidrdb.org,
68–78. http://cidrdb.org/cidr2007/papers/cidr07p07.pdf

[27] Stratos Idreos, Kostas Zoumpatianos, Manos Athanassoulis, Niv Dayan, Brian
Hentschel, Michael S. Kester, Demi Guo, Lukas M. Maas, Wilson Qin, Abdul
Wasay, and Yiyou Sun. 2018. The Periodic Table of Data Structures. IEEE Data
Eng. Bull. 41, 3 (2018), 64–75. http://sites.computer.org/debull/A18sept/p64.pdf

[28] Stratos Idreos, Kostas Zoumpatianos, Subarna Chatterjee, Wilson Qin, Abdul
Wasay, Brian Hentschel, Mike S. Kester, Niv Dayan, Demi Guo, Minseo Kang,
and Yiyou Sun. 2019. Learning Data Structure Alchemy. IEEE Data Eng. Bull. 42,
2 (2019), 47–58. http://sites.computer.org/debull/A19june/p47.pdf

[29] Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S. Kester, and
Demi Guo. 2018. The Data Calculator: Data Structure Design and Cost Synthesis
from First Principles and Learned Cost Models. In Proceedings of the 2018 Interna-
tional Conference on Management of Data, SIGMOD Conference 2018, Houston, TX,
USA, June 10-15, 2018. ACM, 535–550. https://doi.org/10.1145/3183713.3199671

[30] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D.
Nguyen, Tim Kaldewey, Victor W. Lee, Scott A. Brandt, and Pradeep Dubey.
2010. FAST: fast architecture sensitive tree search on modern CPUs and GPUs.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010. ACM, 339–350.
https://doi.org/10.1145/1807167.1807206

[31] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,
Tim Kraska, and Thomas Neumann. 2019. SOSD: A Benchmark for Learned
Indexes. CoRR abs/1911.13014 (2019). arXiv:1911.13014 http://arxiv.org/abs/
1911.13014

[32] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,
Tim Kraska, and Thomas Neumann. 2020. RadixSpline: a single-pass learned
index. In Proceedings of the Third International Workshop on Exploiting Arti�cial
Intelligence Techniques for Data Management, aiDM@SIGMOD 2020, Portland,
Oregon, USA, June 19, 2020. ACM, 5:1–5:5. https://doi.org/10.1145/3401071.
3401659

[33] Marcel Kornacker, C. Mohan, and Joseph M. Hellerstein. 1997. Concurrency and
Recovery in Generalized Search Trees. In SIGMOD 1997, Proceedings ACM SIG-
MOD International Conference on Management of Data, May 13-15, 1997, Tucson,
Arizona, USA. ACM Press, 62–72. https://doi.org/10.1145/253260.253272

[34] Marcin Korytkowski, Marcin Gabryel, Robert Nowicki, and Rafal Scherer. 2004.
Genetic Algorithm for Database Indexing. In Arti�cial Intelligence and Soft
Computing - ICAISC (Lecture Notes in Computer Science), Vol. 3070. 1142–1147.
https://doi.org/10.1007/978-3-540-24844-6_179

[35] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. 2020. Magic
mirror in my hand, which is the best in the land? An Experimental Evaluation
of Index Selection Algorithms. Proc. VLDB Endow. 13, 11 (2020), 2382–2395.
http://www.vldb.org/pvldb/vol13/p2382-kossmann.pdf

[36] Tim Kraska, Alex Beutel, Ed H. Chi, Je�rey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018. ACM, 489–504. https://doi.org/10.1145/3183713.3196909

[37] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix
tree: ARTful indexing for main-memory databases. In 29th IEEE International
Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013.
IEEE Computer Society, 38–49. https://doi.org/10.1109/ICDE.2013.6544812

[38] Vincent Y. Lum and Huei Ling. 1971. An Optimization Problem on the Selection
of Secondary Keys. In Proceedings of the 1971 26th Annual Conference (ACM ’71).
Association for Computing Machinery, New York, NY, USA, 349–356. https:
//doi.org/10.1145/800184.810505

539

[39] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,
Alfons Kemper, Thomas Neumann, and TimKraska. 2020. Benchmarking Learned
Indexes. Proc. VLDB Endow. 14, 1 (2020), 1–13.

[40] Priscilla Neuhaus, Julia Couto, Jonatas Wehrmann, Duncan Dubugras Alcoba
Ruiz, and Felipe Meneguzzi. 2019. GADIS: A Genetic Algorithm for Database
Index Selection (S). In The 31st International Conference on Software Engineering
and Knowledge Engineering, SEKE. 39–54. https://doi.org/10.18293/SEKE2019-135

[41] François Picalausa, George H. L. Fletcher, Jan Hidders, and Stijn Vansummeren.
2014. Principles of Guarded Structural Indexing. In Proc. 17th International
Conference on Database Theory (ICDT). 245–256. https://doi.org/10.5441/002/
icdt.2014.26

[42] Jun Rao and Kenneth A. Ross. 1999. Cache Conscious Indexing for Decision-
Support inMainMemory. InVLDB’99, Proceedings of 25th International Conference
on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK. Morgan
Kaufmann, 78–89. http://www.vldb.org/conf/1999/P7.pdf

[43] Jun Rao and Kenneth A. Ross. 2000. Making B+-Trees Cache Conscious in
Main Memory. In Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, May 16-18, 2000, Dallas, Texas, USA. ACM, 475–486.
https://doi.org/10.1145/342009.335449

[44] Esteban Real, Chen Liang, David So, and Quoc Le. 2020. Automl-zero: Evolving
machine learning algorithms from scratch. In International Conference onMachine
Learning. PMLR, 8007–8019.

[45] Stefan Richter, Victor Alvarez, and Jens Dittrich. 2015. A Seven-Dimensional
Analysis of Hashing Methods and its Implications on Query Processing. Proc.
VLDB Endow. 9, 3 (2015), 96–107. https://doi.org/10.14778/2850583.2850585

[46] Benjamin Schlegel, Rainer Gemulla, and Wolfgang Lehner. 2009. k-ary search
on modern processors. In Proceedings of the Fifth International Workshop on Data
Management on New Hardware, DaMoN 2009, Providence, Rhode Island, USA, June
28, 2009. ACM, 52–60. https://doi.org/10.1145/1565694.1565705

[47] Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. 2013. The Uncracked
Pieces in Database Cracking. Proc. VLDB Endow. 7, 2 (2013), 97–108. https:
//doi.org/10.14778/2732228.2732229

[48] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.
Lorie, and Thomas G. Price. 1979. Access Path Selection in a Relational Database
Management System. In Proceedings of the 1979 ACM SIGMOD International
Conference on Management of Data, Boston, Massachusetts, USA, May 30 - June 1.
ACM, 23–34. https://doi.org/10.1145/582095.582099

[49] Odysseas G. Tsatalos and Yannis E. Ioannidis. 1994. A Uni�ed Framework for
Indexing in Database Systems. In Database and Expert Systems Applications, 5th
International Conference, DEXA (Lecture Notes in Computer Science), Vol. 856.
183–192. https://doi.org/10.1007/3-540-58435-8_183

[50] Odysseas G. Tsatalos, Marvin H. Solomon, and Yannis E. Ioannidis. 1996. The
GMAP: A Versatile Tool for Physical Data Independence. VLDB J. 5, 2 (1996),
101–118. https://doi.org/10.1007/s007780050018

540

